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Abstract

Although geography has been considered an important factor in international
trade spatial heterogeneity has not been fully investigated in the regression of stan-
dard gravity models. This paper contributes to the literature by investigating how
gravity works geographically in bilateral trades. First, geographically weighted re-
gression of the gravity model reveals spatial variations of estimated parameters.
Second, the regional or continental dummies in the standard gravity model appear
to not fully capture these geographical characteristics. Third, the location used in
the regression, whether exporter’s or importer’s, remarkably influences the coeffi-
cient values of exporter’s and importer’s variables such as GDP.
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1 Introduction

Pioneered by Tinbergen (1962), the gravity equation in bilateral trade flows has been
empirically used in the international trade literature. Its basic idea is as follows: (i)
bilateral trade increases proportionately with the economic size of the destination and
the origin economies and (ii) more distant countries suffer from more transport costs.
Existing literature generally finds that average GDP and distance elasticities are close to
positive unity and negative unity, respectively under ordinary least squares (OLS)-based
regression.1 In this paper, we investigate the role of geography by extending the standard
gravity model.

International trade may vary geographically. First, the economic size of a certain
country increases its exports to or imports from a certain partner country. However, the
spatial proliferation resulting from the economic size has not been investigated in the
literature. For example, one may wonder to which extent the gravity of the US GDP
geographically reaches. Second, while trade decreases with increasing physical distance,
the impact of bilateral distance may not be homogenous among country pairs, depending
on the geography. For instance, natural environments such as mountains, deserts, and
rivers and many geographical factors could be obstacles to incur trade costs. Similarly,
land or ice barriers could result in indirect routes for countries adjacent to the sea.
However, it would be difficult to introduce all such geographical factors in one gravity
model.

To capture the spatial aspect of the gravity, regional or continent dummy has been
used in the literature. Frankel (1997) includes regional dummies such as Western Europe,
East Asia, and APEC in the estimation model. Disdier and Head (2008) introduce
a dummy “single continent” to capture land versus ocean differences. Hillberry and
Hummels (2008) show that the macro-level home bias in trade flows is largely driven by
geographic aggregation. Hillberry and Hummels (2008) find that the aggregate trade–
distance relationship in intra-US trade over short distance is driven entirely by the fact
that most establishments ship only to geographically proximate customers, rather than
shipping to many customers in values that decrease with distance.

In this paper, we investigate the effect of geography on gravity models and empiri-
cally assess the role of spatial heterogeneity. Existing OLS-based regression analyses can
only produce global parameter estimates rather than local parameter estimates. The ge-
ographically weighted regression (GWR) approach has several merits. First, in contrast
to the global estimates such as OLS, we can detect how the coefficients for each inde-
pendent variable are regionally dispersed under GWR regression. In other words, we can
estimate each region’s own regression. Second, it can substantially reduce spatial error
correlation when there is country heterogeneity in the GWR coefficients. Third, GWR
does not need geographical variables in the regression including regional dummies such
as Africa, America, Asia, and Europe. Fourth, since each regression location has its own
constant term, it largely accounts for region-fixed effects. Fifth, we incorporate SST’s
idea into the gravity equation and estimate the model without log-linearization.

In the benchmark case, we use exporter’s latitude and longitude as geographical infor-
mation to estimate GWR. This is because the empirical literature interprets trade flows

1For example, Disdier and Head (2008) and Head and Mayer (2014) perform meta analysis by collect-
ing a large set of estimates in the literature and find that the elasticity of trade with respect to distance
is -0.95 since 1990.
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from country i to j as exports from country i to j, depending on the theoretically derived
gravity equation in the literature including Anderson and Wincoop (2003) and Eaton and
Kortum (2002). However, at least in the estimation model, trade flows from country i to j
can also be interpreted as imports of country j from i. Furthermore, when exporters and
importers are both plural, whether the location of estimation is i or j becomes important.
Our prior is that if we interpret trade flows from i to j as exports of country i to other
j countries, the characteristics of exporter i may influence the results, and vice versa.
Hence, in the benchmark case, we use exporter i’s location in the estimation following
the interpretation of existing literature and as a robustness check, we also use importer
j’s location to investigate the effect of locations.

Our main findings are as follows. First, we find that local variations exist originating
from the geographical heterogeneity. GWR analysis shows that the distribution of for
each variable differs one another. This implies that the global estimates cannot capture
local variations. For example, being a landlocked country in Europe (Austria) is different
from being a landlocked country in Central Asia (Mongolia) or Sahara (Chad). Second,
GWR analysis reveals how the estimated parameters for each exporter’s location are
locally distributed. We find that the estimates are clustered among selected economic
masses. For example, while countries adjacent to the US share similar coefficient values
with the US, European countries also obtain their own results. Third, the regional or
continental dummy in the standard gravity model may not fully capture the geographical
characteristics. In other words, there exist various patterns within a region or a continent.

As a robustness check, we re-estimate the GWR model by using the information of
importer’s location because the geography may have different meanings to the exporter
and importer countries with different locations. We find that the degree of dispersion
in the estimated coefficient values depends crucially on at which location we estimate
the model. In particular, the variables of exporter’s and importer’s own variables includ-
ing GDP, GDP per capita, landlock, and remoteness are considerably influenced by the
estimation location.

When we use exporter’s location, we have more dispersed coefficient values of ex-
porter’s variables than those of importer’s variables. In contrast, in the importer loca-
tion case, we obtain more dispersed coefficient values of importer’s variables than those
of exporter’s variables. This is because the estimation based on the importer’s location
includes more information of the importer, and hence the estimated results of importer’s
variables are more dispersed reflecting the idiosyncratic characteristics of importers. On
the other hand, the coefficients of exporter’s variables are less dispersed reflecting that
the estimation based on the importer’s location includes less information of the exporters.

Furthermore, Santos Silva and Tenreyro (henceforth, SST, 2006) argue that the log-
arithmic transformation of the standard gravity model is not relevant to estimate elas-
ticities because the multiplicative trade models with multiplicative errors do not satisfy
the assumption of the homoscedasticity of the error term.2 As an alternative, SST pro-
pose the estimation without taking logs by using the Poisson pseudo maximu likelihood
(PPML) estimator.

To handle this problem, we perform the geographically weighted Poisson regression
(GWPR) modelling technique proposed by Nakaya et al. (2005).3 We generally sup-

2In this case, there is an inconsistency problem of the OLS estimator due to the dependency between
the error term of the transformed log-linear model and the regressors.

3Nakaya et al. (2005) analyze disease patterns resulting from spatially non-stationary processes.
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plement SST’s global results. For example, the absolute values of the coefficients on
exporter’s and importer’s GDPs and distance are much smaller in many regions even
under our local Poisson regression.

The rest of the paper is organized as follows. Sections 2 and 3 describe the estimation
methodology and explain the data, respectively. Section 4 presents the main results under
GWR. Section 5 shows the results based on the importer’s location. Section 6 presents
the results under Anderson and van Wincoop (2003) specification. Section 7 compares
the GWR results with those of GWPR. Section 8 concludes.

2 Estimation methodology

In this section, we explain our estimation methodology.
The simplest form of a gravity model for trade is provided by

Tij = A0Y
α1
i Y α2

j Dα3
ij uij, (1)

where Tij, Yi, Yj and Dij denote trade flows from country i to j, GDPs of countries i
and j, and the distance between countries i and j, respectively. A0, α1, α2, and α3 are
unknown parameters to be estimated. uij is an error term.

In logged forms, the equation becomes

tij = α0 + α1yi + α2yj + α3dij + ηij, (2)

where tij ≡ lnTij, α0 ≡ A0, yi ≡ lnYi, yj ≡ lnYj, Dij ≡ lnDij, and ln ηij ≡ uij. This
type of an ordinary linear regression (OLR) model estimates α by using the OLS method
and the estimator can be written as

α̂ = (y′y)−1y′t. (3)

SST advocate the PPML approach because the OLR model can be biased in the
presense of heteroskedasiticity. Hence, the model without log-linearization becomes the
Poisson regression model as follows

Tij = exp(α0 + α1yi + α2yj + α3dij) + εij, (4)

where Tij ≥ 0 and E[εij|yi, yj, dij] = 0, while ηij in Equation (2) may not be statistically
independent of the regressors.

We estimate the GWR and GWPR models by extending the above-mentioned OLR
and PPML models. As discussed by Yoo (2012), GWR allows the coefficients of explana-
tory variables to differ by locality by giving relatively more weight to geographically close
observations. OLR assumes that the coefficients of the independent variables are con-
stant within a region, thereby omitting fine-grained spatial information of observations
by estimating an average effect. It can be verified that the average value does provide a
meaningful summary if there is little variation within the defined space. However, given
spatially differentiated economic activities, the global statistic may not accurately reflect
local conditions. GWR accounts for spatial heterogeneity in responses to variables by es-
timating separate regressions for each location. GWR primarily uses geographically close
observations to estimates local coefficients. The weight represents the adjacency effects
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for neighboring locations within a specified distance. Following the assumption that more
proximate locations are more alike, the weights decay with distance. In other words, the
estimated coefficient of α1, say, at Britain may differ from that at Japan because the
surrounding observations and weights are different.

The GWR gravity model is specified as

tij = α0,i + α1,iyi + α2,iyj + α3,idij + ηij, (5)

Note that in contrast to the OLS gravity model, our GWR gravity model estimates one
regression for each location.

To estimate each parameter at the ith location, we conduct a weighted regression
where each observation is given a weight wj The parameters in the GWR model in
Equation (5) can be calibrated using the weighted least squares approach.

α̂i = (y′Wiy)−1y′Wit ∀i = 1, · · · , N (6)

where the weighting matrix Wi is the N by N matrix whose off-diagonal elements are
zero and whose diagonal elements are the weights of each observation. Note that wi is a
decreasing function of distance between the two points.

There are two classic ways to determine the weight of each observation. A fixed kernel
uses a given bandwidth, which does not vary with data density. Thus, the number of
observations used in estimation differs according to data density. More observations are
used in the area with denser observations than in the area with sparser observations.
An adaptive kernel uses a fixed number of observations. Thus, the bandwidth differs
according to data density, and larger bandwidth is used in the area where observations
are sparse than in the area where observations are dense. One of the classic options of
geographical kernel type for GWR is adaptive bi-square kernel.

wi =

{
(1− d2ij/θ2i(k))2, if dij < θi(k)

0, otherwise
(7)

where θi(k) is an adaptive bandwidth size defined as the k th nearest neighbor distance.
The bi-square kernel has a clear-cut range where kernel weighting is non-zero. Empirically,
the optimal bandwidth is determined by minimizing AICc or cross validation.4

SST argue that log-linearization of the empirical model in the presense of heteroskedas-
ticity leads to inconsisitent estimates. Therefore, we estimate the GWPR gravity model
specified as

Tij = exp(α0,i + α1,iyi + α2,iyj + α3,idij) + εij, (8)

where Tij is a level variable as in SST. In this case, GWR uses the Poisson regression
model instead of OLS when running a separate regression for each location.

In the GWPR estimation, the bandwidth is around 2700 out of 9613 export flows.
This implies that nearby 2700 get positive weight when we calculate local coefficients of
each location.

4Akaike information criterion-corrected (AICc) is a measure of the relative quality of statistical models

for a given set of data. Cross vaildation =
∑N

i=1(yi − ŷ 6=i)
2 where ŷ 6=i is the fitted value of yi with the

observations for point i omitted from the calibration process.
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3 Data

Data are taken from SST, which covers 136 countries in 1990. Hence, 18,360 observations
of bilateral export flows are obtained with 136×135 country pairs. When we exclude
zero bilateral trade, 9,613 country pairs have positive export flows.5 Using SST data,
we can compare our local estimation results with global estimates of SST. The spatial
distributions of GDP data are graphically displayed on the world map in Fig. 1.6 We
have relatively high levels of GDPs for each continent: the US in North America, Brazil in
South America, developed countries in Western Europe, Japan in East Asia, and Australia
in the Southeast Asia. According to the gravity model, large trade can be explained by
these large economy masses. Our methodological merit is to geographically investigate
the extent of gravity that each mass has spatially. In contrast to the other continents,
there exists no country with a large economic size in Africa. In the estimation, we also
investigate how the African countries are affected by big massess in other continents.

Insert Fig. 1 here.

4 Empirical results

In this section, we explain the main results. After showing the global estimates under
OLS and PPML, we show the histograms of local esitmates based on the values and
display them on the world map.

4.1 OLS and PPML results

We begin by showing the OLS and PPML results. Using ArcGIS 10.1 software, we
reproduce the OLS estimates. The results for traditional OLS and PPML are presented
in Tables 1 and 2, respectively.7 Tables 1 and 2 also present the minimum and maximum
values via GWR and GWPR, respectively.

Insert Tables 1 and 2 here.

Fig. 2 geographically displays the residuals of OLS. We observe that the residuals
are not distributed over the world map unlike the implicit assumption of the OLS model.
Some groups of OLS residuals are clustering regionally, which implies that the effects of
independent variables are not geographically constant.

Insert Fig. 2 here.

5We also perform estimation including trade data with literally zero. However, we find that the
estimated values are too and in some cases the signs are opposite for these pairs of countries. As
discussed in the previous literature, there exist many problems with zero trade in the perspective of
estimation and quality of data. For example, zeros can just be missig observations. Hence, in this paper,
we only show the results with positive trade flows.

6For further details, see SST.
7PPML results are taken from SST.
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4.2 GWR results

4.2.1 Histograms of local estimates

In this subsection, we compare our local results with global estimates for each variable.
Fig. 3 displays the histograms of estimated local coefficients, where we categorize coun-
tries by equally dividing the entire range of coefficients into eight subranges. The red
bars include the global estimates and at a glance, we can notice that all global estimates
are located in one of eight subgroups of local estimates: the global estimates for all
coefficients locate within the third-eighth to the sixth-eighth subranges.

We can also observe that the distribution for each variable differs one another and
the shape is much different from normal or uniform distributions. This implies that local
variations exist due to geography. One exception is importer’s remoteness variable: the
global estimate is -0.199 locating in the fourth-eighth subrange and 58 local estimates are
clustering in the same subrange. Furthermore, 30 and 20 local estiamtes are neighboring
to the global estimate, locating in the third-eighth and fifth-eighth subranges, respectively.
In many other cases, however, bimodal or multimodal distributions are observed, which
implies that the global estimates can capture the average impacts of each variable but
cannot trace the spatial heterogeneity of this locally distributed estimates.

In the existing structural gravity literature including Eaton and Kortum (2002) and
Anderson and van Wincoop (2003), the predicted value of economic sizes of exporting and
importing countries are theoretically unity, and OLS estimates in the empirical literature
are generally close to this value. The globally estimated coefficient on aggregate GDP
of exporting countries is 0.942 and the corresponding local estimates range from 0.820
to 1.114. We find that the estimated GDP elasticities in some countries are even larger
than unity. In the sixth-eighth to top-eighth ranges, for example, 32 out of 136 total
estimates are higher than unity, ranging from 1.004 to 1.114. Regarding importer’s GDP,
the coeffients of importer’s GDP range from 0.723 to 0.957, while the corresponding global
estimate is 0.802. We find that 86 local estimates in the fourth-eighth to the top-eighth
ranges, are larger than the global estimate.

Turning to the distance variable, its negative effect on trade flows is globally estimated
as much as -1.163. Existing literature including Disdier and Head (2008) highlighted the
so-called time-dependent ‘distance puzzle’, which indicates that the estimated negative
effect of distance on trade flows has increased over the several decades. In this paper,
the distance elasticities of trade are space-dependent scattering among countries, ranging
from -1.958 and -0.707. It appears that the spatial variations of the deterrent effect of
the distance are huge: 19 local estimates within the bottom-eighth subrange, from -1.958
to -1.802, are more than twice compared to 8 estimates in the top-eight subrange, from
-0.863 to -0.707.

The negative coefficients on the land-locked dummies are interpreted as an indicator
of accessibility to ocean transportation. In the case of importer’s land-locked dummy, the
global estimate is -0.662 and all local coefficients are negative ranging from -0.999 to -
0.491. In Table 1, on the other hand, the global estimate of exporter’s land-locked dummy
is not statistically significant. One of the reasons could be that some local estimates are
positive: 25 countries in the seventh-eighth subrange and 9 countries in the top-eighth
subrange have positive estimates.

However, in some cases, the signs of the estimated coefficients turn out to be opposite
to those predicted in the literature. One example is GDP per capita. As countries
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develep, they tend to liberalize their economy and hence trade more. Furthermore, more
developed countries would have more advanced transportation infrastructures. Hence,
the sign of exporter’s GDP per capita is expected to be positive and the global estimate
is 0.192 consistant with the literature. If we observe the results locally, however, we find
that the signs of cofficients of exporter’s GDP per capita are negative in eight locations.
We also observe a similar pattern in the coefficients of importer’s GDP per capita with
23 negative signs. Further, the signs of a border dummy turns out to be negative in 30
locations, while existing literature expects a positive sign because adjacent countries seem
to trade more. For some local estimates, we also observe opposite signs for the coefficients
of colonial tie, free trade agreements (FTAs) dummies, and the openness variable. In the
next subsection, we discuss which countries face opposite signs.

The hypothesis regarding the remoteness variable is that larger distances to all other
countries might increase bilateral trade flows between two trading partners. Global esti-
mates are positive both on exporter’s and importer’s remoteness. However, our estimates
on exporter’s remoteness are considerably dispersed ranging from -8.202 to 4.780, which
is the largest local variation among the estimated coefficients. 25 estimates enter the
top-eighth group ranging from 3.158 to 4.780, while 9 estimates are in the bottom-eighth
and second-eighth groups ranging from -8.202 to -4.959.

Insert Fig. 3 here.

4.2.2 Geographical distribution

Fig. 4 geographically shows the GWR results on the world map. For visibility, we display
the estimates by equally dividing into four subranges. The region with red, orange,
light green, and green colors indicates the bottom-fourth to the top-fourth subranges,
respectively. Our main finding under GWR is that the values of estimated coefficients
are spatially clustering region by region within the same subrange, which is not captured
by global estimates such as OLS linear regressions.

Further, we assert that a simply regional classification in the global gravity model
may not fully reflect the actual geographical patterns. Existing literature such as Frankel
(1997) includes regional dummies such as Western Europe and East Asia in the estima-
tion model. Disdier and Head (2008) introduce a dummy “single continent” to capture
land versus ocean differences. Our results supplement their econometric classification
introducing more flexibility into the regression model. For example, countries in the
American continent, whether North America or South America, generally have the same
results regarding distance, importer’s GDP per capita, border, language, exporter’s and
importer’s remoteness, and colonial tie. In the case of distance, all American countries
fall into the third-fourth group ranging from -1.313 to -1.038, and in the case of border
dummy, they belong to the top-fourth subrange from 0.517 to 0.886.

However, their specification of regional or continent dummy is crude and exogenously
given. Our estimation strategy can overcome this problem endogenously finding out to
which extent the estimates are clustering. In the case of exporter’s GDP, only Canada and
the US enter into the same subrange, while in the case of importer’s GDP, countries in
North America, Central America, and the northern part of South America share the same
subrange of estimates.8 For the openness variable, all four subranges exist throughout the

8Central America covers Costa Rica, El Salvador, Mexico, and Panama and the northern part of
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whole American continent. Hence, the American continent or North America and South
America dummies in the global gravity model may not be a good indicator to group the
countries with the same pattern.

Moving onto Africa, we observe more complicated patterns within a given continent.
Countries in the African continent do not share the same coefficients in all cases. In
the case of exporter’s GDP, distance, exporter’s GDP percapita, exporter’s remoteness,
FTA, and openness, the coefficients in African countries are scattered from the bottom-
to top-fourth groups, implying that a single African dummy cannot capture all these geo-
graphical characteristics. In particular, North African countries such as Algeria, Morocco,
and Tunisia closely follow the patterns of European countries, indicating the economic
gravity of Europe reaches to North Africa. However, in other regions of Africa, we observe
various patterns of the coefficient variables. In the cases of exporter’s GDP per capita
and FTA, the coefficients are clustering in North Africa and South Africa, respectively.
In some cases such as exporter’s and importer’s GDPs per capita, languge, and open-
ness, the estimated coefficients are grouped into western and eastern parts of the African
continent.

In the case of Asia, countries in East Asia and Southeast Asia share the same range of
coefficient values almost in all cases. However, South Asia and West Asia reveal their own
patterns. Similarly, we observe different patterns of estimates in the European region.
Therefore, it is not useful to introduce a single dummy of Africa and Asia in the global
gravity model because there is no single pattern to divide the charateristics.

Looking at exporter’s GDP, some local estimates are lower than the global estimates,
0.942, in the broad regions in the pacific rim and surrouding the South Atlantic Ocean,
ranging from 0.820 to 0.883, whereas other regions such as Europe, North Africa, and
countries surrounding the Indian ocean share high estimates. Some examples of bottom
fourth subrange are Argentina, Brazil, and Mexico in Central and South America, Angola
and Cameroon in Africa, and Japan and Korea in East Asia. The similar phenomenon
is observed among the regions on the pacific rim for the importer’s GDP variable. East
Asian region is ranked in the bottom fourth subranges, ranging from 0.723 to 0.770. In
other words, compared to other regions, the economic size of these Asian countries plays
a minor role when they export goods to other countries.

Further, the estimated elasticity of distance is not locally constant but geographically
heterogenous. We find that local distance coefficients are divergent ranging from -1.958
to -0.707.9 The negative effect of distance is strongly observable in countries located in
Africa and the Middle East. It is noticeable that the physical distance has the least effect
on the European region.

The literature interpret the positive sign of the globally estimated coefficients of GDP
per capita as follows: richer countries do trade more than the poor ones. The graphs
shows that this should not necessarily be the case. The estimates of exporter’s GDP per
capita in the bottom fourth region overlap with those of exporter’s GDP in many cases.
Further, the signs of many coefficients in the Africa region located in the bottom region
turn out to be negative.10 European countries except Iceland, Portugal, and Spain, and
East Asian countries are generally in the highest subrange.

South America includes Colombia, Ecuador, Suriname, and Venezuela.
9The corresponding global estimate is -1.163.

10The examples include Comoros, Madagascar, Malawi, Mauritius, South Africa, Zambia, and Zim-
babwe.
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Insert Fig. 4 here.

5 Comparision between origin and destination loca-

tions

In this section, we estimate the GWR model based on the importer’s location. In the
empirical literature on gravity models, trade flows from country i to j are interpreted as
exports from country i to j, following the microfoundations in the theoretical literature,
including Anderson and Wincoop (2003) and Eaton and Kortum (2002), where exports
from country i to j are dependent variables in their structural gravity models. However,
the empirical gravity model is indifferent to whether the dependent variable is exports
from i to j or imports from i to j. In another strand of literature, Anderson and Yotov
(2010) calculated the incidence of bilateral trade costs, which are the proportions of trade
costs paid by sellers and buyers. Hence, even with uniform trade costs, if the exporter’s
incidence is large, the supply to the rest of the world could become small, and larger
importer’s incidence may lower the importer’s demand. Furthermore, for country i’s
incidence as an exporter and an importer can be different because the trading partners
are not symmetric. For example, Japan’s large exporting destinations are the US, China,
and Korea but one of the main importing origins are oil producing countries. Therefore, to
capture the asymmetric charateristics as exporters and importers, we estimate the GWR
model with the same dependent and independent variables with only one exception: the
geographical information of the importer rather than the exporter is imposed to the
model.

Fig. 5 displays the histograms of estimated coefficients under the importer’s locations.
In the benchmark model, we use exporter’s location, which is country A in Fig. 5, and
hence the GWR model includes trade flows 1, 2, 3, and 6 in estimating local coefficients.
In this regression, exports of country A including 1 and 3 are highly weighted than
exports of country B including 2 and 6. However, this regression excludes country C’s
exports because country C is outside the bandwidth of the exporter A’s location. If we
consider Germany as one example of country A, neiboring countries such as France and
the UK become country B and countries located far from Germany become country C.
In this case, all exports from Germany to the rest of the world as weighted most in the
local estimation and those from other countries, locating inside the bandwidth, to the
rest of the world are included but less weighted. However, exports from countries C,
say China, Japan and Korea, are excluded in this local estimation. Consequently, our
benchmark estimation could capture the exporter’s incidence in specific region, Europe
in our example.

On the other hand, if we use country A’s location as an importer’s geographical
information, the GWR model includes trade flows 1, 2, 4, and 5. In this case, country
A’s imports including 2 and 4 are highly weighted, while country B’s imports including
1 and 5 are less weighted. Furthermore, country C’s imports including 3 and 6 are not
included. Returning back to the upper example, the imports of Germany from the rest of
the world are mostly weighted and those of adjecent countries are less weighted but those
outside the bandwidth are not included in the local estimation. Hence, even if we use
Germany’s geographical information, our estimated result could capture the importer’s
incidence.
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If we estimate the model based on exporter’s location, the characteristics of country
A are the most important source in explaining the coefficient of exporter’s GDP. In Fig.
5, Country A’s exports, 1 and 3, are highly weighted than country B’s exports, 2 and
6. This makes each coefficient of exporter’s GDP be more dependent on the exporter in
the corresponding location. In the case of the coefficient of importer’s GDP, the order
of importance changes. Country participates in two trade flows as an importer: 3 high
weight) and 6 (low weight). Country B participates in trade flow 1 (high weight) as
an importer. Country A participates in trade flow 2 (low weight) as an importer. The
impact from country A is lessened, and hence, the variation is lowered.

If we estimate the model based on the importer’s location, country A’s characteristics
are the most important in explaining the coefficient of importer’s GDP. In Fig. 5, country
A’s imports, 2 and 4, are highly weighted than country B’s imports, 1 and 5. This makes
each coefficient of importer’s GDP more dependent on the importer in the corresponding
location. In the case of the coefficient of exporter’s GDP, the order of importance changes.
Country C participates in two trade flows as an exporter: 4 (high weight) and 5 (low
weight). Country B participates in trade flow 2 (high weight) as an exporter. Country
A participates in trade flow 1 (low weight) as an exporter.

Insert Fig. 5 here.

Fig. 6 displays the histograms of results under the importer’s location information.
In contrast to the exporter-location case, we have more dispersed coefficient values of
importer’s variables than those of exporter’s variables. For examples, the coefficient values
of importer’s GDP estimated under importer’s location range from 0.535 to 1.133, while
those of exporter’s GDP range from 0.928 to 1.025. The coefficient values of importer’s
GDP per capita range from -0.314 to 0.363, while those of exporter’s GDP per capita
range from -0.009 to 0.471. If the importer is landlocked, we observe a wider range from
-1.395 to 0.295, while the estimates of exporter’s dummy ise in a narrower band ranging
from -0.555 to 0.145. The estimated coefficients of importer’s remoteness range from
-2.852 to 3.570, while those of exporter’s remoteness range from -0.548 to 1.879.

Furthermore, compared to the benchmark case under exporter’s location, the ranges of
coefficient values of importer’s variables become wider. For example, the coefficient values
of the importer’s GDP estimated under importer’s location range from 0.535 to 1.133,
while those under exporter’s location range from 0.723 to 0.957. The coefficient value
of importer’s GDP per capita ranges from -0.314 to 0.363, while that under exporter’s
location ranges from -0.125 to 0.269. If the importer is landlocked, the coefficient is more
diversified, ranging from -1.395 to 0.295, while that under exporter’s location ranges from
-0.999 to -0.491. The estimated coefficients of importer’s remoteness range from -2.852
to 3.570, while those under exporter’s location range from -1.388 to 1.114.

The ranges of exporter’s variables are narrowed compared to the benchmark case. The
coefficient values of exporter’s GDP estimated under the importer’s location range from
0.664 to 0.835, while those of exporter’s GDP range from 0.582 to 1.163. The coefficient
value of exporter’s GDP per capita ranges from 0.011 to 0.387, while that of exporter’s
location ranges from -0.381 to 0.493. If the exporter is landlocked, the coefficient is more
narrowed ranging from -0.955 to 0.045, while that of exporter’s location ranges from -
2.439 to -0.278. The estimated coefficients of exporter’s remoteness range from -1.514 to
1.061, while those under exporter’s location range from -6.336 to 7.664.
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Fig. 7 geographically displays the GWR results based on the importer’s location. In-
terestingly, whether we estimate the model under exporter’s location or under importer’s
location, we find that in general countries are ranked in the same subranges in common
variables such as distance, border, language, colonial tie, and FTA. For the distance vari-
able, for example, countries in Africa and Middle East are in the lowest subrange. In
other words, the negative effect of physical distance is prevalent both when they export
and import.

However, there exists some heterogeneity on the size of the effects of these variables.
For the border dummy, European countries are in the bottom fourth subrange in both
cases but 30 estimates are negative under exporter’s location while 73 estimates are
negative under importer’s location. For the colonial-tie dummy, only four countries in
Africa, Cameron, Equatorial Guinea, and Gabon have negative signs in the benchmark
case. Under importer’s location, 22 countries are found to have negative signs. Among
them East Asian counties are notable. For the FTA dummy, in contrast, 32 estimates are
negative in the benchmark case. In particular, we observe this negative effect in Europe,
Northern part of Africa, and Middle East. Under importer’s location, we find a similar
pattern in the same region but the negative estimates are found only in four countries.

Insert Figs. 6 and 7 here.

6 Anderson-van Wincoop gravity equation

Anderson and van Wincoop (2003) argue that multilateral resistance terms should be
included when we estimate the gravity equation. Fixed effects have been used to capture
the effect of multilateral terms in the recent gravity equation including Redding and
Venables (2000) and Feenstra (2002). In this section, hence, we run GWR using fixed
effects to take account of the multilateral resistance terms.

As discussed by SST, the distance elasticity -1.347 is substantially larger than that
with with no fixed effects. The effects on sharing a common border, languange, and
colonial ties become limited as much as 0.174, 0.406, 0.310, respectively, while the cor-
responding results under OLS without considering the fixed effects become 0.314, 0.678,
and 0.491. Only the effect on common colonial ties become larger from 0.397 to 0.666.

When we use fixed effects in the specification of our GWR model, we find that the
effect on common colonial ties becomes generally larger with the range [0.204 1.107]
compared to those with no fixed effect, [-0.100 0.760]. For common language dummy, the
effect becomes limited with the range [0.029 0.847], while the range in the benchmark is
[0.111 1.294]. For the distance dummy and FTA dummy, our estimates becomes narrowed
with the ranges [-1.701 -0.948] and [-0.175], repectively, while the ranges with no fixed
effects are [-1.958 -0.707] and [-0.376 2.916], respectively. On the other hand, for the
common border dummy, the range becomes widened: from [-0.278 0.886] to [-0.777 0.913].

Countries in Europe and North Africa enjoy the favorable effects on colonial ties with
the lowest harmful effect on distance. However, these countries have the lowest subranges
for border and FTA dummy variables. Our interpretation is that these countries trade
with non-neighboring countries rather than neighboring countries. This suggests that
in Europe where developed countries are compactly located, sharing a border is not a
decisive factor of trade. For example, France and Austria whose coefficeints are both
negative can trade easily without sharing a border.
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In contrast, countries in other regions of Africa experience the most negative effect
on distance and common colonical ties, while sharing a common border seem to have
a largest positive effect in the east and south regions. Sharing a common border has
the most favorable effect in the American continent, while sharing a common language
seems to play a negligible role in explaining trade flows. We also find that countries in
this region get the positive effect on FTA and common colonial ties. Among common
variables, the FTA dummy appears to play the most important role in East Asia and
Southeast Asia, while the language dummy, border dummy, and the colonial tie are less
important.

Insert Fig. 8 here.

7 Comparison with GWPR

In this section, we show the GWR results and compare them with the GWPR results.
By doing this, we investigate whether the difference between OLS and PPML found in
SST still holds under the local regression. Fig. 9 displays the GWPR results based on
exporter’s location. We explain only the results based on exporter’s location because we
obtain a similar pattern under importer’s location.

SST find that the coefficients on GDP under Poisson regression are not close to unity
and smaller than those under OLS. We support their finding in our location regression.
The estimated coefficients of exporter’s GDP in GWR are generally high ranging from
0.820 to 1.114, while those under GWPR are in the range from 0.582 to 1.163. As shown
in Fig. 9, the coefficients for over 80 countries are located below the bottom value, 0.820,
under GWPR. We also find a similar result for importer’s GDP variable.

SST also find that the deterrent effect of physical distance on trade flows is much
larger under OLS. We support their finding: the coefficients based on GWR range from
-1.958 to -0.707, whereas the Poisson estimates range from -1.399 to -0.202. Furthermore,
52 coefficients cluster around the PPML estimate at the range from -0.805 to -0.607. In
contrast, we find that in most regions, the coefficients are lower than negative unity under
GWR.

The global Poisson estimate of colonial ties is found to be not significantly different
from zero, while OLS estimates are. Our GWR estimates also generate a siginificantly
positive role in almost all countries, ranging from -0.100 to 0.760, while our GWPR
estimates reveal that the coefficients of almost half of the sample countries are negative.
SST also find that FTAs play a much smaller role with much lower PPML estimates than
OLS estimates, and the openness dummy in OLS regression is negative while Poisson
estimates are not significantly different from zero. In our GWR model, the estimates of
FTAs and openness range from -0.376 to 2.926 and -0.474 to 0.617, respectively, while in
GWPR model, they range from -0.733 to 1.319 and -1.152 to 1.295, respectively. Hence,
our results reconcile with those of SST.

However, in contrast to SST, we find that a common-border effect does not disappear
but instead increases in our GWPR model. Although GWR estimates are in a narrower
range from -0.278 to 0.886, many countries have a positive sign.

Insert Fig. 9 here.
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7.1 Comparison of global and local poisson estimates

SST find that the coefficients on exporter’s and importer’s GDPs are not close to unity
under Poisson estimation. Our GWPR estimates complement their finding: the estimated
GDP elasticities in most countries are much smaller than unity. For example, the PPML
estimates of exporter’s GDP is 0.721 and we find that the GWPR estimates in 29 countries
are less than the PPML estimate. In the sixth-eighth to top-eighth ranges, only 16 out
of 136 country estimates are close to or higher than unity, ranging from 0.947 to 1.163.
Regarding importer’s GDP, in the second-eighth to fourth-eighth ranges, 85 estimates
cluster around the PPML estimate, 0.732, ranging from 0.701 to 0.785. In the top-eighth
range, only 4 coefficient values range from 0.869 to 0.893, which is still much lower than
unity.

SST find that the deterrent effect of physical distance on trade flows is much smaller
under Poisson estimation. We support their finding: more than 90 coefficients under
GWPR range from -0.803 to -0.212. However, we also find that the estimates in 48
countries exceed negative unity.

From Fig. 10, only the coefficients of Border, Landlock(ex), Language, and Colonial-
ties have bimodal distributions. These bimodal distributions suggest that local variations
exist due to geography. For example, the impact of being a landlocked country in Europe
(Austria) can be different from that of Central Asia (Mongolia). However, the global
estimates can capture the average impacts of bimodal distribution.

In contrast to SST, who find that sharing a border does not influence trade flows,
a common-border effect does not disappear but increases in our GWPR model. Our
GWPR estimates with the range from -0.359 to 2.056 and 41 estiamtes cluster around
the global estimate in the second-eighth range. However, 113 coefficients are positive and
87 coefficients are larger than unity. 19 coefficients are clustered from 1.755 to 2.056.

In the existing literature, the negative coefficients on the land-locked dummies are
interpreted as an indication of cheaper costs of ocean transportation. While our Poisson
estimates reveal that negative coefficients on exporter’s land locked dummy prevail in
most regions, their distribution does not seem to be monotonic. 68 estimates cluster
in the sixth and seventh ranges among -0.744 and -0.066, while 22 estimates are in the
bottom sixth range from -2.439 to -2.100. In the case of importer’s land-locked dummy,
all coefficients are negative and 77 coefficients cluster in the fifth and sixth ranges from
-0.603 to -0.381.

The hypothesis regarding remoteness is that larger distances to all other countries
might increase bilateral trade flows between two trading partners. Global Poisson es-
timates by SST are positive both on exporter’s and importer’s remoteness. However,
our estimates on exporter’s remoteness are considerably dispersed ranging from -6.336
to 7.664, which is the largest local variation among the estimated coefficients. 5 esti-
mates enter the top-eighth group ranging from 5.914 to 7.664, while 6 estimates are in
the bottom-eighth group ranging from -6.336 to -4.586.

SST find that Poisson estimates of colonial ties are not significantly different from
zero. Our GWPR estimates reveal that the coefficients of almost half the number of
sample countries are negative while the others are positive. 50 coefficients cluster in the
sixth-eighth range of 0.165 and 0.365, while 22, 4 and 25 coefficients are in the bottom-,
second-, and third-eighth ranges from -0.840 to -0.639, from -0.639 to -0.438, and from
-0.438 to -0.237, respectively. In other words, the dispersion of the estimated values from
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zero possibly explains why the global PPML estimate is not significantly different from
zero.

SST find that Poisson estimates on common language are significant. Our GWPR
estimates shows that coefficients have a bimodal distribution. While coefficients are
clustered most in the fourth-eighth range from 0.344 to 0.599, 23 coefficients are clustered
in the top-eighth group ranging from 1.364 to 1.617.

SST assert that free trade agreements (FTAs) play a much smaller role finding much
lower PPML estimates than OLS estimates. They also find that Poisson estimates on the
openess dummy are not significantly different from zero. In our GWPR model, the FTA
coefficients range from -0.792 to 1.219 and among them 55 coefficients are within the
range of 0.216 and 0.468. On the other hand, we observe an important role of FTAs in
15 coefficients in the seventh- and top-eighth groups ranging from 0.720 to 1.219, while
we also observe deterrent effects of FTAs in over 38 countries. The openness dummy
coefficients are scattered around zero, ranging from -1.068 to 1.504. As in the colonial-tie
dummy case, this might be the reason why PPML is not significant from zero. Hence,
our result supplements SST’s finding.

Insert Fig. 10 here.

8 Conclusion

In this paper, we perform local regression geographically extending global regression in
the existing literature. In particular, we apply GWR approach to investigate the role of
geography in the trade gravity equation.

We contribute to the trade literature by showing new findings as follows. First,
our local regression reveals that the estimated parameters are locally clustered among
selected economic masses. Second, the regional or continental dummy in the standard
gravity model may not fully capture the geographical characteristics. Third, the degree
of dispersion in the estimated coefficient values depends crucially on the location at which
we estimate the model. In particular, we find that exporter’s and importer’s variables
such as GDP are considerably influenced by the estimation location.

There is a strand of literature that investigates the effect of distance on trade pattern
thoughout time. For example, Disdier and Head (2008) find that the estimated nagative
impact of distance on trade increased around the middle of the twentieth century and
remained high since then. Carrere, Melo, and Wilson (2013) find that low-income coun-
tries exhibit a significant rising distance effect on their trade, while the distance puzzle
for trade within richer countries disappers. While the estimation in this paper is based
on cross-sectional data, future research should include panel investigation to capture the
distance puzzle.
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Table 1. The global and GWR gravity equation

Estimator: OLS GWR
Location: Exporter Importer

min max min max
Log GDP (ex) 0.942∗∗ 0.820 1.114 0.928 1.025
Log GDP (im) 0.802∗∗ 0.723 0.957 0.535 1.133

Log GDP per capita (ex) 0.192∗∗ -0.076 0.523 -0.009 0.471
Log GDP per capita (im) 0.091∗∗ -0.125 0.269 -0.314 0.363

Landlock dummy (ex) -0.060 -1.453 0.415 -0.555 0.145
Landlock dummy (im) -0.662∗∗ -0.999 -0.491 -1.395 -0.295

Remoteness (ex) 0.471∗∗ -8.202 4.780 -0.548 1.879
Remoteness (im) -0.199∗∗ -1.388 1.114 -2.852 3.570

Log distance -1.163∗∗ -1.958 -0.707 -2.107 -0.941
Contiguity dummy 0.294∗∗ -0.278 0.886 -0.846 1.373

Common-language dummy 0.680∗∗ 0.111 1.294 0.017 1.033
Colonial-tie dummy 0.378∗∗ -0.100 0.760 -0.108 0.866

FTA dummy 0.771∗∗ -0.376 2.916 -0.042 3.006
Openness -0.045∗∗ -0.474 0.617 -0.579 0.427

Note: ex and im denote exporter and importer, respectively. min and max represent the lowest and
highest estimated values, respectively. Number of observations are 9613 in all cases. The bandwidth in
estimation is 2659 in GWR based on exporter’s location, and 2721 in GWR based on importer’s location,
respectively.
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Table 2. The global and GWPR gravity equation

Estimator: PPML GWPR
Location: Exporter Importer

min max min max
Log GDP (ex) 0.721∗∗ 0.582 1.163 0.664 0.835
Log GDP (im) 0.732∗∗ 0.673 0.893 0.516 0.857

Log GDP per capita (ex) 0.154∗∗ -0.381 0.493 0.011 0.387
Log GDP per capita (im) 0.133∗∗ -0.128 0.357 -0.199 0.423

Landlock dummy (ex) −0.873∗∗ -2.439 0.278 -0.955 0.045
Landlock dummy (im) −0.704∗∗ -1.047 -0.159 -2.011 0.355

Remoteness (ex) 0.647∗∗ -6.336 7.664 -1.514 1.061
Remoteness (im) 0.549∗∗ -2.419 1.676 -2.790 2.929

Log distance −0.776∗∗ -1.399 -0.212 -1.658 -0.327
Contiguity dummy 0.202 -0.359 2.056 -0.339 1.858

Common-language dummy 0.752 -0.421 1.617 -0.004 1.389
Colonial-tie dummy 0.019∗∗ -0.840 0.771 -1.011 0.619

FTA dummy 0.179∗∗ -0.792 1.219 -0.173 2.117
Openness −0.139 -1.068 1.504 -0.712 0.679

Note: ex and im denote exporter and importer, respectively. min and max represent the lowest and
highest estimated values, respectively. Number of observations are 9613 in all cases. The bandwidth in
estimation is 2628 in GWPR based on exporter’s location, 2721 in GWPR based on importer’s location,
respectively.
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Fig. 1. GDP Data
Note: Darkness of brown colors indicates the GDP level. Nonsample countries are shown in white.
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Fig. 2. Residuals of baseline OLS regression
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Fig. 3. Histogram of coefficients estimated under exporter’s locations
Note: Ex and Im denote exporter and importer, respectively.
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Fig. 4. GWR results based on exporter’s locations
Note: Ex and Im denote exporter and importer, respectively.
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Fig. 5. Exporter versus importer locations
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Fig. 6. Histogram of coefficients estimated under importer’s locations
Note: Ex and Im denote exporter and importer, respectively.
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Fig. 7. GWR results based on importer’s locations
Note: Ex and Im denote exporter and importer, respectively.
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Fig. 8. Anderson-van Wincoop gravity equation
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Fig. 9. Histogram of GWPR coefficients estimated under exporter’s locations
Note: Ex and Im denote exporter and importer, respectively.
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Fig. 10. GWPR results based on exporter locations
Note: Ex and Im denote exporter and importer, respectively.

30



Fig. 12. GWPR results based on importer’s locations
Note: Ex and Im denote exporter and importer, respectively.
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