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Abstract

This paper studies a class of semiparametric models with mismeasured endogenous regressors.
In particular we allow for infinite-dimensional parameters to depend on endogenous regressors
that are unobservable because of nonclassical measurement errors. For these models we utilize
the existence of control variables that ensure conditional mean independence of endogenous re-
gressors and unobserved causes being conditioned on the variables. We provide a set of sufficient
conditions for identification of structural parameters, which control for both endogeneity and
measurement error using control variables. Based on the identification results we propose a sieve
estimation of the parameters. We derive the asymptotic properties of the proposed estimators;
consistency, convergence rate, and

√
n-asymptotic normality of the estimator of the finite di-

mensional parameters. Monte Carlo simulations show that our proposed estimator performs
well in finite samples in correcting for endogeneity and measurement error.
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1 Introduction

We consider a class of semiparametric models with mismeasured endogenous regressors as below
and its extensions

Y1 = π0(Z1) +G(Y2; θ0, h0) + ε, Y ∗2 = g(Y2, e) (1)

where Y ≡ (Y1, Y
′

2)′ is a vector of endogenous (or dependent) variables, W ≡ (Z ′1, V
′)′ is a vector

of conditioning variables where Z1 is a vector of exogenous regressors and V is a vector of control
variables such that Y2 and ε are conditionally mean independent given W . The control variables
V can be exogenous variables or be generated variables. Here G(·) is a known function up to
an unknown parameter vector (θ, h) where θ is finite dimensional parameters and h is infinite-
dimensional functions. The model includes examples of a parametric model G(Y2) = Y ′2θ, a partially
linear model G(Y2) = Y ′2,1θ + h(Y2,2) such that Y2 = (Y ′2,1, Y

′
2,2)′, and a nonparametric regression

model G(Y2) = h(Y2). Specifically, the model allows dependence of h(·) on the endogenous variables
Y2. For this model (θ, h) is the parameters of interest and we let (θ0, h0) denote the true parameters.
Here Y1, Y2, Z1 and V denote true variables while Y2 is only measured with error as Y ∗2 , which we
refer to the mismeasured regressor(s) where e is the measurement error on Y2. This measurement
problem of Y2 hinders us from using other existing semiparametric approaches and we develop a
new approach to tackle the problem.

Specifically given the conditional mean independence of Y2 and ε given W and identification of
relevant density functions, we show that a conditional moment restriction that uniquely determines
the true parameters (θ0, h0) is obtained from the model (1) as

E[(Y2 − E[Y2 |W ])(Y1 −G(Y2; θ0, h0)) |W ] = 0. (2)

Utilizing this moment condition we propose to estimate h0 using a sieve approach. One merit of
our sieve approach is that given a sieve approximation of h, the moment condition (2) yields a
closed-form solution and the proposed estimator is obtained as a weighted least squares estimator.
Therefore, our proposed estimator is easy to implement for this class of model.

Note that in our approach (θ0, h0) is separately estimated from π0(Z1) and it does not require
estimating π0(Z1) in the moment condition. Given (θ0, h0), the identification of π0(Z1) is trivial as
π0(Z1) = E[Y1 − G(Y2; θ0, h0)|Z1] if we further impose E[ε|Z1] = 0 since Z1 is exogenous. If π0 is
also a parameter of interest in the model (1), once (θ0, h0) is estimated from the moment condition
(2), we then go back to (1) and estimate π0(Z1) using a regression of Y1−G(Y2; θ̂n, ĥn) on Z1 where
(θ̂n, ĥn) denotes a consistent estimator of (θ0, h0).

Our identification argument that generates the moment condition (2) is based on the condi-
tional mean independence condition. Conditional mean independence or conditional independence
has been utilized for a basis of identification in various econometric problems including estimation
of treatment effects (see, among many others, Heckman, Ichimura, and Todd (1998), Dehejia and
Wahba (1999), Lechner (2001), Imbens and Newey (2009), and Imbens and Wooldridge (2009)). As
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a specific example of the conditional independence, consider the problem of estimating the effect
of family income on children’s health as in Case, Lubotsky, and Paxson (2002), Currie and Stabile
(2003), and Condliffe and Link (2008). In this example family income (Y2) is endogenous because of
the dependence between household earning potential and children’s health determinants. However,
given parental education as a control variable (V ), which acts as a proxy to parental cognitive abil-
ity, family income can be treated as being independent of children’s health determinants. Because
endogeneity problem comes from the common cause (i.e., parental cognitive ability) between house-
hold earning potential and children’s health determinants, a proxy to parental cognitive ability such
as parental education can solve the endogeneity problem.

In estimating the parameters using the moment restriction (2), the difficulty arises because the
endogenous regressor Y2 is not observed but measured with error as Y ∗2 . To develop our estimation
strategy in this setting we cast the conditional moment restriction (2) into a more general form

m(W, θ, h(·)) ≡ E[ρ(Y,W, θ, h(·)) |W ], (3)

m(W, θ0, h0(·)) = 0.

Here an important feature of the model (3) is that because Y2 is not observed, the conditional
moment function m(W, θ, h(·)) is not directly observable from data (given θ and h). Therefore, in
the specific example above, our setting allows family income to be only measured with error. Under
a set of exclusion restrictions stating that (i) given the true regressors and the control variables,
mismeasured regressors do not provide further information on dependent variables, (ii) given the
true regressors, control variables do not provide further information on dependent variables, and
(iii) given the true regressors, control variables do not provide further information on mismeasured
regressors, we show that the conditional moment function is identified from data on (Y1, Y

∗
2 ,W ) by

means of recovering relevant conditional density functions from the observables. Our approach builds
on an operator-based approach for nonclassical measurement errors (e.g. Hu and Schennach 2008).
Given the identified conditional moment function, we propose to estimate the model parameters
(θ0, h0) using a sieve Minimum Distance (MD) method.

Another class of model that fits into our framework is a triangular nonparametric simultaneous
equations model (e.g. Newey, Powell, and Vella 1999) with mismeasured endogenous regressor

Y1 = π0(Z1) + h0(Y2) + ε, (4)

Y2 = r(Z, V ),

Y ∗2 = g(Y2, e),

where e is the measurement error on Y2 and Z ≡ (Z1, Z2) with Z2 being a vector of excluded
instruments. If Y2 is observable, the control variable V is obtained as the conditional cumulative
distribution function (CDF) of Y2 given Z, FY2|Z(Y2|Z), under the assumption that V is a scalar,
r(·, ·) is strictly monotonic in V , and Z is independent of V (see e.g. Matzkin 2003 and Imbens and

3



Newey 2009). Then the conditional mean independence of Y2 and ε given W ≡ (Z ′1, V
′)′ implies

E [(Y2 − E[Y2 |W ]) (Y1 − h0(Y2)) |W ] = 0 (5)

which also has the form of (3).
In our setting like (4) the key departure from the usual triangular equations model is that the

endogenous regressor Y2 is measured with error. In this setting, besides the regressor Y2 itself
being mismeasured, the measurement error further complicates the problem because, even if the
distribution function FY2|Z(·|·) is known, the control variable obtained by plugging in the error-
laden observation Y ∗2 is also contaminated by the measurement error since we would have V ∗ ≡
FY2|Z(Y ∗2 |Z). This complication makes other existing control function methods – that use the control
variables as additional regressors – not applicable in our setting. Nevertheless, the identification of
the CDF FY2|Z(·|·) in a pre-stage will suffice for implementing our proposed estimator that utilizes
the moment condition (5). In our approach we show that under a set of exclusion restrictions the
conditional moment function (5) is identified by recovering relevant conditional density functions
from observations on (Y1, Y

∗
2 , Z1, V ) where V is a generated variable from other observables. Because

in the construction of the control variable V ≡ FY2|Z(Y2|Z) here the dependent variable Y2 is not
observed, this problem can be understood as the measurement error on the left-side variable. We
propose two alternative approaches to tackle this problem. One is to recover the CDF using repeated
measurements of Y2. The other is to recover the CDF using an instrumental variable for Y2.

Note that our approach is different from other control function methods because V is not used
as an additional regressor but only plays the role of a conditioning variable, so we do not estimate a
nonparametric function of V in the regression equation. In our setting whether or not V is observable
is irrelevant as long as we recover required conditional density/distribution functions. Finally, note
that imposing the conditional mean independence of Y2 and ε givenW may serve as an alternative to
other approaches that are assuming either the sufficiency of control variables E[ε | V,Z] = E[ε | V ]

as in Newey, Powell, and Vella (1999) or assuming the conditional moment condition E[ε | Z] = 0 as
in Newey and Powell (2003) and Ai and Chen (2003). Note that none of these modeling assumptions
including ours implies the other. For the conditional moment restriction model E[ε | Z] = 0 Ai and
Chen (2003) develop a semiparametric sieve estimator and establish its asymptotic properties. Song
(2015) considers measurement errors in their setting. Because our model is based on the conditional
mean independence given control variables, which imposes different forms of moment restrictions,
their methods are not applicable in our setting.

Given our identification results we propose a sieve estimation method to estimate the parameters.
Our estimation proceeds in two stages. In the first stage we estimate the unknown densities to
recover the conditional moment function using a sieve Maximum Likelihood Estimation (MLE),
and in the second stage we estimate the structural parameters using a sieve MD estimation. We
then derive the asymptotic properties of the estimator, such as consistency, convergence rate, and
√
n-asymptotic normality of the estimator of the finite dimensional parameters. We focus on the

case for which the control variables V are observables and then show how the setting can extend to
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the case for which V are generated variables as in the triangular simultaneous equations model (4).
In the latter case, we obtain the asymptotic variance of the estimator accounting for the generated
control variables by utilizing the approach from Hahn and Ridder (2013), who study the asymptotic
variances of semiparametric estimators with generated regressors.

We run Monte Carlo simulations to illustrate the finite-sample performances of our proposed
estimator. We experiment with a partially linear model and with an additively-separable nonpara-
metric regression model. In particular we consider different structures of measurement errors and
vary their influences in our experiments. Our proposed estimator shows desirable finite-sample
behaviors in correcting for endogeneity as well as measurement errors. On the other hand a conven-
tional sieve instrumental variable estimator which only corrects for endogeneity shows considerably
large biases.

The outline of the paper is as follows. Section 2 discusses issues of identification in the presence
of mismeasured endogenous regressors. Section 3 develops a sieve estimation of the parameters.
Sections 4 and 5 study the asymptotic property of the proposed estimator. We report Monte Carlo
simulations in Section 6 to illustrate finite sample performance of the estimator. We then conclude
in Section 7. Technical details are gathered in the appendix.

2 Identification Using Control Variables

We develop notations and further articulate the nature of endogeneity and measurement error in
the model we consider. We denote the supports of the distributions of the random variables Y1, Y2,
Y ∗2 , Z1, and V by Y1,Y2,Y∗2 ,Z1, and V, respectively. The joint density of Y1 and (Y2, Y

∗
2 , Z1, V )

admits a bounded density with respect to the product measure of some dominating measure µ on
Y1 and the Lebesgue measure on Y2×Y∗2 ×Z1×V. All marginal and conditional densities are also
bounded. For notational ease, let Y ≡ (Y1, Y

′
2)′ ∈ Y ≡ Y1 × Y2, Y ∗ ≡ (Y1, Y

∗′
2 )′ ∈ Y∗ ≡ Y1 × Y∗2 ,

W ≡ (Z ′1, V
′)′ ∈ W ≡ Z1×V. Let X ≡ (Y ′,W ′)′ ∈ X ≡ Y×W. Suppose that the true observations

{(Yi,Wi) : i = 1, 2, ..., n} are independently drawn from the distribution of (Y,W ) with support
Y ×W, where Y is a subset of Rdy and W is a compact subset of Rdw . Let α0 ≡ (θ0, h0) ∈ A ≡
Θ × H. We assume that Θ ⊆ Rdθ is compact with nonempty interior, and that H is a space of
continuous functions. We use notations fR1(r1), fR1|R2

(r1 | r2), and FR1|R2
(r1 | r2) to denote the

marginal density of variable R1, the conditional density of R1 conditional on R2, and the cumulative
distribution function of R1 conditional on R2, respectively.

2.1 Conditions for Identification

Our identification results utilize the notion of conditional (mean) independence or equivalent exclu-
sion restrictions. Following Dawid (1979a), we will write A ⊥ B | C to denote that A is independent
of B being conditioned on C. We first state required conditions for identification of parameters from
the moment condition (3) using control variables when Y2 is measured with error as Y ∗2 .

Assumption 2.1 (i) E[Y2ε |W ] = E[Y2 |W ]E[ε |W ]; (ii) (θ0, h0) is the only (θ, h) ∈ Θ×H
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satisfying the conditional moment restrictions (3).

Assumption 2.2 Y1 ⊥ Y ∗2 | (Y2,W ) for all (Y1, Y2, Y
∗

2 ,W ) ∈ Y1 × Y2 × Y∗2 ×W.

Assumption 2.3 Y1 ⊥ V | (Y2, Z1) for all (Y1, Y2,W ) ∈ Y1 × Y2 ×W.

Assumption 2.4 Y ∗2 ⊥ V | (Y2, Z1) for all (Y2, Y
∗

2 ,W ) ∈ Y2 × Y∗2 ×W.

Assumption 2.1 ensures identification of the parameters when all true Y are observed and endo-
geneity is properly controlled. In particular the conditional moment condition in equation (3) can
arise from Assumption 2.1 (i), the conditional mean independence between the unobserved cause
of Y1 and the endogenous regressor Y2 conditional on W . Assumption 2.1 (ii), the uniqueness of
the true parameters, holds if the set {w ∈ W : m(w, θ, h) 6= m(w, θ0, h0)} has positive probability
for any (θ, h) 6= (θ0, h0) ∈ Θ×H. Assumptions 2.2 - 2.4 state additional conditional independence
conditions which are equivalent to relevant exclusion restrictions among relationships of variables.
Several variants of these conditions have been widely used in the econometrics literature (e.g., Al-
tonji and Matzkin 2005, Heckman and Vytlacil 2005, Imbens and Newey 2009) and various tests of
these conditions have been studied in other strand of the literature (e.g., Su and White 2007, Song
2009). In our setting these assumptions are utilized for recovering the (conditional) densities of true
variables from the observed ones. Assumption 2.2 can be equivalently stated in terms of density
functions as fY1|Y2Y ∗2 W (y1 | y2, y

∗
2, w) = fY1|Y2W (y1 | y2, w), and Assumption 2.3 is equivalent to

fY1|Y2Z1V (y1 | y2, z1, v) = fY1|Y2Z1
(y1 | y2, z1). Assumption 2.2 states that given the true regressors

and the control variables, mismeasured regressors do not provide further information on dependent
variables. Assumption 2.3 states that given the true regressors, control variables do not provide
further information on dependent variables. Similarly, Assumption 2.4 can be equivalently written
as fY ∗2 |Y2Z1V (y∗2 | y2, z1, v) = fY ∗2 |Y2Z1

(y∗2 | y2, z1), which means that given the true regressors, con-
trol variables do not have further information on mismeasured regressors. We further discuss these
assumptions for a specific model and provide sufficient conditions for the assumptions in Section
2.3.

2.2 Identification of Parameters by Means of Density Functions

Here we show how to obtain identification of parameters using the conditional (mean) independence
conditions by means of density functions. First note that by Assumption 2.1(i), we have

E[Y2ε |W ] = E[Y2 |W ]E[ε |W ],

which is followed by

E[Y2ε |W ] = E[E[Y2 |W ]ε |W ].
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Then by rearranging both sides, we obtain

E[(Y2 − E[Y2 |W ])ε |W ] = E[(Y2 − E[Y2 |W ])(Y1 −G(Y2; θ, h)) |W ] = 0.

Let ρ(X, θ, h) = (Y2−E[Y2 |W ])(Y1−G(Y2; θ, h)) be the residual. Let α = (θ, h) and letm(W,α) ≡
E[ρ(X, θ, h) | W ] denote the conditional mean function of the residual, ρ(X, θ, h), given W . Then
we can cast the above conditional moment restriction into the more general form as (3). For a
class of semiparametric models, Ai and Chen (2003) propose a sieve MD estimation which requires
a consistent estimator for the conditional moment function. Because Y2 is not observed in our
model (3), their methods are not directly applicable to our case. We instead estimate α through
recovering conditional density functions associated with the unobserved true variable Y2 from the
observed data. Our main idea is that the conditional mean function (3) can be written as an integral
form

m(w,α) ≡ E[ρ(X, θ, h) |W ] =

∫
Y
ρ(x, θ, h)fY |W (y | w)dy, (6)

so identification of the conditional mean function m(w,α) is obtained, given the identification of the
conditional density fY |W (y | w) and the residual function ρ(X, θ, h). By utilizing the conditional
independence condition of Assumption 2.3, we note that two densities fY1|Y2Z1

(y1 | y2, z1) and
fY2|W (y2 | w) are sufficient for the identification of the conditional density fY |W (y | w). We further
note that the conditional mean function E[Y2 |W ] inside the residual can be written as

E[Y2 |W = w] =

∫
Y2
y2fY2|W (y2 | w)dy2, (7)

so that fY2|W (y2 | w) is also sufficient for the identification of the residual function ρ(X, θ, h(·)),
given the parameter α. Rewriting the conditional mean functions in terms of conditional densities
makes it clear that once fY1|Y2Z1

(y1 | y2, z1) and fY2|W (y2 | w) are obtained, we then can estimate
α0 using the conditional moments because α0 is the unique solution to the equation m(w,α) = 0.
In Section 3, given identification of m(w,α), we propose a sieve estimator of α0 that is obtained by
minimizing a sample analogue of the population criterion function

Q(α) ≡ E
[
m(Wi, α)′[Σ(Wi)]

−1m(Wi, α)
]

(8)

where Σ(W ) denotes a positive-definite weighting matrix.
Therefore our problem boils down to the problem of recovering the two densities fY1|Y2Z1

(y1 |
y2, z1) and fY2|W (y2 | w) from observables where Y2 is only measured with error. Note that under
Assumptions 2.2-2.4, we can express the conditional density of Y ∗ given W as an integral equation

fY ∗|W (y∗ | w) =

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)fY2|W (y2 | w)dy2. (9)

Therefore, the problem of identifying the densities fY1|Y2Z1
(y1 | y2, z1) and fY2|W (y2 | w) becomes
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the problem of finding the unique solution to the integral equation (9) where fY ∗|W (y∗ | w) is
directly observable from data. We now provide additional conditions that ensure the solution to
the integral equation (9) is unique. These conditions are similar to those in Hu and Schennach
(2008). Let R1, R2, and R3 denote random variables with supports R1,R2, and R3, respectively.
Let LR1|R2r3 denote an integral operator mapping g ∈ G(R2) to LR1|R2r3g ∈ G(R1) for a given
r3, defined by [LR1|R2r3g](r1) ≡

∫
R2
fR1|R2R3

(r1 | r2, r3)g(r2)dr2, where G(Rj) is the corresponding
function space with domain Rj with j = 1, 2.

Assumption 2.5 The operators LY ∗2 |Y2z1 and LY ∗2 |V z1 are one-to-one.

Assumption 2.6 For any z1 ∈ Z1 and any ỹ2, ȳ2 ∈ Y2, the set {y1 ∈ Y1 : fY1|Y2Z1
(y1 |

ỹ2, z1) 6= fY1|Y2Z1
(y1 | ȳ2, z1)} has positive probability whenever ỹ2 6= ȳ2.

Assumption 2.7 For any given z1 ∈ Z1, there exists a known functional M such that
M[fY ∗2 |Y2Z1

(· | y2, z1)] = y2 for all y2 ∈ Y2.

Assumption 2.5 states completeness of the family of distributions associated with the operators
LY ∗2 |Y2z1 and LY ∗2 |V z1 (see Newey and Powell (2003) and Blundell, Chen, and Kristensen (2007)
for related discussions). This can be regarded as a nonparametric rank condition for identifica-
tion. Assumption 2.6 excludes constant distribution of Y1 at different values of Y2. For example,
in the partially linear model of (1) this assumption holds unless h0 is a constant function of Y2. In
Assumption 2.7,M is a general functional mapping a density to a vector, which allows for nonclas-
sical measurement errors so that the true value Y2 and the measurement error can be dependent.
This assumption places restrictions on some measure of the location of a density, denoted byM[·]
such as the mean, mode, and quantiles of the distribution. For example, it reduces to a familiar
form E[Y ∗2 |Y2] = Y2 in the classical measurement error case as Y ∗2 = Y2 + e where e denotes the
measurement error.

Given the identifying conditions of Assumptions 2.1-2.4 (conditional (mean) independence con-
ditions) and the conditions for identifying required densities (Assumptions 2.5-2.7), the following
theorem states identifiability of the parameters in the conditional moment restriction (3).

Theorem 2.1. Under Assumptions 2.1-2.7, the parameters α0 ≡ (θ0, h0) are uniquely identified
from the observables (Y1, Y

∗
2 , Z1, V ).

2.3 Sufficient Conditions for Identification

In order to understand the meaning of the conditional independence assumptions in a specific
context, consider a regression model of the form:

Y1 = π(Z1) +G(Y2; θ, h) + ε, Y ∗2 = g(Y2, e), V = r(Z1, η), (10)

where G(·) is known up to (θ, h), Y1, Z1 and V are observed random variables, Y2 is the true
endogenous regressor, Y ∗2 is the observed mismeasured regressor, and g and r denote true structural
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functions. ε, e and η are unobserved causes of Y1, Y ∗2 and V , respectively. e can be also interpreted
as the measurement error on Y2. A simple example of the measurement error is an additive error as
Y ∗2 = Y2 +e. Inclusion of the exogenous variables Z1 in r clearly illustrates that the control variable
V does not need to be independent of the exogenous variables in this setting.

Below we provide sufficient conditions for the identifying assumptions (Assumptions 2.1-2.4) in
terms of the model (10). Let E ,Ξ, and Υ be the support of the disturbances ε, e and η, respectively.
Assumptions below state underlying conditions for unobservable causes such that a control variable
is sufficient to control for both endogeneity and measurement error on the regressor Y2. Recall
W ≡ (Z ′1, V

′)′.

Assumption 2.1S Y2 ⊥ ε | (Z1, η) for all (Y2, Z1, ε, η) ∈ Y2 ×Z1 × E ×Υ.

Assumption 2.2S ε ⊥ e | (Y2,W ) for all (Y2,W, ε, e) ∈ Y2 ×W × E × Ξ.

Assumption 2.3S ε ⊥ η | (Y2, Z1) for all (Y2, Z1, ε, η) ∈ Y2 ×Z1 × E ×Υ.

Assumption 2.4S e ⊥ η | (Y2, Z1) for all (Y2, Z1, e, η) ∈ Y2 ×Z1 × Ξ×Υ.

Theorem 2.2. Assumption 2.1 (i) and Assumptions 2.2 - 2.4 are implied by Assumptions 2.1S-2.4S,
respectively.

Assumption 2.1S forms the moment condition E[(Y2 −E[Y2 |W ])(Y1 −G(Y2; θ, h)) |W ] = 0 as
discussed in Section 2.2.

Figure 1 provides a graphical depiction of a structure that is consistent with Assumptions 2.1S-
2.4S. In the figure dashed circles denote unobservable random variables and complete circles denote
observable random variables. Arrows denote direct causal relationships. Straight lines without
arrows denote dependence between variables (see Pearl (2009) for graphical depictions of other
possible structures). For simplicity, assume there is no exogenous regressor, Z1, for a moment.
Let ν be the unobserved cause of Y2, which depends on η. Then Y2 is endogenous because of the
common cause, η, between ν and ε. V , observable proxy to η, controls for endogeneity by ensuring
conditional independence between Y2 and ε given V . Moreover, Y2 is a dashed circle because it is
not observed. Instead, error-laden Y ∗2 is observed. Key conditions for the identification of the effect
of Y2 on Y1 are: First, ν needs to be independent of unobserved drivers of dependent variable ε
conditioning on V (or η); Second, given Y2 and V , measurement error e needs to be independent of
ε; Third, given Y2, η needs to be independent of ε; Fourth, given Y2, η needs to be independent of
e. The first condition is required to control for endogeneity, while last three conditions are utilized
to control for measurement error. Note that as in Figure 1, we allow for nonclassical measurement
error since the true regressor and the measurement error can be dependent.

One important literature that utilizes the conditional independence is the problem of estimating
the effect of family income on children’s health (often called the gradient). This has been studied
in Case, Lubotsky, Paxson (2002), Currie and Stabile (2003), and Condliffe and Link (2008) among
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others. Figure 2 shows graphical depiction of the relationship between family income and children’s
health. Because endogeneity comes from the common cause (i.e., parental cognitive ability) between
household earning potential and children’s health determinants, an available proxy to parental
cognitive ability such as parental education can solve the endogeneity problem. These studies,
however, do not consider possible measurement error in family income in nonlinear models. In our
framework, although family income is observed with error, we do not require additional measurement
on family income or other excluded instrument. Here, one control variable could be sufficient to
control for both endogeneity and measurement error if the variable and the structure of the model
satisfy our identification conditions.

It is interesting to see that Assumption 2.1S is equivalent to Assumption 2.1S′ below since
V = r(Z1, η), and Assumption 2.3S is equivalent to Assumption 2.3S′ below by Lemma 4.2 (i) of
Dawid (1979a).

Assumption 2.1S′ Y2 ⊥ ε | (Z1, V ) for all (Y2,W, ε) ∈ Y2 ×W × E .

Assumption 2.3S′ ε ⊥ V | (Y2, Z1) for all (Y2,W, ε) ∈ Y2 ×W × E .

One may conclude that Assumption 2.1S′ and 2.3S′ imply ε is jointly independent of Y2 and V .
If this is indeed right, then these assumptions exclude endogeneity of Y2 as well as dependence of V
on ε. As a result, the assumptions seem contradictory to the model (10). However, this statement
is one of common fallacious arguments. The following lemma built on Dawid (1979b) clarifies the
implication of Assumptions 2.1S′ and 2.3S′ (equivalently Assumptions 2.1S and 2.3S).

Lemma 2.3. Assumptions 2.1S′ and 2.3S′ hold if and only if ε ⊥ (Y2, V ) | T where T is the
information in common between (Y2, Z1) and (Z1, V ).

Lemma 2.3 implies that as long as (Y2, Z1) and (Z1, V ) share common information other than
Z1, ε is allowed to depend on Y2 and V . See Dawid (1979b, 1980) for general interpretation of
common information and see Appendix A for examples. Therefore, Assumptions 2.1S−2.4S are not
mutually contradictory.

2.4 Triangular Simultaneous Equations with Conditional Mean Independence

Here we discuss our identification conditions for the triangular simultaneous equations model (4)
with measurement error. Figure 3 describes a version of the model. Again, assume there is no ex-
ogenous regressor, Z1 for ease of notation. Y2 is endogenous because its cause V and the unobserved
cause of Y1 are interdependent. In addition, the endogenous true Y2 is observed with error e, as Y ∗2 .
Typically, the excluded instrument Z = Z2 is assumed to only affect Y2 where η is the underlying
unobserved cause of Z. The first stage of the triangular system allows us to recover the cause V
from Y2 and Z, and we can use this generated V as the control variable. When this control variable
V satisfies the required conditions in Sections 2.1-2.2 above, the causal effect of Y2 on Y1 can be
identified.

10



A number of applied studies have considered the standard instrumental variable approach to
control for both endogeneity and measurement error in linear parametric models. Butcher and Case
(1994), for example, consider the effect of women’s education on earnings. As they mention, educa-
tion is endogenous because it is correlated with unobserved ability. Here the completed education
variable may be reported with error. They state that sibling sex composition may be used as an
instrument to estimate returns to education if it is correlated with educational attainment and un-
correlated with measurement error (Butcher and Case 1994, p. 554). Figure 4 depicts the possibility
of using sibling sex composition as a potential instrument. In our setting we would recover the con-
trol variable from the first stage equation that includes the sibling sex composition as the excluded
instrument. As long as the control variable satisfies the identification conditions in Sections 2.1-2.2,
we can identify the causal effect. Thus, our result can be interpreted as a semiparametric analog of
their result in their linear parametric model.

There are several interesting features of our framework with this model. First, the reduced form
equation provides a source from which the control variate V can be obtained. Second, even though
we know what should be the control variable (the conditional distribution of Y2 given Z, FY2|Z),
a plug-in method to obtain the control variable such as V ≡ FY2|Z(Y2 | Z) is not feasible because
Y2 is only measured with error. Below we show that in the presence of measurement error in Y2,
the CDF FY2|Z can be still obtained from the data (Y ∗2 , Z) with additional assumptions. Moreover,
in our setting the identification of FY2|Z suffices for recovering the structural parameters although
we do not recover individual observations of V . This is because we need only the estimates of the
relevant density functions to approximate the population criterion function (8) in our estimation
(see Section 3 below). Whether or not individual observations are available is not important for our
approach.

Several different approaches can be used to recover FY2|Z under alternative sets of assumptions
(e.g. repeated measurements, existence of additional instruments, or auxiliary data). We consider
two important cases below.

2.4.1 Using Repeated Measurements

Assume we observe two repeated measurements of Y2 as Y ∗2a = Y2+ea and Y ∗2b = Y2+eb where ea and
eb are measurement errors. Then FY2|Z(y2 | z) can be identified from the repeated measurements,
using a similar argument to (e.g.) Li and Vuong (1998) and Schennach (2004). The following lemma
provides a result.

Lemma 2.4. (i) Suppose that V is a scalar, r is strictly monotonic in V , and Z is independent
of V in model (4). Then we have V = FY2|Z(Y2|Z).

(ii) Suppose further that E[ea | Y ∗2b] = 0, eb is independent of (Y2, Z) and E[exp(iζY ∗2b)] is
nonvanishing for any real ζ. Then FY2|Z(y2 | z) is identified from the observables (Y ∗2a, Y

∗
2b, Z). In
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particular we obtain

FY2|Z(y2 | z) (11)

=
1

2
+

1

2π

∫ ∞
0

E[exp(−iζY2) | Z = z] exp(iζy2)− E[exp(iζY2) | Z = z] exp(−iζy2)

iζ
dζ

where

E[exp(iζY2) | Z] =
E[exp(iζY ∗2b) | Z]

E[exp(iζY ∗2b)]
exp

(∫ ζ

0

iE[Y ∗2a exp(iξY ∗2b)]

E[exp(iξY ∗2b)]
dξ

)
.

Note that in Lemma 2.4 the assumption E[ea | Y ∗2b] = 0 states the first measurement error has
conditional mean zero given Y ∗2b. The assumption eb ⊥ (Y2, Z) implies the independence of the
second measurement error and the true value. Here the second measurement error does not need to
have mean zero. It allows for systematic drift term in the second measurement Y ∗2b, which may be
a useful property when panel data is used for estimation. Lemma 2.4 (or other equivalent results)
allows us to recover values of the control variable for any given values of (y2, z) when Y2 is only
measured with error. In particular we can estimate FY2|Z(y2 | z) as a sample analogue to (11) by
approximating the (conditional) expectations with corresponding sample (conditional) means.

2.4.2 Using Instrumental Variables

Suppose we observe instrumental variables U for the unobservable Y2. Then using a similar argument
in Theorem 2.1, FY2|Z can be identified from the observables (Y ∗2 , Z, U). To see this we rewrite the
CDF as

FY2|Z(y2 | z) ≡
∫ y2

−∞
fY2|Z(ỹ2 | z)dỹ2

where

fY2|Z(y2 | z) =
fY2Z(y2, z)

fZ(z)
.

Then since fZ(z) is identified from the data, the identification of FY2|Z(y2 | z) rests on the identi-
fication of fY2Z(y2, z). We state conditions similar to Assumptions 2.2-2.7 for the identification of
fY2Z(y2, z).

Assumption 2.8 Z ⊥ Y ∗2 | (Y2, U) for all (U, Y2, Y
∗

2 , Z) ∈ U × Y2 × Y∗2 ×Z.

Assumption 2.9 Z ⊥ U | Y2 for all (U, Y2, Z) ∈ U × Y2 ×Z.

Assumption 2.10 Y ∗2 ⊥ U | Y2 for all (Y2, Y
∗

2 , U) ∈ Y2 × Y∗2 × U .

Assumption 2.11 The operators LY ∗2 |Y2 and LY ∗2 |U are one-to-one.

12



Assumption 2.12 For any ỹ2, ȳ2 ∈ Y2, the set {z ∈ Z : fZ|Y2(z | ỹ2) 6= fZ|Y2(z | ȳ2)} has
positive probability whenever ỹ2 6= ȳ2.

Assumption 2.13 There exists a known functional M̃ such that M̃[fY ∗2 |Y2(· | y2)] = y2 for
all y2 ∈ Y2.

The following lemma provides identification of fY2Z(y2, z) which is sufficient for the identification
of the CDF FY2|Z(y2 | z) given that fZ(z) is observable from the data.

Lemma 2.5. Under Assumptions 2.8-2.13, the density functions (fY2Z , fY ∗2 |Y2 , fU |Y2) are uniquely
identified from the observables (Y ∗2 , Z, U).

3 Estimation

Based on our identification results in Section 2 we propose a sieve-based estimator of α0 ≡ (θ0, h0)

for the model of (3). First we focus on the case for which the control variables V are observables
and then show how the setting can extend to the case for which V are generated variables as the
triangular simultaneous equations model (4).

In our approach, from observations on Y1, Y ∗2 , Z1, and V , we first estimate the unknown densities
fY1|Y2Z1

(y1 | y2, z1) and fY2|W (y2 | w) in the conditional moment function (6) using a sieve MLE,
and in the second stage we estimate parameters of interest (θ0, h0) using a sieve MD estimation.

We introduce additional notation. Let

fY ∗|W (y∗ | w;β0) =

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)fY2|W (y2 | w)dy2

and let β0 ≡ (f1, f2, f3) ∈ B ≡ F1 × F2 × F3 denote the first stage parameters such that f1 ≡
fY1|Y2Z1

(y1 | y2, z1), f2 ≡ fY ∗2 |Y2Z1
(y∗2 | y2, z1), and f3 ≡ fY2|W (y2 | w) = fY2|V Z1

(y2 | v, z1). Define
a weighted Hölder ball of radius c by Λγ,ωc (V) ≡ {g ∈ Λγ,ω(V) : ‖g‖Λγ,ω ≤ c < ∞}, where Λγ,ω(V)

is the weighted Hölder space of order γ > 0 with a weight function ω (see Ai and Chen (2003) and
Chen, Hong, and Tamer (2005) for more details and examples).

Following assumptions impose restrictions on the parameter spaces F1,F2, and F3.

Assumption 3.1 f1 ∈ Λγ1,ωc (Y1 × Y2 × Z1) where γ1 > 1 and
∫
Y1 f1(y1 | y2, z1)dy1 = 1 for

all y2 ∈ Y2, z1 ∈ Z1.

Assumption 3.2 f2 ∈ Λγ1,ωc (Y∗2 × Y2 × Z1) where γ1 > 1 and
∫
Y∗2
f2(y∗2 | y2, z1)dy∗2 = 1 for

all y2 ∈ Y2, z1 ∈ Z1.

Assumption 3.3 f3 ∈ Λγ1,ωc (Y2 × V × Z1) where γ1 > 1 and
∫
Y2 f3(y2 | v, z1)dy2 = 1 for all

v ∈ V, z1 ∈ Z1.
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Then the parameter spaces for the density functions can be defined respectively as:

F1 = {f1(· | ·, ·) : Assumption 3.1 holds},

F2 = {f2(· | ·, ·) : Assumptions 2.5, 2.7, and 3.2 hold},

F3 = {f3(· | ·, ·) : Assumptions 2.5 and 3.3 hold}.

Let pj denote a sequence of known basis functions (such as power series, splines, Fourier series,
etc.). A tensor-product multivariate linear sieve basis, denoted by pl(·, ·, ·) = (p1(·, ·, ·), . . . , pl(·, ·, ·))′

is used to approximate functions of three variables. Suppose we have n observations of the sample
{y1i, y

∗
2i, z1i, vi}. Then based on the identification results of Section 2.2, we estimate β0 using the

sieve MLE as

β̂n = (f̂1n, f̂2n, f̂3n) (12)

= arg max
(f1,f2,f3)∈Bn

1

n

n∑
i=1

ln

∫
Y2
f1(y1i | y2, z1i)f2(y∗2i | y2, z1i)f3(y2 | vi, z1i)dy2,

where Bn = F1n × F2n × F3n is a sieve space approximating B with the sample size n, and where
F1n,F2n and F3n are defined as:

F1n = {f1(y1 | y2, z1) = pln1(y1, y2, z1)′π1 for all π1 s.t. Assumption 3.1 holds},

F2n = {f2(y∗2 | y2, z1) = pln2(y∗2, y2, z1)′π2 for all π2 s.t. Assumptions 2.5, 2.7, and 3.2 hold},

F3n = {f3(y2 | v, z1) = pln3(y2, v, z1)′π3 for all π3 s.t. Assumptions 2.5 and 3.3 hold}.

Using these sieve approximations, in the first stage, we estimate fY1|Y2Z1
(y1 | y2, z1) and

fY2|V Z1
(y2 | v, z1) from (12). Using these estimated densities we construct m̂(wi, α) as the plug-in

estimator of m(wi, α):

m̂(wi, α) (13)

≡
∫
Y2

[∫
Y1
ρ(y1, y2, z1i, vi, θ, h)f̂Y1|Y2Z1

(y1 | y2, z1i)dy1

]
f̂Y2|V Z1

(y2 | vi, z1i)dy2

where f̂1n = f̂Y1|Y2Z1
(y1 | y2, z1i) and f̂3n = f̂Y2|V Z1

(y2 | vi, z1i) are obtained from (12). Let H be a
space of smooth functions (e.g. Hölder ball) that contains the true h0 and let Hn be some finite-
dimensional approximation space that becomes dense in H as the sample size n tends to infinity
(e.g., Fourier series, power series, splines, wavelets, etc.). Then in the second stage, we obtain the
(penalized) sieve MD estimator of α0 ≡ (θ0, h0) as

α̂n ≡ (θ̂n, ĥn) = arg inf
α=(θ,h)∈Θ×Hn

Q̂n(α), (14)
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where

Q̂n(α) ≡

{
1

n

n∑
i=1

m̂(Wi, α)′[Σ̂(Wi)]
−1m̂(Wi, α) + λnP̂n(h)

}

and where Σ̂(W ) is a consistent estimator of Σ(W ) (a positive-definite weighting matrix), λn ≥ 0 is
a penalization tuning parameter such that λn = o(1), and P̂n(h) ≥ 0 is a possibly random penalty
function as in Chen and Pouzo (2012).

Our estimation method can accommodate the case when V are generated variables. For example,
in the case of the triangular model (4) we can estimate the densities using a sieve MLE as

β̂n = (f̂1n, f̂2n, f̂3n) (15)

= arg max
(f1,f2,f3)∈Bn

1

n

n∑
i=1

ln

∫
Y2
f1(y1i | y2, z1i)f2(y∗2i | y2, z1i)f3(y2 | v̂i(y2), z1i)dy2,

where we define v̂i(y2) ≡F̂Y2|Z(y2|zi) and F̂Y2|Z(y2|zi) is an estimator of FY2|Z(y2|zi) based on (e.g.)
the identification results in Section 2.4.1 and Section 2.4.2.

Similarly, for the triangular model case we can estimate the conditional mean function as

m̂(ŵi, α)

≡
∫
Y2

[∫
Y1
ρ(y1, y2, z1i, v̂i(y2), θ, h)f̂Y1|Y2Z1

(y1 | y2, z1i)dy1

]
f̂Y2|V Z1

(y2 | v̂i(y2), z1i)dy2

where f̂1n = f̂Y1|Y2Z1
(y1 | y2, z1i) and f̂3n = f̂Y2|V Z1

(y2 | v̂i(y2), z1i) are obtained from (15). The
sieve MD estimator is then obtained by replacing m̂(wi, α) with m̂(ŵi, α) in the construction of the
sample criterion function Q̂n(α) in (14).

4 Consistency

We obtain consistency of our estimator α̂n ≡ (θ̂n, ĥn) defined in the equation (14) allowing for
a penalty function. Let (Y ∗′,W ′)′ be a vector of observed variables for Y ∗ ∈ Y∗,W ∈ W. We
denote the smoothing parameter in the first-stage estimation by ln which is the total number of
sieve coefficients, ln = ln1 + ln2 + ln3. We also denote another smoothing parameter in the sieve
approximation for h by kn = dim(Hn). Define ‖β‖s,β ≡ ‖f1‖∞,ω + ‖f2‖∞,ω + ‖f3‖∞,ω where
‖g‖∞,ω ≡ supξ |g(ξ)ω(ξ)| with a weight function ω(ξ) = (1 + ‖ξ‖2E)−ς/2, ς > γ1 > 0. Note that the
generic variable ξ depends on the domain of g (e.g., when g = f1, ξ = (y1, y2, z1)). We also denote
‖α‖s,α ≡ ‖θ‖E + ‖h‖s,α. For any vector- or matrix-valued A, sometimes we use |A| = ||A||E =√
tr(A′A) for ease of notation. We make the following assumptions. A subset of the assumptions

are from Newey and Powell (2003) and Chen and Pouzo (2012).

Assumption 4.1 (i) The data {(Y ∗i ,Wi)
n
i=1} are i.i.d. (ii) The density of (Y ∗′,W ′)′, fY ∗W , sat-
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isfies
∫
ω(y∗, w)fY ∗W (y∗, w)d(y∗, w) <∞. (iii) E[| ln fY ∗|W (Y ∗ |W )|2] is bounded. (iv) There exists

a measurable function C1(y∗, w) with E[|C1(Y ∗,W )|2] <∞ such that for any β̄ = (f̄1, f̄2, f̄3)′ ∈ B,

∣∣∣∣∣∣
f
|1|
Y ∗|W (y∗ | w; β̄, ω̄)

fY ∗|W (y∗ | w; β̄)

∣∣∣∣∣∣ ≤ C1(y∗, w),

where the path-wise first derivative f |1|Y ∗|W (y∗ | w; β̄, ω̄) as well as the term ω̄ is defined in the proof
of Theorem 4.1.

Assumption 4.2 (i) A ≡ Θ×H, Θ is a compact subset of Rdθ , and H ⊆ H, H is a separable
Banach space under a metric ‖ · ‖s,α. (ii) B ≡ F1 ×F2 ×F3 is compact under a metric ‖ · ‖s,β and
Assumptions 3.1-3.3 hold for (f1, f2, f3) in a neighborhood of β0. (iii) E[ρ(X,α0) | W ] = 0, and
‖θ0 − θ‖E + ‖h0 − h‖s,α = 0 for any α = (θ, h) ∈ A with E[ρ(X,α) |W ] = 0.

Assumption 4.3 (i) An ≡ Θ × Hn, n ≥ 1, are the sieve space which is a nonempty closed
subset of (A, ‖ · ‖s,α) satisfying Hn ⊆ Hn+1 ⊆ H, and there exists a function Πnh0 ∈ Hn such that
‖Πnh0 − h0‖s,α = o(1) with kn/n→ 0. (ii) E[m(W,α)′Σ(W )−1m(W,α)] is continuous at α0 under
‖ · ‖s,α. (iii) Bn ≡ F1n ×F2n ×F3n, n ≥ 1, are the sieve space which is a nonempty closed subset of
(B, ‖ · ‖s,β) satisfying Fi n ⊆ Fi n+1 ⊆ Fi, i ∈ {1, 2, 3}, and there exists a function Πnβ0 ∈ Bn such
that ‖Πnβ0 − β0‖s,β = o(1) with ln/n→ 0.

Assumption 4.4 One of the following conditions holds: (i) λn = 0. (ii) λn suph∈Hn |P̂n(h) −
P (h)| = OP (λn) and λn|P (Πnh0)−P (h0)| = O(λn), with λn > 0, λn = o(1) and P (·) a non-negative
real-valued measurable function of h ∈ H, P (h0) <∞.

Assumption 4.1 (i) is about the data. Assumption 4.1 (ii) imposes a tail-behavior restriction
on fY ∗W . Assumptions 4.1 (iii)-(iv) impose an envelop condition on the first derivative of the log
likelihood function, ln fY ∗|W (y∗ | w). Assumptions 4.2 (i)-(ii) impose restrictions on the parameter
spaces, A and B. Assumption 4.2 (iii) is an identification condition of the parameter α0. Assump-
tions 4.3 (i) and (iii) are the definitions of sieve spaces, stating the sieves can approximate the true α0

and β0 arbitrarily well. Assumption 4.3 (ii) is a sufficient condition for E[‖m(W,Πnα0)‖2E ] = o(1) for
Πnα0 ≡ (θ0,Πnh0) ∈ An. Assumption 4.4 (i) allows for no penalty case and Assumption 4.4 (ii) si-
multaneously states a property of the tuning parameter and penalty function when λn > 0. It states
that P̂n(h) is a consistent estimator of P (h) and |P (Πnh0)−P (h0)| = O(1) is satisfied if P (·) is con-
tinuous at h0. Let {δm,n}n be real-valued positive sequence decreasing to zero as n→∞, denoting
the convergence rate of m̂(w,α) to m(w,α), namely, supα∈An E[‖m̂(W,α)−m(W,α)‖2E ] ≡ O(δ2

m,n).
We denote ξ0n ≡ sup(ξ1,ξ2,ξ3)∈((Y1×Y2×Z1)∪(Y∗2×Y2×Z1)∪(Y2×V×Z1)) ‖pln(ξ1, ξ2, ξ3)‖E , which is nonde-
creasing in ln, and denote Πnβ ≡ (Πnf1,Πnf2,Πnf3) ∈ Bn ≡ F1n × F2n × F3n. Let {bm,ln}n be
a real-valued positive sequence decreasing to zero as ln → ∞, denoting the approximation bias of
m(·, α) using the sieve ML estimator as (13).
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Assumption 4.5 (i) Σ̂(w) = Σ(w)+op(1) uniformly over w ∈ W. (ii) Σ̂(w) is positive definite,
and its smallest and largest eigenvalues are finite positive uniformly in w ∈ W with probability
approaching one. (iii) Σ(w) is positive definite, and its smallest and largest eigenvalues are finite
positive uniformly in w ∈ W.

Assumption 4.6 (i) There is a finite constant c such that supα∈An supw V ar[ρj(X,α) | W =

w] ≤ c < ∞ for all j = 1, . . .,dρ. (ii) For any g ∈ {m(·, α) : α ∈ An}, there exists g̃(W ) ≡∫
ρ(y,W,α)fY |W (y|W ; β̃)dy for some β̃ ∈ Bn such that, uniformly over α ∈ An, E[|g(W ) −

g̃(W )|2] = O(b2m,ln) for the pln(ξ1, ξ2, ξ3) sieve with ξ2
0n = O(ln). (iii) There are finite con-

stants c1, c2 > 0 such that uniformly over α ∈ An, c1E[‖m̂(W,α)‖2E ] ≤ n−1
∑n

i=1 ‖m̂(Wi, α)‖2E ≤
c2E[‖m̂(W,α)‖2E ] with probability approaching one as n→∞.

Assumptions 4.5 is about the weighting matrix Σ(w) and its consistent estimator Σ̂(w). As-
sumption 4.6 (i) requires a finite conditional variance of the residual function ρ. Assumption 4.6 (ii)
quantifies the bias of the estimator g̃(w) and is satisfied by the class of typical smooth functions. The
conditional mean function estimator m̂(W,α) defined in (13) using the first stage sieve ML estimator
can be shown to satisfy supα∈An E[‖m̂(W,α)−m(W,α)‖2E ] ≡ O(δ2

m,n) with δ2
m,n = max{ lnn , b

2
m,ln
}

under Assumptions 4.1 and 4.6.
It is worth noting that if the original parameter space B is too large, it is useful to introduce

another penalty function for the first-stage parameter, β, and estimate it via a penalized sieve
MLE as in Shen (1997). For the sake of concise results, we maintain the assumption that B is a
compact space. Define AM0

n ≡ {α ∈ An : λnP (h) ≤ λnM0} for a finite M0 ≡ M0(ε) > 0 such that
Πnα0 ∈ AM0

n and Pr(α̂n /∈ AM0
n ) < ε for all ε > 0 and all sufficiently large n. Then we obtain the

following consistency results.

Theorem 4.1. Let α̂n be the PSMD estimator defined in (14) with λn ≥ 0, λn = o(1). Suppose
Assumptions 2.1-2.7, 3.1-3.3, and 4.1-4.6 hold, E[|m(W,α)|2] is lower semicontinuous in ‖ · ‖s,α on
An, and max{δ2

m,n, E
[
|m(W,Πnα0)|2

]
, λn}/ inf

α∈AM0
n :‖α−α0‖s,α≥ε

E
[
|m(W,α)|2

]
= o(1) is satisfied

for any ε > 0. Then ‖α̂n − α0‖s,α = op(1).

See Appendix F for the proof.

5 Convergence Rate and Asymptotic Normality

To obtain the convergence rate of the second-stage sieve estimator α̂n ≡ (θ̂n, ĥn) and the asymptotic
normality of the finite-dimensional plug-in estimators as functionals of α such as the asymptotic
normality of the finite-dimensional parameter θ̂n, we extend the asymptotic results in Chen and
Pouzo (2012) to the case with mismeasured endogenous regressors. Chen and Pouzo use the series
least-squares estimator for the conditional mean functionm(w,α), which is infeasible in the presence
of measurement error. Nevertheless, their asymptotic results are applicable to our case because
they establish the asymptotic properties of their proposed estimators, which can accommodate any
consistent estimators for the conditional mean function. Therefore, we can derive the asymptotic
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properties of the second-stage estimator α̂n and its plug-in estimators as functionals of α̂n using
Chen and Pouzo’s framework.

5.1 Convergence Rate

To derive the convergence rates, we introduce additional notations and weaker metrics for which
we derive the rate results, and make a few additional assumptions. Denote Bos ≡ {β ∈ B :

‖β − β0‖s,β = o(1)} and Bosn ≡ Bos ∩ Bn. For any β ∈ Bos, denote the first path-wise derivative of
ln fY ∗|W (y∗ | w;β0) at the direction [β − β0] evaluated at β0 by:

d ln fY ∗|W (y∗ | w;β0)

dβ
[β − β0] ≡

d ln fY ∗|W (y∗ | w; (1− τ)β0 + τβ)

dτ

∣∣∣∣
τ=0

almost everywhere (under the probability measure of (Y ∗,W )) and for β1, β2 ∈ Bos denote

d ln fY ∗|W (y∗ | w;β0)

dβ
[β1 − β2] ≡

d ln fY ∗|W (y∗ | w;β0)

dβ
[β1 − β0]−

d ln fY ∗|W (y∗ | w;β0)

dβ
[β2 − β0].

Specifically, the path-wise derivative is denoted by:

d ln fY ∗|W (y∗ | w;β0)

dβ
[β − β0]

=
1

fY ∗|W (y∗ | w;β0)

{∫
Y2

[f1(y1|y2,z1)− fY1|Y2Z1
(y1|y2,z1)]fY ∗2 |Y2Z1

(y∗2 | y2, z1)fY2|V Z1
(y2 | v, z1)dy2

+

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)[f2(y∗2 | y2, z1)− fY ∗2 |Y2Z1
(y∗2 | y2, z1)]fY2|V Z1

(y2 | v, z1)dy2

+

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)[f3(y2 | v, z1)− fY2|V Z1

(y2 | v, z1)]dy2

}
.

For any β1, β2 ∈ Bos, the metric is defined as

‖β1 − β2‖β ≡

√√√√E

{(
d ln fY ∗|W (Y ∗ |W ;β0)

dβ
[β1 − β2]

)2
}
.

Denote Aos ≡ {α ∈ A : ‖α−α0‖s,α = o(1), P (h) ≤ c} for a constant c > 0 and Aosn ≡ Aos∩An. For
any α ∈ Aos, we define the first path-wise derivative of ρ(X,α) at the direction [α− α0] evaluated
at α0 by:

dρ(X,α0)

dα
[α− α0] ≡ dρ(X, (1− τ)α0 + τα)

dτ

∣∣∣∣
τ=0

18



almost everywhere (under the probability measure of X) and for any α1, α2 ∈ Aos denote

dρ(X,α0)

dα
[α1 − α2] ≡ dρ(X,α0)

dα
[α1 − α0]− dρ(X,α0)

dα
[α2 − α0],

dm(W,α0)

dα
[α1 − α2] ≡ E

{
dρ(X,α0)

dα
[α1 − α2]

∣∣∣∣W} .
Also, for any α1, α2 ∈ Aos, the metric ‖ · ‖α is defined as

‖α1 − α2‖α ≡

√
E

{(
dm(W,α0)

dα
[α1 − α2]

)′
Σ(W )−1

dm(W,α0)

dα
[α1 − α2]

}
.

The metrics ‖ · ‖β and ‖ · ‖α are weaker than the norms ‖ · ‖s,β and ‖ · ‖s,α, respectively, in the sense
that ‖ · ‖β ≤ ‖ · ‖s,β and ‖ · ‖α ≤ ‖ · ‖s,α. The convergence rates of β̂ and α̂ are analyzed under the
weaker metrics ‖ · ‖β and ‖ · ‖α, respectively. Therefore, given the consistency results, now we can
treat Bos and Aos as the new parameter spaces, while Bosn and Aosn are considered as their sieve
spaces, respectively. We make the following assumptions.

Assumption 5.1 (i) ln fY ∗|W (y∗ | w;β) satisfies an envelope condition in β ∈ Bosn. (ii)
ln fY ∗|W (y∗ | w;β) ∈ Λγ,ωc (Y∗ ×W) for some constant c > 0 with γ > d(Y ∗,W )/2, for all β ∈ Bosn,
where d(Y ∗,W ) is the dimension of (Y ∗,W ). (iii) There is a constant γ1 such that for any β ∈ Bos,
there exists Πnβ ∈ Bosn satisfying ‖Πnβ − β‖β = O(l

−γ1/3
n ), and l−γ1/3n = o(n−1/4).

Assumption 5.1 (i) imposes a dominance condition on the log likelihood function and Assump-
tion 5.1 (ii) imposes a smoothness condition on the function. Assumption 5.1 (iii) quantifies the
approximation error of β by Πnβ ∈ Bosn. This condition is usually satisfied by the commonly used
sieve approximations (e.g., power series, Fourier series, splines, wavelet, etc). Let N(ε,Bosn, ‖ · ‖s,β)

denote the minimal number of radius ε covering balls of Bosn under the metric ‖ · ‖s,β .

Assumption 5.2 (i) ln × lnn× ξ2
0n × n−1/2 = o(1). (ii) For a constant c > 0, ln[N(ε,Bosn, ‖ ·

‖s,β)] ≤ c× ln × ln(ln/ε).

Assumption 5.3 (i) Aos and Aosn are convex in α0 and m(W,α) is continuously path-wise
differentiable with respect to α ∈ Aos. (ii) Bos and Bosn are convex in β0 and fY ∗|W (y∗ | w;β) is
continuously path-wise differentiable with respect to β ∈ Bos.

Assumption 5.4 (i) There are finite constants c1, c2 > 0 such that c1E[‖m(W,α)‖2E ] ≤ ‖α −
α0‖2α ≤ c2E[‖m(W,α)‖2E ] for all α ∈ Aos. (ii) There are finite constants c1, c2 > 0 such that

c1E

{
ln
fY ∗|W (y∗ | w;β0)

fY ∗|W (y∗ | w;β)

}
≤ ‖β − β0‖2β ≤ c2E

{
ln
fY ∗|W (y∗ | w;β0)

fY ∗|W (y∗ | w;β)

}
holds for all β ∈ Bos.
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Assumption 5.2 (i) imposes a restriction on the divergence rate of ln and Assumption 5.2 (ii)
imposes a restriction on the size of the sieve space Bosn such that it does not grow too fast in
terms of the covering number. Assumption 5.3 ensures that the weak metrics ‖ · ‖β and ‖ · ‖α are
well-defined, respectively. Assumption 5.4 imposes that the population criterion function and the
log likelihood function can be approximated locally by the weak metrics.

Let B denote the closure of the linear span of Aos−{α0} under the metric ‖·‖α (i.e., B = Rdθ×Φ

with Φ ≡ H− {h0}). Then (B, ‖ · ‖α) is a Hilbert space with the inner product:

〈b1, b2〉α = E

{(
dm(W,α0)

dα
[b1]

)′
Σ(W )−1

(
dm(W,α0)

dα
[b2]

)}
.

The path-wise derivative at α0 is defined as

dm(W,α0)

dα
[α− α0] ≡ dm(W,α0)

dθ′
(θ − θ0) +

dm(W,α0)

dh
[h− h0].

For each component θj of θ, j = 1, 2, . . . , dθ, we define φ∗j ∈ Φ as

φ∗j ≡ arg inf
φj∈Φ

E

{(
dm(W,α0)

dθj
− dm(W,α0)

dh
[φj ]

)′
Σ(W )−1

(
dm(W,α0)

dθj
− dm(W,α0)

dh
[φj ]

)}
.

Define

φ∗ = (φ∗1, φ
∗
2, ..., φ

∗
dθ

),

dm(W,α0)

dh
[φ∗] =

(
dm(W,α0)

dh
[φ∗1], . . . ,

dm(W,α0)

dh
[φ∗dθ ]

)
,

and let

Gφ∗(W,α0) ≡ dm(W,α0)

dθ′
− dm(W,α0)

dh
[φ∗].

We impose the following assumptions.

Assumption 5.5 (i) E
[∥∥∥Σ(W )−

1
2

{
dm(W,α0)

dθ′

}∥∥∥2

E

]
is finite. (ii) E

[∥∥∥Σ(W )−
1
2Gφ∗(W,α0)

∥∥∥2

E

]
exists, is bounded, and is positive-definite.

Assumption 5.5 is related to a local identification condition for θ. Define s(α) ≡ λ′θ for λ ∈ Rdθ

and λ 6= 0. Since s(α) ≡ λ′θ is bounded if and only if E[Gφ∗(W,α0)′Σ(W )−1Gφ∗(W,α0)] is finite
positive-definite, we have, by Assumption 5.5,

s(α)− s(α0) ≡ λ′(θ − θ0) = 〈b∗, α− α0〉α

for all α ∈ A where b∗ ≡ (b∗θ, b
∗
h) ∈ B, b∗θ = J̃−1λ with J̃ = E[Gφ∗(W,α0)′Σ(W )−1Gφ∗(W,α0)], and

b∗h = −φ∗ × b∗θ.

20



Let Hos ≡ {h ∈ H : ‖h− h0‖s,α = o(1), P (h) ≤ c} and Hosn ≡ Hos ∩Hn. For any h1, h2 ∈ Hos,
we define

‖h1 − h2‖2α ≡ E

[(
dm(W,α0)

dh
[h1 − h2]

)′
Σ(X)−1

(
dm(W,α0)

dh
[h1 − h2]

)]
.

Assumption 5.6 (i) H ⊆ H, (H, ‖ · ‖s,α) is a Hilbert space with 〈·, ·〉s,α the inner product and
{qj}∞j=1 a Riesz basis. (ii) Hn = clsp{q1, . . . , qn}.

Assumption 5.7 There are finite constants c1, c2 > 0 and a non-increasing positive sequence
{bj}∞j=1 such that (i) ‖h‖2α ≥ c1

∑∞
j=1 bj |〈h, qj〉s,α|2 for all h ∈ Hosn and (ii) c2

∑∞
j=1 bj |〈h0 −

Πnh0, qj〉s,α|2 ≥ ‖h0 −Πnh0‖2α.

Assumption 5.6 suggests that Hn = clsp{q1, . . . , qn} is a natural sieve space for the estimation
of h0 where clsp {·} is the closure of the linear span under the metric ‖ · ‖s,α. Assumption 5.7 (i)
links the weak metric to its corresponding strong metric and (ii) is the so-called stability condition
(see Chen and Pouzo (2012) for further discussions on these conditions). The following theorem
states a convergence rate result for the estimator in (14).

Theorem 5.1. (i) Let all the Assumptions of Theorem 4.1 hold. Let Assumptions 5.1 - 5.5 hold,
and suph∈Hosn |P̂n(h) − P (h)| = op(1). Then ‖α̂n − α0‖α = Op(max{δm,n, ‖h0 − Πnh0‖α,

√
λn}).

(ii) Further, let Assumptions 5.6- 5.7 hold, ‖h0−Πnh0‖α = o(n−1/4), and max{δm,n,
√
λn} = δm,n.

Then ‖α̂n − α0‖α = op(n
−1/4).

See Appendix G for the proof.

5.2 Asymptotic Normality

Based on the asymptotic results in the previous sections, we now establish the
√
n-normality of the

PSMD estimator θ̂n by extending the results in Ai and Chen (2003). Under Assumption 5.5, for
λ ∈ Rdθ and λ 6= 0, there exists a Riesz representer b∗ ≡ (b∗θ, b

∗
h) ∈ B of λ′(θ − θ0) = 〈b∗, α − α0〉α

where b∗θ = J̃−1λ with J̃ = E[Gφ∗(W,α0)′Σ(W )−1Gφ∗(W,α0)], and b∗h = −φ∗ × b∗θ. Define N0 ≡
{α ∈ Aos : ‖α− α0‖α = o(n−1/4), ‖α− α0‖s,α = o(1)} and N0n ≡ N0 ∩ An. We denote

dρ(X,α)

dα
[b] ≡ dρ(X,α+ τb)

dτ

∣∣∣∣
τ=0

a.s. X,

and

dm(W,α)

dα
[b] ≡ dm(W,α+ τb)

dτ

∣∣∣∣
τ=0

a.s.W,

for any b ∈ B. We make the following assumptions.
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Assumption 5.8 (i) There exists a measurable function C2(W ) with E[|C2(W )|] < ∞ and
constants κ ∈ (0, 1], r ≥ 1 such that for all δ > 0 and α ∈ N0n

sup
‖α−α0‖s,α≤δ

∫ ∣∣∣∣ρ(x, α)− ρ(x, α0)

δκ

∣∣∣∣rdFY |W=w(y) ≤ C2(w)r

and ‖α − α0‖κs,α = o(n−1/2). (ii) There exists a measurable function C3(X) with a constant c > 0

such that supα∈N0
|ρ(X,α)| ≤ C3(X) and E[C3(X) |W ] ≤ c <∞.

Assumption 5.9 (i) θ0 ∈ int(Θ). (ii) Σ0(W ) ≡ V ar[ρ(X,α0) | W ] is positive-definite for all
W ∈ W. (iii) There is a b∗n = (b∗θ,−Πnφ

∗ × b∗θ) ∈ An − {α0} such that ‖b∗n − b∗‖α = o(n−1/4).

Assumption 5.10 (i) Σ̂(w) = Σ(w) + op(n
−1/4) uniformly over w ∈ W. (ii) There exists a

positive sequence εn = o(n−1/2) such that λn supα∈N0n
|P̂n(h± εnφ∗nb∗θ)− P̂n(h)| = op(n

−1).

Assumption 5.8 is satisfied by typical smooth classes of the residual function. Assumption 5.9
(iii) requires no asymptotic bias of b∗n. Assumptions 5.10 (i)-(ii) quantify the estimation error of
the weighting matrix and the approximation error of the sieve in the penalty function, respectively.
Define g(W, b∗) ≡

(
dm(W,α0)

dα [b∗]
)′

Σ(W )−1 and its projection onto the integral function using the

estimated densities as g̃(W, b∗) ≡
∫

[
∫
g(W, b∗)f̂Y1|Y2Z1

(y1 | y2, z1)dy1]f̂Y2|V Z1
(y2 | v, z1)dy2. Simi-

larly define the projection of m(W,α) as m̃(W,α) ≡
∫

[
∫
m(W,α)f̂Y1|Y2Z1

(y1 | y2, z1)dy1]f̂Y2|V Z1
(y2 |

v, z1)dy2.

Assumption 5.11 (i) m(W,α) is path-wise differentiable in α ∈ N0n and uniformly over α ∈

N0n, E
[∥∥∥dm̃(W,α)

dα [b∗n]− dm(W,α)
dα [b∗n]

∥∥∥2

E

]
= op(n

−1/2). (ii) E
[
‖g̃(W, b∗)− g(W, b∗)‖2E

]
= op(n

−1/2).

Assumption 5.12
{(

dm(W,α0)
dα [b∗]

)′
Σ(W )−1m(W,α) : α ∈ N0n,m ∈ Λγ,ωc (W)

}
is a Donsker

class for some constant c > 0 with γ > dW /2, where dW is the dimension of W .

Assumption 5.13 (i) m(W,α) is twice path-wise differentiable in α ∈ N0n, and there exists a
measurable function C4(W ) with E[C4(W )2] < ∞ such that d2m(W,α)

dαdα [b∗n, b
∗
n] is bounded by C4(W )

uniformly over α ∈ N0n. (ii) E
[
supα∈N0n

∥∥∥dm(W,α)
dα [b∗n]− dm(W,α0)

dα [b∗n]
∥∥∥2

E

]
= o(n−1/2). (iii) Uni-

formly over α ∈ N0n, ᾱ ∈ N0,

E

[(
dm(W,α0)

dα
[b∗]

)′
Σ(W )−1

(
dm(W, ᾱ)

dα
[α− α0]− dm(W,α0)

dα
[α− α0]

)]
= o(n−1/2).

Assumptions 5.11 and 5.12 are required to control the asymptotic bias when the parameter α
enters the residual ρ(·) nonlinearly. Assumption 5.13 is required to control the higher order terms
in a mean value expansion to derive the influence function representation result below.
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Under these assumptions, we can obtain the influence function representation of
√
n(θ̂n− θ0) as

√
n(θ̂n − θ0) =

√
n〈b∗, α̂n − α0〉α (16)

= − 1√
n

n∑
i=1

{
dm(Wi, α0)

dα
[b∗]

}′
Σ(Wi)

−1ρ(Xi, α0) + op(1)

= − 1√
n

n∑
i=1

{
J̃−1Gφ∗(Wi, α0)

}′
Σ(Wi)

−1ρ(Xi, α0) + op(1)

where J̃ = E[Gφ∗(W,α0)′Σ(W )−1Gφ∗(W,α0)], which yields the following
√
n-asymptotic normality

of θ̂n.

Theorem 5.2. Let θ̂n be the PSMD estimator of the finite dimensional parameters with λn ≥
0, λn = o(1). Suppose that all the Assumptions of Theorem 5.1 and Assumptions 5.8 - 5.13 hold.
Then

√
n(θ̂n − θ0)

d−→ N(0, J−1), where

J = E[Gφ∗(W,α0)′Σ(W )−1Gφ∗(W,α0)]

×(E[Gφ∗(W,α0)′Σ(W )−1Σ0(W )Σ(W )−1Gφ∗(W,α0)])−1

×E[Gφ∗(W,α0)′Σ(W )−1Gφ∗(W,α0)].

See Appendix H for the proof.
Note that by taking the weighting matrix Σ̂(W ) in (14) as a consistent estimator of Σ0(W ), the

asymptotic variance can be reduced to J−1 = {E[Gφ∗(W,α0)′Σ0(W )−1Gφ∗(W,α0)]}−1.

5.3 Correcting Asymptotic Variance for Generated Control Variable

Next, by building on the approach from Hahn and Ridder (2013), we obtain the asymptotic variance
of the estimator θ̂n that uses the generated control variable as in the triangular model (4) for which
the first stage equation yields the control variable (e.g.) V = FY2|Z (Imbens and Newey 2009)
or V = Y2 − E[Y2|Z] (Newey, Powell, and Vella 1999). For generic notation, below we write
V = ϕ(Y2, Z) and let V∗ = ϕ∗(Y2, Z) denote the true value. To use the framework of Hahn and
Ridder (2013) and obtain the potential influence of the first stage to the asymptotic expansion of
θ̂n, define

ρ(X,α0(V1;V2)) ≡ ρ(Y,Z1, ϕ(Y2, Z) = V1, α0(ϕ(Y2, Z) = V1;V2))

where V2 ≡ ϕ(Y2, Z). In this definition the two roles of V are made explicit. First, it enters in the
variables at which both ρ(·, V1, ·) and α0(V1; ·) are evaluated. Second, it determines the functional
form of the parameter α0, α0(·;V2). Note that V1 = V2 = V , so the notation V1, V2 is just an
expositional device to distinguish two roles of V . In the view of Hahn and Ridder (2013), the
influence function in (16) already accounts for the estimation of α in the second step as a pre-step
to obtain the plug-in estimator θ̂n in the final step. Therefore, we have only to account for the
contribution of the sampling variation in V̂ while taking the function α0(V1;V2) is known.
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To account for the first stage estimation of V , now we can make the adjustment to the influence
function following standard arguments as

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

Hi {ρ(Xi, α0)} (17)

+
1√
n

n∑
i=1

Hi

{
ρ(Xi, α0(V̂1i; V̂2i))− ρ(Xi, α0(V1i;V2i))

}
+

1√
n

n∑
i=1

Hi

{
ρ(Yi, Z1i, V̂i, α0)− ρ(Xi, α0)

}
+ op(1)

where Hi ≡ − 1√
n

∑n
i=1

{
dm(Wi,α0)

dα [b∗]
}′

Σ(Wi)
−1 and V̂1 = V̂2 = V̂ .

Define
κ(z1, v) = E

[
∂ρ(X,α0)

∂h′

∣∣∣∣ z1, ϕ∗(y2, z) = v

]
and then, following similar arguments to Hahn and Ridder (2013) (Section 2.3, Theorem 5 and
Remark 4), we obtain the approximation of the second term in the right-hand side of (17) as

1√
n

n∑
i=1

Hiδ(Y2i, Zi)Ṽi

with Ṽi = E
[
1(Y2i < Y2j)− FY2|Z(Y2j |Zi)|Y2i, Zi

]
(nonseparable first stage) or Ṽi = Vi = Y2i −

E[Y2i|Zi] (separable first stage) and

δ(y2, z) = E

[(
∂ρ(X,α0)

∂h′
− κ(Z1, ϕ∗(Y2, Z))

)
∂h0(r(Z,ϕ∗(Y2, Z)), Z1)

∂V

∣∣∣∣ y2, z

]
(18)

+E

[
∂κ(Z1, ϕ∗(Y2, Z))

∂V
κ(Z1, ϕ∗(Y2, Z))′Σ(Z1, ϕ∗(Y2, Z))−1E [ρ(X,α0)|Y2, Z]

∣∣∣∣ y2, z

]
.

Note that when the modeling assumptions of the triangular model (4) hold, V is known given (Y2, Z),
so (Z1, V ) becomes a subset of (Y2, Z). Therefore, in this case, the first term in the right-hand side
of (18) can be dropped using the law of iterated expectation by the definition of κ(z1, v). The second
term in the right-hand side of (18) can be also dropped if the moment condition E [ρ(X,α0)|Y2, Z] =

0 holds, which is stronger than the original moment condition E [ρ(X,α0)|Z1, V ] = 0.
Finally, the third term in the influence function can be approximated using a standard approach

(e.g. Newey 1994) as
1√
n

n∑
i=1

HiE

[
∂ρ(Xi, α0)

∂V

∣∣∣∣Y2i, Zi

]
Ṽi.

Combining these results we obtain the asymptotic variance of θ̂n in the triangular model as

AV ar[
√
n(θ̂n − θ0)] = V ar

[
Hi

{
ρ(Xi, α0) + δ(Y2i, Zi)Ṽi + E

[
∂ρ(Xi, α0)

∂V

∣∣∣∣Y2i, Zi

]
Ṽi

}]
.
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We now summarize the result.

Corollary 5.3. Suppose that all the Assumptions of Theorem 5.1 and Assumptions 5.8 - 5.13
hold. Then for the triangular model (4) we obtain the asymptotic variance of the estimator θ̂n as

AV ar[
√
n(θ̂n − θ0)] = V ar

[
Hi

{
ρ(Xi, α0) + δ(Y2i, Zi)Ṽi + E

[
∂ρ(Xi, α0)

∂V

∣∣∣∣Y2i, Zi

]
Ṽi

}]
.

6 Simulations

This section conducts Monte Carlo simulations to assess the finite sample performance of the pro-
posed estimator in a few different settings. First we study a partially linear model and investigate
the performance of the proposed estimator of a finite dimensional parameter associated with an
endogenous and mismeasured regressor. Next, we consider an additively-separable nonparamet-
ric regression model and investigate the performance of the estimator for an infinite dimensional
parameter.

6.1 Partially Linear Model

We consider a data generating process from the following partially linear model:

Y1 = π(Z1) + θY2 + ε,

Y2 = φ1Z1 + φ2V + ν,

ε = δV +$,

where Y1 is the dependent variable, Z1 is an exogenous covariate drawn from N(0, 0.52), and V is a
control variable drawn from N(0, 0.52), and where ν and $ are mutually independent innovations
drawn from N(0, 0.252) and N(0, 0.52), respectively. The nonparametric function is specified as
π(·) = exp(·). Y2 is an endogenous and unobserved covariate and researchers observe only its
mismeasured counterpart Y ∗2 = Y2 + σe exp(−Y2) · e where e is an measurement error and σe is its
standard deviation. We consider three different structures of measurement error as follows. Design
A is a non-additive error with zero mode such that e = ln(− ln(1 − U)) where U is a uniformly
distributed random variable over [0, 1] support, Design B is a heteroskedastic measurement error
with zero mean as e = N(0, 1), and lastly Design C is a non-additive error with zero median such
that e = ln(ω+

√
ω2 + 2) where ω = −0.5+tan(πU−0.5)/ exp(−Y2). Coefficients in this model are

set to be θ = 1.5, φ1 = 1, φ2 = 1.5, and δ = 0.5. For each design we also vary the size of standard
deviation σe by 0.5, 1, and 1.5.

We compare the finite-sample performances of the proposed estimator with two other sieve IV
estimators; infeasible estimator using the true Y2 as a benchmark and inconsistent estimator using
mismeasured Y ∗2 . These two sieve IV estimators control for endogeneity of Y2 using a set of instru-
ments which is a tensor product polynomial sieve of order 3: Pi ≡ (1, Z1i, Vi, Z

2
1i, Z1iVi, V

2
i , . . . , V

3
i )′.
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For instance, in order to construct the infeasible estimator, the term R ≡ Y2−E[Y2 |W ] is estimated
as the regression residual of Y2 on P . Then the estimator of θ is obtained by taking the weighted
regression of Y1 on Y2 treating R as the weight:

θ̂infeasible = (
n∑
i=1

ΨiP
′
i (

n∑
i=1

PiP
′
i )
−1

n∑
i=1

PiΨ
′
i)
−1

n∑
i=1

ΨiP
′
i (

n∑
i=1

PiP
′
i )
−1

n∑
i=1

PiỸ1i

where

Ỹ1i ≡ R̂i × Y1i,

Ψi ≡ R̂i × Y2i,

R̂i ≡ Y2i − Ê[Y2 |W = Wi].

The inconsistent estimator is constructed in a similar fashion by replacing the true Y2 with mismea-
sured Y ∗2 .

To implement the proposed estimator, approximating sieves for functions of three variables using
tensor product bases of univariate trigonometric series are employed to approximate the densities
fY1|Y2Z1

and fY ∗2 |Y2Z1
. For instance, the sieve approximations are given by

fY1|Y2Z1
(y1 | y2, z1) ≈

j1n∑
j1=0

j2n∑
j2=0

j3n∑
j3=0

γj1j2j3uj1(y1 − y2)uj2(y2)uj3(z1),

fY ∗2 |Y2Z1
(y∗2 | y2, z1) ≈

j1n∑
j1=0

j2n∑
j2=0

j3n∑
j3=0

ϑj1j2j3uj1(y∗2 − y2)uj2(y2)uj3(z1)

where uj1(·) is a sine or cosine function, and where uj2(·) and uj3(·) are cosine functions. By
utilizing desirable properties of the trigonometric series, the identification restriction on fY ∗2 |Y2Z1

in
Assumption 2.7 can be easily imposed (see e.g. Hu and Schennach 2008). In addition, it can be
guaranteed that integral of each density over its support is indeed equal to one. The density fY2|V Z1

is specified as a normal density to ease high dimensionality of the nonparametric specification. In
the first stage, we estimate fY1|Y2Z1

and fY2|V Z1
using the sieve maximum likelihood estimation as in

the equation (12). In the second stage, the estimate of the weight R ≡ Y2−E[Y2 |W ] is constructed
by

R̃(Y2, V, Z1) = Y2 −
∫
Y2
y2f̂Y2|V Z1

(y2 | V,Z1)dy2.

Then, the estimator of θ is obtained by taking the weighted least squares regression of Y1 on Y2

through the equation (14) 1 such that

1We take Σ̂ = Σ = I (identity) and λn = 0 for our experiments.
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θ̂proposed = (

n∑
i=1

Ỹ2iỸ
′

2i)
−1

n∑
i=1

Ỹ2iỸ1i

where

Ỹ1i ≡
∫
Y2

∫
Y1
R̃(y2, Vi, Z1i)y1f̂Y1|Y2Z1

(y1 | y2, Z1i)f̂Y2|V Z1
(y2 | Vi, Z1i)dy1dy2,

Ỹ2i ≡
∫
Y2
R̃(y2, Vi, Z1i)y2f̂Y2|V Z1

(y2 | Vi, Z1i)dy2.

In both stages, we adopt a Gauss-Hermite quadrature method for numerical integrals because the
supports of Y1 and Y2 are potentially unbounded. As discussed before, the proposed estimator
does not require numerical optimization in the second stage since it has a closed-form solution. In
addition, it is not necessary to estimate the function π(·) associated with exogenous covariates Z1

when researchers are primarily interested in estimating the effect of endogenous regressor Y2 on Y1.
We investigate the finite-sample performances of the three estimators described above by calcu-

lating the squared bias (SB), variance (VAR), and mean squared error (MSE). We consider several
levels of standard deviation of the measurement error, σe ∈ {0.5, 1.0, 1.5}. By doing so, we can in-
vestigate how the degree of severeness of the measurement error affects behaviors of the estimators.
The number of observations is 1000 and the number of repetitions for each experiment is 200.

Table 1 reports the estimation results. It mainly shows the proposed estimator outperforms
the inconsistent estimator. For example, when the measurement error is non-additive with zero
mode and σe = 0.5, SB of the proposed estimator is 0.0188 which is close to that of the infeasible
estimator, 0.0034. However, SB from the inconsistent estimator is significantly larger as it becomes
2.1440. For this MC study, because the proposed estimator is a semiparametric two-step estimator
that requires more flexible approximation in the first stage while the other two estimators are based
on least squares, the proposed estimator tends to produce larger variances.2 Nevertheless, MSE of
the proposed estimator, 0.4813, is much smaller than the one from the inconsistent estimator, which
is 2.1457.

The finite sample behaviors of the three estimators are similar in other structures of the measure-
ment errors such as heteroskedastic measurement error with zero mean and non-additive error with
zero median. The results show similar patterns across larger standard deviations of the measurement
error.

6.2 Additively-separable Nonparametric Model

We consider the following additively-separable nonparametric model for our experiments:
2For our proposed estimator we also experimented with different numbers of sieve approximation terms in the first

stage. We find the usual trade-off between bias and variance. Using more sieve terms generally reduces biases while
increasing variances.
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Y1 = h(Y2) + π(Z1) + ε,

Y2 = φ1Z1 + φ2V + ν,

ε = δV +$,

where h(·) = − exp(·)
1+exp(·) and π(·) = 2 sin(·). All other random variables and parameters are the same

as those given in Section 6.1. The function h is the primary parameter of interest. As a sieve basis
for the function h, we use a power series of fourth order multiplied by the standard normal CDF.
We report performances of the three estimators over different structures of measurement error as
described in Section 6.1: Design A, Design B, and Design C. We also vary standard deviation of
the measurement error σe by 0.5, 1, and 1.5. The finite-sample performances are also evaluated over
several numbers of observations, n ∈ {500, 1000}. The number of repetitions for each experiment is
200.

Table 2 and Table 3 report the integrated squared bias (ISB), integrated variance (IVAR), and
integrated mean squared error (IMSE) of the estimate of h(·), which are computed using numerical
integral over a grid ranging from −2 to 2.

From the estimation results we find that in all designs the proposed estimator outperforms the
inconsistent estimator. For example, when the measurement error is non-additive with zero mode
(Design A) and σe = 0.5 and when the sample size is n = 1, 000, ISB from the proposed estimator
is 0.0299 which is close to that of the infeasible estimator, 0.0102 while ISB of the inconsistent
estimator is significantly larger as 2.93. In terms of IMSE our proposed estimator clearly dominates
the inconsistent estimator. For the same setting above, IMSE of the proposed estimator is 0.1202
while that of the inconsistent estimator is 47.42. From other designs we observe that the finite
sample behaviors of the estimators are all similar and the results are stable across larger standard
deviation of the measurement error. Finally, the performance of the proposed estimator improves
as the sample size increases from 500 to 1, 000.

We also report graphs of three estimated functions (infeasible, proposed, and inconsistent) along
with the true function in Figure G1-G12 for all three designs of measurement errors.

7 Concluding Remarks

We study identification and estimation of regression functions for a class of semiparametric models
for which the endogenous regressors are measured with errors. For these models we utilize the exis-
tence of control variables - that ensure the conditional mean independence of endogenous regressors
and unobservable causes given the control variables. Our framework extends to the triangular si-
multaneous equations models for which the control variable can be recovered from the first stage
reduced form equation. Given our identification results we propose a sieve method to estimate the
parameters. Finally we derive the asymptotic properties of the proposed estimator. Monte Carlo
simulations illustrate that our proposed estimator performs well in the finite samples.
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Appendix

A Examples of Lemma 2.3

In order to understand Lemma 2.3, consider the following examples. Two of them satisfy the
conditional independence condition in Lemma 2.3 while the other two do not satisfy the condition.

Let ε, Y2, V, Ua, Ub, Uε, UY2 , UV be random variables. Assume Uε, UY2 , UV are mutually inde-
pendent. For measurable functions p, q, r, assume that ε, Y2, V are determined by the structural
equations in each example.

Example 1)

ε = p(Ua, Ub, Uε)

Y2 = q(Ua, Ub, UY2)

V = r(Ua, Ub, UV ).

The information in common between Y2 and V is T = {Ua, Ub}. Since both Y2 ⊥ ε | V and
V ⊥ ε | Y2 are satisfied, ε ⊥ (Y2, V ) | T is satisfied as in Lemma 2.3.

Example 2)

ε = p(Ua, Uε)

Y2 = q(Ua, Ub, UY2)

V = r(Ua, Ub, UV ).

The information in common between Y2 and V is T = {Ua, Ub}. Since both Y2 ⊥ ε | V and
V ⊥ ε | Y2 are satisfied, ε ⊥ (Y2, V ) | T is satisfied as in Lemma 2.3.

Example 3)

ε = p(Ua, Ub, Uε)

Y2 = q(Ua, Ub, UY2)

V = r(Ua, UV ).

The information in common between Y2 and V is T = {Ua}. Since Y2 ⊥ ε | V is violated,
ε ⊥ (Y2, V ) | T is not satisfied.

Example 4)

ε = p(Ua, Ub, Uε)

Y2 = q(Ua, UY2)

V = r(Ua, Ub, UV ).

The information in common between Y2 and V is T = {Ua}. Since V ⊥ ε | Y2 is violated,
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ε ⊥ (Y2, V ) | T is not satisfied.
These examples clearly illustrate that common information between ε and Y2 and between ε and

V must be included in T in order to satisfy the conditional independence condition ε ⊥ (Y2, V ) | T .

B Proof of Theorem 2.1

By the definition of conditional expectation, we obtain

m(w, θ, h) =

∫
Y
ρ(x, θ, h)fY |W (y | w)dy

=

∫
Y

(y2 − E[Y2 |W = w])(y1 −G(y2; θ, h))fY |W (y | w)dy.

From Assumption 2.1, α0 ≡ (θ0, h0) ∈ Θ×H is the unique solution for the equation m(w, θ, h) = 0.
Thus the identification of fY |W (y | w) and the identification of ρ(x, θ, h) given α are sufficient for
the identification of the parameter α0 through the moment equation m(w, θ, h) = 0. First, for the
identification of ρ(x, θ, h) ≡ (y2 − E[Y2 | W = w])(y1 − G(y2; θ, h)) we need to recover E[Y2 | W ]

from the observables. We note that this conditional mean function inside the residual can be written
as

E[Y2 |W = w] =

∫
Y2
y2fY2|W (y2 | w)dy2,

so that fY2|W (y2 | w) is sufficient for the identification of E[Y2 | W ]. Second, for the identification
of fY |W (y | w), we use the fact that fY |W (y | w) = fY1|Y2W (y1 | y2,w)fY2|W (y2 | w) = fY1|Y2Z1

(y1 |
y2,z1)fY2|W (y2 | w) where the first equality holds by Bayes rule and the second equality holds by
Assumption 2.3. Thus the identification of m(w, θ, h) is obtained by identifying the two density
functions fY1|Y2Z1

(y1 | y2, z1) and fY2|W (y2 | w). For the identification of the density functions, we
use a similar argument to Hu and Schennach (2008). By Assumptions 2.2-2.4, we have the following
integral equation

fY ∗|W (y∗ | w) =

∫
Y2
fY ∗Y2|W (y∗, y2 | w)dy2

=

∫
Y2
fY1|Y ∗2 ,Y2,W (y1 | y∗2, y2, w)fY ∗2 Y2|W (y∗2, y2 | w)dy2

=

∫
Y2
fY1|Y ∗2 ,Y2,W (y1 | y∗2, y2, w)fY ∗2 |Y2W (y∗2 | y2, w)fY2|W (y2 | w)dy2

=

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)fY2|W (y2 | w)dy2,

where the last equality holds by Assumptions 2.2-2.4. Recall that R1, R2, and R3 denote random
variables with supports R1,R2, and R3, respectively, and LR1|R2r3 denote an integral operator map-
ping g ∈ G(R2) to LR1|R2r3g ∈ G(R1) for a given r3 defined by [LR1|R2r3g](r1) ≡

∫
R2
fR1|R2R3

(r1 |
r2, r3)g(r2)dr2, where G(Rj) is the corresponding function space with domain Rj with j = 1, 2.
Similarly, let 4r1|R2r3 denote a diagonal operator mapping g ∈ G(R2) to 4r1|R2r3g ∈ G(R2) for
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a given (r1, r3) such as 4r1|R2r3g ≡ fR1|R2R3
(r1 | r2, r3)g(r2). We now show that the densities

(fY1|Y2Z1
, fY ∗2 |Y2Z1

, fY2|W ) are uniquely identified from the joint density fY ∗|W (y∗ | w) where we
observe Y ∗ instead of Y , by Assumptions 2.5-2.7. Using operator notation, we get

[LY ∗|V z1(y∗ | V, z1)g](y∗2) =

∫
V
fY ∗|V Z1

(y∗ | v, z1)g(v)dv

=

∫
V

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)fY2|W (y2 | w)dy2g(v)dv

=

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)

∫
V
fY2|W (y2 | w)g(v)dvdy2

= [LY ∗2 |Y2z14y1|Y2z1LY2|V z1g](y∗2).

By substituting LY2|V z1 into the equation, which is obtained from an integration of the above
equation over all y1, we have

LY ∗|V z1L
−1
Y ∗2 |V z1

= LY ∗2 |Y2z14y1|Y2z1L
−1
Y ∗2 |Y2z1

where the inverses of LY ∗2 |V z1 and LY ∗2 |Y2z1 are guaranteed by Assumption 2.5. Then by Assumptions
2.6-2.7 and a similar argument to the proof of Theorem 1 of Hu and Schennach (2008), the spectral
decomposition is unique.

This result is an extension of Hu and Schennach (2008) to the identification of unobservable
densities in the model with additional observable exogenous regressors, Z1, where the unobserved
regressors Y2 are endogenous. Given the identification of the required conditional density functions,
we obtain the conditional moment function m(w, θ, h). Then because the conditional moment
restrictions have the unique solution as (θ0, h0) (Assumption 2.1), the true parameter is identified.
This completes the proof.

C Proof of Theorem 2.2

Let Uj(·) be a generic function, for j = 1, 2.
(a) Because Assumption 2.1S implies Y2 ⊥ ε | W , the conditional mean independence in As-

sumption 2.1 (i) is trivially satisfied.
(b) From Assumption 2.2S, we have ε ⊥ e | (Y2,W ). By Lemma 4.1 of Dawid (1979a), ε ⊥ e |

(Y2,W ) is equivalent to (Y2, Z1, ε) ⊥ (Y2, e) | (Y2,W ). Then by Lemma 4.2 (i) of Dawid (1979a), it
follows that U1(Y2, Z1, ε)) ⊥ U2(Y2, e) | (Y2,W ). Then, Assumption 2.2 immediately follows.

(c) From Assumption 2.3S, we have ε ⊥ η | (Y2, Z1). By Lemma 4.1 of Dawid (1979a), ε ⊥ η |
(Y2, Z1) implies (Y2, Z1, ε) ⊥ η | (Y2, Z1). Then by Lemma 4.2 (i) of Dawid (1979a), it follows that
U1(Y2, Z1, ε)) ⊥ U2(η) | (Y2, Z1). Then, Assumption 2.3 immediately follows.

(d) From Assumption 2.4S, we have e ⊥ η | (Y2, Z1). By Lemma 4.1 of Dawid (1979a), e ⊥ η |
(Y2, Z1) is equivalent to (Y2, e) ⊥ η | (Y2, Z1). Then by Lemma 4.2 (i) of Dawid (1979a), it follows
that U1(Y2, e) ⊥ U2(η) | (Y2, Z1). Then, Assumption 2.4 immediately follows.
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D Proof of Lemma 2.4

(i) By a similar argument to Matzkin (2003), we have

FV (v) = FV (r−1(z, y2)) = P (V ≤ r−1(Z, y2) | Z = z) = P (r(Z, V ) ≤ y2 | Z = z) = FY2|Z(y2 | z)

from the monotonicity of r(Z, V ) in V and the independence of Z and V . Then by normalizing V
such that it follows a uniform distribution over [0, 1] as V = FV (V ), we obtain the result.

(ii) Denoting the support of Z by Z, we note that

E[exp(iζY2) | Z = z] =

∫
fY2|Z(y2 | z) exp(iζy2)dy2

is the Fourier transform of fY2|Z(y2 | z) and that

1

2π

∫
E[exp(iζY2) | Z = z] exp(−iζy2)dζ

is the inverse Fourier transform of E[exp(iζY2) | Z = z] for (y2, z) ∈ Y2 ×Z. As a result, we get

fY2|Z(y2 | z) =
1

2π

∫
E[exp(iζY2) | Z = z] exp(−iζy2)dζ.

Then the inversion theorem (e.g., Gurland 1948) provides the conditional CDF of Y2 given Z = z

FY2|Z(y2 | z) (19)

=
1

2
+

1

2π

∫ ∞
0

E[exp(−iζY2) | Z = z] exp(iζy2)− E[exp(iζY2) | Z = z] exp(−iζy2)

iζ
dζ.

We now show the identification of E[exp(iζY2) | Z = z]. From (19) it is clear that identification of
E[exp(iζY2) | Z = z] suffices to recover the CDF, FY2|Z(y2 | z).
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First observe that∫ ζ

0

iE[Y ∗2a exp(iξY ∗2b)]

E[exp(iξY ∗2b)]
dξ =

∫ ζ

0

iE[(Y2 + ea) exp(iξY ∗2b)]

E[exp(iξ(Y2 + eb))]
dξ

=

∫ ζ

0

iE[Y2 exp(iξ(Y2 + eb))] + iE[ea exp(iξY ∗2b)]

E[exp(iξ(Y2 + eb))]
dξ

=

∫ ζ

0

iE[Y2 exp(iξ(Y2 + eb))] + iE[E(ea exp(iξY ∗2b) | Y ∗2b)]
E[exp(iξ(Y2 + eb))]

dξ

=

∫ ζ

0

iE[Y2 exp(iξ(Y2 + eb))] + iE[E(ea | Y ∗2b) exp(iξY ∗2b)]

E[exp(iξ(Y2 + eb))]
dξ

=

∫ ζ

0

iE[Y2 exp(iξ(Y2 + eb))]

E[exp(iξ(Y2 + eb))]
dξ

=

∫ ζ

0

iE[Y2 exp(iξY2)]E[exp(iξeb)]

E[exp(iξY2)]E[exp(iξeb)]
dξ

=

∫ ζ

0

iE[Y2 exp(iξY2)]

E[exp(iξY2)]
dξ

=

∫ ζ

0

∂

∂ξ
ln(E[exp(iξY2)])dξ

=

∫ ζ

0
(
∂

∂ξ
ln(E[exp(iξY2)])− ln 1)dξ

= ln(E[exp(iζY2)])

where the law of iterated expectation is used in the third equality, E[ea | Y ∗2b] = 0 is used in the
fifth equality, eb ⊥ Y2 is used in the sixth equality, and ln 1 = 0 is used in the ninth equality. Thus
we get

E[exp(iζY2)] = exp

(∫ ζ

0

iE[Y ∗2a exp(iξY ∗2b)]

E[exp(iξY ∗2b)]
dξ

)
.

Further observe that from eb ⊥ Y2 | Z (which is implied by eb ⊥ (Y2, Z))

E[exp(iζY2) | Z] =
E[exp(iζY2) | Z]E[exp(iζY2)]E[exp(iζeb)]

E[exp(iζY2)]E[exp(iζeb)]

=
E[exp(iζY2) | Z]E[exp(iζeb) | Z]

E[exp(iζY ∗2b)]
E[exp(iζY2)]

=
E[exp(iζ(Y2 + eb)) | Z]

E[exp(iζY ∗2b)]
E[exp(iζY2)]

=
E[exp(iζY ∗2b) | Z]

E[exp(iζY ∗2b)]
exp

(∫ ζ

0

iE[Y ∗2a exp(iξY ∗2b)]

E[exp(iξY ∗2b)]
dξ

)
where the right-hand side is a function of all observables, which implies the identification of
E[exp(iζY2) | Z]. This completes the identification result for FY2|Z(y2 | z) through (19).
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E Proof of Lemma 2.5

For the identification of fY2Z(y2, z), we use a similar argument to Theorem 2.1. By Assumptions
2.8-2.10, we have the integral equation

fZY ∗2 |U (z, y∗2 | u) =

∫
Y2
fZ|Y2(z | y2)fY ∗2 |Y2(y∗2 | y2)fY2|U (y2 | u)dy2. (20)

Then from the proof of Theorem 1 of Hu and Schennach (2008), we note that the densities
(fZ|Y2 , fY ∗2 |Y2 , fY2|U ) are uniquely identified from the observable joint density fZY ∗2 |U (z, y∗2 | u) by
Assumptions 2.11-2.13. Then because fY2(y2) =

∫
fY2|U (y2 | u)fU (u)du, fU |Y2(u | y2) = fY2|U (y2 |

u)fU (u)/fY2(y2), fY2Z(y2, z) = fZ|Y2(z | y2)fY2(y2), and fU (u) is directly observable from data, we
conclude the densities (fY2Z , fY ∗2 |Y2 , fU |Y2) are uniquely identified from the observables (Y ∗2 , Z, U).

F Proof of Theorem 4.1

We first prove the consistency of the sieve MLE β̂n in the norm ‖ · ‖s,β by checking conditions of
Theorem 4.1 in Newey and Powell (2003). Their Condition 1 on the identification of β0 is implied
by Assumptions 2.2-2.7. Condition 2 is satisfied by Assumption 4.3(i). Let β̄ ≡ (f̄1, f̄2, f̄3)′ be a
mean value between β1 and β2. The bound for the path-wise derivative is given by∣∣∣∣ ddt ln fY ∗|W (y∗ | w; β̄ + t(β1 − β2))

∣∣∣∣
t=0

≤ 1

|fY ∗|W (y∗ | w; β̄)|

{∫
Y2

∣∣ω−1(y1, y2, z1)f̄2(y∗2 | y2, z1)f̄3(y2 | v, z1)
∣∣ dy2

+

∫
Y2

∣∣f̄1(y1 | y2, z1)ω−1(y∗2, y2, z1)f̄3(y2 | v, z1)
∣∣ dy2

+

∫
Y2

∣∣f̄1(y1 | y2, z1)f̄2(y∗2 | y2, z1)ω−1(y2, v, z1)
∣∣ dy2

}
‖β1 − β2‖s,β

≡

∣∣∣∣∣∣
f
|1|
Y ∗|W (y∗ | w; β̄, ω̄)

fY ∗|W (y∗ | w; β̄)

∣∣∣∣∣∣ ‖β1 − β2‖s,β,

where f
|1|
Y ∗|W (y∗ | w; β̄, ω̄) is defined as d

dtfY ∗|W (y∗ | w; β̄ + tω̄)|t=0 with ω̄(y1, y
∗
2, y2, v, z1) =

[ω−1(y1, y2, z1), ω−1(y∗2, y2, z1), ω−1(y2, v, z1)]′ and with f̄1, f̄2, and f̄3 being replaced by their abso-
lute values, respectively. Thus, Assumption 4.1 (iv) implies ln fY ∗|W (y∗ | w;β) is Hölder continuous
in β ∈ B so that their Condition 3 holds with Assumption 4.1 (iii). Condition 4 is satisfied by
Assumption 4.2 (ii). Condition 5 is also satisfied by Assumption 4.3 (iii).
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To derive the consistency of α̂n, let

m̂(w,α) ≡
∫
Y2

[∫
Y1
ρ(x, θ, h)f̂Y1|Y2Z1

(y1 | y2, z1)dy1

]
f̂Y2|V Z1

(y2 | v, z1)dy2

m̃(w,α) ≡
∫
Y2

[∫
Y1
m(w, θ, h)f̂Y1|Y2Z1

(y1 | y2, z1)dy1

]
f̂Y2|V Z1

(y2 | v, z1)dy2,

where β̂n = (f̂Y1|Y2Z1
, f̂Y ∗2 |Y2Z1

, f̂Y2|V Z1
)′ is the sieve ML estimator in (12) and m̃(w,α) denotes the

projection of m(w,α) on the estimated densities β̂n. By Lemma 4 of Huang (1998), we have

sup
α∈An

n−1
n∑
i=1

‖m̂(Wi, α)− m̃(Wi, α)‖2E � sup
α∈An

E

[
n−1

n∑
i=1

‖m̂(Wi, α)− m̃(Wi, α)‖2E

]
.

We also note that for some β̃ = (f̃1 ≡ f̃Y1|Y2Z1
(y1 | y2, z1), f̃2, f̃3 ≡ f̃Y2|V Z1

(y2 | v, z1))′ ∈ Bn that
satisfies Assumptions 4.3 (iii) and 4.6 (ii), we have

E

[
n−1

n∑
i=1

‖m̂(Wi, α)− m̃(Wi, α)‖2E

]

≤ 1

n
E

[ n∑
i=1

∣∣∣∣∫ ∫ ρ(y,Wi, α)

(
f̂Y1|Y2Z1

(y1 | y2, Z1i)f̂Y2|V Z1
(y2 | Vi, Z1i)

−f̃Y1|Y2Z1
(y1 | y2, Z1i)f̃Y2|V Z1

(y2 | Vi, Z1i)

)
dy1dy2

∣∣∣∣2 ]
≤ 1

n
E

[ n∑
i=1

∣∣∣∣∫ ∫ ρ(y,Wi, α)dy1dy2

∣∣∣∣2 ]‖β̂n − β̃‖2s,β
� ‖β̂n − β̃‖2s,β = Op(ln/n),

by Assumptions 4.3 (iii) and 4.6 (i). Then

sup
α∈An

E[‖m̂(W,α)−m(W,α)‖2E ] (21)

≤ 2 sup
α∈An

E[‖m̂(W,α)− m̃(W,α)‖2E ] + 2 sup
α∈An

E[‖m̃(W,α)−m(W,α)‖2E ]

= δ2
m,n

with δ2
m,n = max{ lnn , b

2
m,ln
} by Assumptions 4.6 (ii)-(iii). Assumption 4.5 (ii) implies that there are

finite constants c1, c2 such that

c1E
[
‖m(W,α)‖2E

]
≤ E

[
‖Σ(W )−1/2m(W,α)‖2E

]
≤ c2E

[
‖m(W,α)‖2E

]
uniformly over α ∈ An. Then applying the above results, for λnP (h) ≥ 0, ε > 0 and n sufficiently
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large, we have

Pr(‖α̂n − α0‖s,α ≥ ε)

≤ Pr(‖α̂n − α0‖s,α ≥ ε, α̂n ∈ AM0
n ) + Pr(α̂n /∈ AM0

n )

≤ Pr

(
inf

α∈AM0
n :‖α−α0‖s,α≥ε

{
1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̂(Wi, α)‖2E + λnP̂n(h)

}

≤ 1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̂(Wi,Πnα0)‖2E + λnP̂n(Πnh0)

)
+ Pr(α̂n /∈ AM0

n )

≤ Pr

(
inf

α∈AM0
n :‖α−α0‖s,α≥ε

{
E[‖Σ(W )−1/2m(W,α)‖2E ] + λnP (h)

}
≤ E[‖Σ(W )−1/2m(W,Πnα0)‖2E ] +Op(δ

2
m,n) + λnP (h0) +Op(λn)

)
+ Pr(α̂n /∈ AM0

n )

≤ Pr

(
inf

α∈AM0
n :‖α−α0‖s,α≥ε

{
c1E[‖m(W,α)‖2E ] + λnP (h)

}
≤ c2E[‖m(W,Πnα0)‖2E ] +Op(δ

2
m,n) + λnP (h0) +Op(λn)

)
+ Pr(α̂n /∈ AM0

n )

≤ Pr

(
Op(max{δ2

m,n, E[m(W,Πnα0)′m(W,Πnα0)], λn})

≥ inf
α∈AM0

n :‖α−α0‖s,α≥ε
E[m(W,α)′m(W,α)]

)
+ Pr(α̂n /∈ AM0

n )

−→ 0,

where the third inequality holds by Assumptions 4.4, 4.5, and 4.6 and by (21) and where the last
result holds since max{δ2

m,n, E
[
|m(W,Πnα0)|2

]
, λn}/ inf

α∈AM0
n :‖α−α0‖s,α≥ε

E
[
|m(W,α)|2

]
= o(1)

for any ε > 0 and we can take α̂n ∈ AM0
n with probability approaching one. So the consistency

result ‖α̂n − α0‖s,α = op(1) follows.

G Proof of Theorem 5.1

To show the first part of the theorem, define s2
n = max

{
δ2
m,n, ‖α0 −Πnα0‖2α, λn|P (Πnh0)− P (h)|

}
=

op(1). Note that Assumption 4.5 (ii) implies that there are finite constants c1, c2 such that

c1
1

n

n∑
i=1

‖m̂(Wi, α)‖2E ≤ 1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̂(Wi, α)‖2E ≤ c2

1

n

n∑
i=1

‖m̂(Wi, α)‖2E
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uniformly over α ∈ An. Also note that suph∈Hosn |P̂n(h)− P (h)| = op(1) by the assumption in the
statement of the theorem. Since α̂n ∈ Aosn with probability approaching one, we get, for allM > 1,

P r(‖α̂n − α0‖α ≥Msn)

≤ Pr

(
inf

α∈Aosn:‖α−α0‖α≥Msn

{
1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̂(Wi, α)‖2E + λnP̂n(h)

}

≤ 1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̂(Wi,Πnα0)‖2E + λnP̂n(Πnh0)

)

≤ Pr

(
inf

α∈Aosn:‖α−α0‖α≥Msn

{
c1

1

n

n∑
i=1

‖m̂(Wi, α)‖2E + λnP̂n(h)

}

≤ c2
1

n

n∑
i=1

‖m̂(Wi,Πnα0)‖2E + λnP̂n(Πnh0)

)

≤ Pr

(
inf

α∈Aosn:‖α−α0‖α≥Msn

{
c1

1

n

n∑
i=1

‖m̂(Wi, α)‖2E + λnP (h)

}

≤ c2
1

n

n∑
i=1

‖m̂(Wi,Πnα0)‖2E + λnP (Πnh0) + op(λn)

)
≤ Pr

(
inf

α∈Aosn:‖α−α0‖α≥Msn

{
c1E[‖m(W,α)]‖2E

}
≤ c2E[‖m(W,Πnα0)‖2E ] +Op(δ

2
m,n) + λnP (Πnh0)− λnP (h) + op(λn)

)
≤ Pr

(
M2s2

n ≤ Op(max
{
δ2
m,n, ‖α0 −Πnα0‖2α, λn|P (Πnh0)− P (h)|

}
)

)
,

−→ 0,

where the last inequality follows by Assumptions 4.6 and 5.5. As a result, we get ‖α̂n − α0‖α =

Op(max
{
δm,n, ‖α0 −Πnα0‖α,

√
λn
}

).

To show the second part, we note that δm,n = max

{√
ln
n , bm,ln

}
=
√

ln
n = const.×

√
kn
n = o(1)

by Assumptions 5.6-5.7 where kn = dim(Hn). Then under the conditions ‖h0−Πnh0‖α = o(n−1/4)

and max
{
δm,n,

√
λn
}

= δm,n, we have ‖α̂n − α0‖α = Op(δm,n). We now show δm,n = o(n−1/4).
First, we show that ‖β̂n − β0‖β = op(n

−1/4) by checking conditions of Theorem 3.1 in Ai and Chen
(2003). Their Conditions 3.5 (iii)-3.6 (iii) are satisfied by Assumption 5.1. Their Conditions 3.7
and 3.8 are satisfied by Assumption 5.2. Assumption 5.4 (ii) implies Condition 3.9 in Ai and Chen
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(2003). Thus the n−1/4 convergence rate of β̂n in ‖ · ‖β follows. Second, since

d ln fY ∗|W (y∗ | w;β0)

dβ
[β − β0]

=
1

fY ∗|W (y∗ | w;β0)

{∫
Y2

[f1(y1|y2,z1)− fY1|Y2Z1
(y1|y2,z1)]fY ∗2 |Y2Z1

(y∗2 | y2, z1)fY2|V Z1
(y2 | v, z1)dy2

+

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)[f2(y∗2 | y2, z1)− fY ∗2 |Y2Z1
(y∗2 | y2, z1)]fY2|V Z1

(y2 | v, z1)dy2

+

∫
Y2
fY1|Y2Z1

(y1 | y2, z1)fY ∗2 |Y2Z1
(y∗2 | y2, z1)[f3(y2 | v, z1)− fY2|V Z1

(y2 | v, z1)]dy2

}
and

‖β̂n − β0‖β ≡

√√√√E

{(
d ln fY ∗|W (Y ∗ |W ;β0)

dβ
[β̂n − β0]

)2
}
,

we have that for a constant c > 0,

E[‖m̂(W,α)−m(W,α)‖2E ]

=
1

n

n∑
i=1

E

[∣∣∣∣∫ ρ(y,Wi, α)(f̂Y |W (y|Wi)− fY |W (y|Wi))dy

∣∣∣∣2
]

=
1

n

n∑
i=1

E

[ ∣∣∣∣∫
Y1

∫
Y2
ρ(y,Wi, α)(f̂Y1|Y2Z1

(y1 | y2, Z1i)f̂Y2|V Z1
(y2 | Vi, Z1i)

−fY1|Y2Z1
(y1 | y2, Z1i)fY2|V Z1

(y2 | Vi, Z1i))dy1dy2

∣∣2 ]
≤ c

1

n

n∑
i=1

sup
y2,y∗2 ,w

∫
Y1
|ρ(y1, y2, w, α)|2 fY ∗|W (y1, y

∗
2 | w;β0)dy1E

[(
1

fY ∗|W (Y ∗i |Wi;β0)

×
{∫
Y2

[f̂1(Y1i | y2, Z1i)− fY1|Y2Z1
(Y1i | y2, Z1i)]fY ∗2 |Y2Z1

(Y ∗2i | y2, Z1i)fY2|V Z1
(y2 | Vi, Z1i)dy2

+

∫
Y2
fY1|Y2Z1

(Y1i | y2, Z1i)[f̂2(Y ∗2i | y2, Z1i)− fY ∗2 |Y2Z1
(Y ∗2i | y2, Z1i)]fY2|V Z1

(y2 | Vi, Z1i)dy2

+

∫
Y2
fY1|Y2Z1

(Y1i|y2,Z1i)fY ∗2 |Y2Z1
(Y ∗2i|y2,Z1i)[f̂3(y2 | Vi, Z1i)− fY2|V Z1

(y2 | Vi, Z1i)]dy2

})2]
≤ c

1

n

n∑
i=1

sup
y2,y∗2 ,w

∫
Y1
|ρ(y1, y2, w, α)|2 fY ∗|W (y1, y

∗
2 | w;β0)dy1‖β̂n − β0‖2β

= op(n
−1/2),

by Assumptions 4.1 and 4.6 (i), and ‖β̂n − β0‖β = op(n
−1/4). Thus we get δm,n = o(n−1/4) so that

‖α̂n − α0‖α = op(n
−1/4).
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H Proof of Theorem 5.2

Recall m̂(w,α) ≡
∫
Y2 [
∫
Y1 ρ(x, α)f̂Y1|Y2Z1

(y1 | y2, z1)dy1]f̂Y2|V Z1
(y2 | v, z1)dy2 and the projection of

m(w,α) on the estimated densities as m̃(w,α) ≡
∫

[
∫
m(w,α)f̂Y1|Y2Z1

(y1 | y2, z1)dy1]f̂Y2|V Z1
(y2 |

v, z1)dy2.

Lemma H.1. (i) Assumptions 4.1 (i)-(ii), 4.2 (i), 4.2 (iii), 4.3 (i), 4.5, 5.3 (i), 5.4 (i), 5.8 and
5.13 (i) imply that uniformly over α̃ ∈ N0n,

1

n

n∑
i=1

(
d2m̃(Wi, α̃)

dαdα
[b∗n, b

∗
n]

)′
Σ̂(Wi)

−1m̃(Wi, α̃) = op(n
−1/4).

(ii) Assumptions 4.1 (i)-(ii), 4.5, 5.5 (ii), 5.8, 5.9 (i), 5.9 (iii), 5.11 (i) and 5.13 (ii) imply that
uniformly over α̃ ∈ N0n,

1

n

n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]

)′
Σ̂(Wi)

−1

(
dm̃(Wi, α̃)

dα
[b∗n]

)
= Op(1).

Proof: (i) For a generic constant c > 0, uniformly over α̃ ∈ N0n, we have

1

n

n∑
i=1

(
d2m̃(Wi, α̃)

dαdα
[b∗n, b

∗
n]

)′
Σ̂(Wi)

−1m̃(Wi, α̃)

≤ sup
w∈W

λ−1
min(Σ̂(w))

√√√√ 1

n

n∑
i=1

∥∥∥∥d2m̃(Wi, α̃)

dαdα
[b∗n, b

∗
n]

∥∥∥∥2

E

√√√√ 1

n

n∑
i=1

‖m̃(Wi, α̃)‖2E

≤ c
√
E[‖m̃(W, α̃)‖2E ]

= op(n
−1/4),

where λmin(A) denotes the smallest eigenvalue of a matrix A and where the first inequality holds
by Cauchy-Schwarz inequality, the second inequality holds by Assumptions 4.5 and 5.13 (i), and
the last equality holds by Assumptions 5.4 (i), 5.8 and m̃(w,α0) = 0.
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(ii) Uniformly over α̃ ∈ N0n,

1

n

n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]

)′
Σ̂(Wi)

−1

(
dm̃(Wi, α̃)

dα
[b∗n]

)

=
1

n

n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]− dm(Wi, α0)

dα
[b∗n]

)′
Σ̂(Wi)

−1

(
dm̃(Wi, α̃)

dα
[b∗n]

)

+
1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗n]

)′
Σ̂(Wi)

−1

(
dm̃(Wi, α̃)

dα
[b∗n]− dm(Wi, α0)

dα
[b∗n]

)

+
1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗n]

)′
(Σ̂(Wi)

−1 − Σ(Wi)
−1)

(
dm(Wi, α0)

dα
[b∗n]

)

+
1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗n]

)′
Σ(Wi)

−1

(
dm(Wi, α0)

dα
[b∗n]

)
= op(n

−1/2) +Op(1)

= Op(1),

by Assumptions 4.5, 5.5 (ii) and 5.13 (ii).

Lemma H.2. Assumptions 4.1 (i)-(ii), 4.2 (i), 4.2 (iii), 4.3 (i), 4.5, 5.3 (i), 5.4 (i), 5.5 (i), 5.8,
5.9, 5.10 (i) and 5.11-5.13 imply that uniformly over α̃ ∈ N0n,

1

n

n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]

)′
Σ̂(Wi)

−1m̃(Wi, α̃)

=
1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗]

)′
Σ(Wi)

−1ρ(Xi, α0)

+E

[(
dm(W,α0)

dα
[b∗]

)′
Σ(W )−1

(
dm(W,α0)

dα
[α̃− α0]

)]
+ op(n

−1/2).

Proof: Uniformly over α̃ ∈ N0n,∣∣∣∣ 1n
n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]

)′
Σ̂(Wi)

−1m̃(Wi, α̃)− 1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗]

)′
Σ(Wi)

−1m̃(Wi, α̃)

∣∣∣∣
≤

∣∣∣∣ 1n
n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]− dm(Wi, α0)

dα
[b∗n]

)′
Σ̂(Wi)

−1m̃(Wi, α̃)

∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

(
dm(Wi, α0)

dα
[b∗n]

)′
(Σ̂(Wi)

−1 − Σ(Wi)
−1)m̃(Wi, α̃)

∣∣∣∣
+

∣∣∣∣ 1n
n∑
i=1

(
dm(Wi, α0)

dα
[b∗n − b∗]

)′
Σ(Wi)

−1m̃(Wi, α̃)

∣∣∣∣
≡ In + IIn + IIIn.
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Then by triangle inequality and Cauchy-Schwarz inequality, we have

In ≤ sup
w∈W

λ−1
min(Σ̂(w))

√√√√ 1

n

n∑
i=1

‖m̃(Wi, α̃)‖2E

(√√√√ 2

n

n∑
i=1

∥∥∥∥dm̃(Wi, α̃)

dα
[b∗n]− dm̃(Wi, α0)

dα
[b∗n]

∥∥∥∥2

E

+

√√√√ 2

n

n∑
i=1

∥∥∥∥dm̃(Wi, α0)

dα
[b∗n]− dm(Wi, α0)

dα
[b∗n]

∥∥∥∥2

E

)
= op(n

−1/4)× (op(n
−1/4) + op(n

−1/4))

= op(n
−1/2),

where the first equality holds by Assumptions 4.5 (ii), 5.11 (i) and 5.13 (ii) and E[‖m̃(W, α̃)‖2E ] =

op(n
−1/2) by Assumptions 5.4 (i), 5.8 and m̃(w,α0) = 0. Note that by Cauchy-Schwarz inequality,

we have

IIn ≤ supw∈W |Σ̂(w)−1 − Σ(w)−1|

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Wi, α0)

dα
[b∗n]

∥∥∥∥2

E

√√√√ 1

n

n∑
i=1

‖m̃(Wi, α̃)‖2E

= op(n
−1/4)× op(n−1/4)

= op(n
−1/2),

where the first equality holds by Assumptions 5.5 (i), 5.10 (i) and E[‖m̃(W, α̃)‖2E ] = op(n
−1/2).

Also note that by Cauchy-Schwarz inequality, we have

IIIn ≤ sup
w∈W

λ−1
min(Σ(w))

√√√√ 1

n

n∑
i=1

∥∥∥∥dm(Wi, α0)

dα
[b∗n − b∗]

∥∥∥∥2

E

√√√√ 1

n

n∑
i=1

‖m̃(Wi, α̃)‖2E

= op(n
−1/4)× op(n−1/4)

= op(n
−1/2),

where the first equality holds by Assumptions 4.5 (iii), 5.9 (iii) and E[‖m̃(W, α̃)‖2E ] = op(n
−1/2).

As a result, we obtain

1

n

n∑
i=1

(
dm̃(Wi, α̃)

dα
[b∗n]

)′
Σ̂(Wi)

−1m̃(Wi, α̃)

=
1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗]

)′
Σ(Wi)

−1m̃(Wi, α̃) + op(n
−1/2) (22)

Recall that g(W, b∗) ≡
(
dm(W,α0)

dα [b∗]
)′

Σ(W )−1 and its projection onto the integral function
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g̃(W, b∗) ≡
∫

[
∫
g(W, b∗)f̂Y1|Y2Z1

(y1 | y2, z1)dy1]f̂Y2|V Z1
(y2 | v, z1)dy2 and note that

1

n

n∑
i=1

g(Wi, b
∗)m̃(Wi, α̃)

=
1

n

n∑
i=1

g(Wi, b
∗)(m̂(Wi, α0) + m̃(Wi, α̃)) + op(n

−1/2)

=
1

n

n∑
i=1

g̃(Wi, b
∗)(ρ(Xi, α0) +m(Wi, α̃)) + op(n

−1/2) (23)

=
1

n

n∑
i=1

g(Wi, b
∗)(ρ(Xi, α0) +m(Wi, α̃)) + op(n

−1/2),

where the first, second, third equalities hold by a similar argument to the proof of Theorem 4.1,
definitions of g̃(W, b∗) and m̃(W,α), and Assumption 5.11 (ii), respectively.

Since
{
g(W, b∗)m(W,α) : α ∈ N0n,m ∈ Λγ,ωc (W)

}
is a Donsker class by Assumption 5.12, we

have by a first-order Taylor expansion, for ᾱ between α̃ and α0,

1

n

n∑
i=1

g(Wi, b
∗)(m(Wi, α̃)−m(Wi, α0))

= E[g(W, b∗)(m(W, α̃)−m(W,α0))] + op(n
−1/2)

= E

[
g(W, b∗)

(
dm(W,α0)

dα
[α̃− α0]

)]
(24)

+E

[
g(W, b∗)

(
dm(W, ᾱ)

dα
[α̃− α0]− dm(W,α0)

dα
[α̃− α0]

)]
+ op(n

−1/2)

= E

[
g(W, b∗)

(
dm(W,α0)

dα
[α̃− α0]

)]
+ op(n

−1/2),

where the third equality holds by Assumption 5.13 (iii). Thus, by combining the equations (22)-(24),
we obtain the result.

Proof of Theorem 5.2: We follow similar steps in the proof of Theorem 4.1 in Ai and Chen
(2003). Recall

Q̂n(α) ≡

{
1

n

n∑
i=1

m̂(Wi, α)′[Σ̂(Wi)]
−1m̂(Wi, α) + λnP̂n(h)

}
.

Let εn = o(n−1/2) be a positive sequence and u∗n = ±b∗n. Take a continuous path {α(t) ∈ N0n : t ∈
[0, 1]} such that α(0) = α̂n and α(1) = α̂n+εnu

∗
n. By Assumptions 5.11 (i) and 5.13 (i), Q̂n(α(t)) is

twice continuously differentiable. By definition of α̂n and a second-order Taylor expansion around
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t = 0, we have

0 ≤ −Q̂n(α̂n) + Q̂n(α̂n + εnu
∗
n)

= Q̂n(α(1))− Q̂n(α(0))

=
dQ̂n(α(t))

dt

∣∣∣∣
t=0

+
1

2

d2Q̂n(α(t))

dt2

∣∣∣∣
t=s

with s ∈ [0, 1]. Since

1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̂(Wi, α)‖2E =

1

n

n∑
i=1

‖Σ̂(Wi)
−1/2m̃(Wi, α)‖2E + op(n

−1)

by Assumption 4.5 (ii) and a similar argument to the proof of Theorem 4.1, we get for s ∈ [0, 1]

0 ≤ 2

n

n∑
i=1

(
dm̃(Wi, α̂n)

dα
[εnu

∗
n]

)′
Σ̂(Wi)

−1m̃(Wi, α̂n)

+
1

n

n∑
i=1

(
d2m̃(Wi, α(s))

dαdα
[εnu

∗
n, εnu

∗
n]

)′
Σ̂(Wi)

−1m̃(Wi, α(s))

+
1

n

n∑
i=1

(
dm̃(Wi, α(s))

dα
[εnu

∗
n]

)′
Σ̂(Wi)

−1

(
dm̃(Wi, α(s))

dα
[εnu

∗
n]

)
+ op(n

−1)

≤ 2εn
n

n∑
i=1

(
dm̃(Wi, α̂n)

dα
[u∗n]

)′
Σ̂(Wi)

−1m̃(Wi, α̂n) +Op(ε
2
n),

where the last inequality holds by Lemma H.1. Since εn = o(n−1/2) > 0 and u∗n = ±b∗n, we thus
obtain

1

n

n∑
i=1

(
dm̃(Wi, α̂n)

dα
[b∗n]

)′
Σ̂(Wi)

−1m̃(Wi, α̂n) = op(n
−1/2).

Then by Lemma H.2 and definition of 〈b∗, α̂n − α0〉α, we get

1

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗]

)′
Σ(Wi)

−1ρ(Xi, α0) +〈b∗, α̂n − α0〉α = op(n
−1/2),

so that

√
n〈b∗, α̂n − α0〉α = − 1√

n

n∑
i=1

(
dm(Wi, α0)

dα
[b∗]

)′
Σ(Wi)

−1ρ(Xi, α0) + op(1).

Thus, we obtain the result by applying a standard central limit theorem for i.i.d. data.
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Figure 1. Causal diagram for control variable 
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Figure 2. Effect of family income on children’s health 
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Figure 3. Causal diagram for instrumental variable 
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Figure 4. Effect of women’s education on earnings 
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Table 1
Estimation of θ0 in the partially linear model

Estimator ME Structure Design A Design B Design C
Zero Mode Zero Mean Zero Median

Infeasible Squared Bias 0.0034 0.0034 0.0034
Variance 0.0055 0.0055 0.0055
MSE 0.0089 0.0089 0.0089

Proposed Squared Bias 0.0188 0.0262 0.0093
Variance 0.4625 0.4499 0.4899
MSE 0.4813 0.4761 0.4992

Inconsistent Squared Bias 2.1440 2.1920 2.2200
Variance 0.0017 0.0042 0.0022
MSE 2.1457 2.1962 2.2222

s.d. of ME 0.5

Design A Design B Design C
Infeasible Squared Bias 0.0034 0.0034 0.0034

Variance 0.0055 0.0055 0.0055
MSE 0.0089 0.0089 0.0089

Proposed Squared Bias 0.0050 0.0246 0.0076
Variance 0.4875 0.4588 0.5857
MSE 0.4925 0.4834 0.5933

Inconsistent Squared Bias 2.2050 2.2350 2.2460
Variance 0.0005 0.0011 0.0006
MSE 2.2055 2.2361 2.2466

s.d. of ME 1.0

Design A Design B Design C
Infeasible Squared Bias 0.0034 0.0034 0.0034

Variance 0.0055 0.0055 0.0055
MSE 0.0089 0.0089 0.0089

Proposed Squared Bias 0.0002 0.0234 0.0290
Variance 0.5155 0.4878 0.5413
MSE 0.5157 0.5112 0.5703

Inconsistent Squared Bias 2.2220 2.2430 2.2490
Variance 0.0002 0.0005 0.0002
MSE 2.2222 2.2435 2.2492

s.d. of ME 1.5
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Table 2
Estimation of h0 in the additively-separable model (n = 500)

Estimator ME Structure Design A Design B Design C
Zero Mode Zero Mean Zero Median

Infeasible ISB 0.0034 0.0034 0.0034
IVAR 0.0881 0.0881 0.0881
IMSE 0.0915 0.0915 0.0915

Proposed ISB 0.0346 0.0434 0.0346
IVAR 0.1499 0.1822 0.1354
IMSE 0.1845 0.2256 0.1700

Inconsistent ISB 2.07 0.8595 0.0732
IVAR 53.13 10.93 6.51
IMSE 55.20 11.79 6.58

s.d. of ME 0.5

Design A Design B Design C
Infeasible ISB 0.0034 0.0034 0.0034

IVAR 0.0881 0.0881 0.0881
IMSE 0.0915 0.0915 0.0915

Proposed ISB 0.0326 0.0355 0.0340
IVAR 0.1690 0.1552 0.1372
IMSE 0.2016 0.1907 0.1712

Inconsistent ISB 1.76 0.3273 0.2002
IVAR 112.30 12.50 9.59
IMSE 114.06 12.83 9.79

s.d. of ME 1.0

Design A Design B Design C
Infeasible ISB 0.0034 0.0034 0.0034

IVAR 0.0881 0.0881 0.0881
IMSE 0.0915 0.0915 0.0915

Proposed ISB 0.0356 0.0369 0.0342
IVAR 0.2160 0.1491 0.1244
IMSE 0.2516 0.1860 0.1587

Inconsistent ISB 4.08 0.7860 0.1974
IVAR 146.30 22.85 13.85
IMSE 150.38 23.64 14.05

s.d. of ME 1.5
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Table 3
Estimation of h0 in the additively-separable model (n = 1, 000)

Estimator ME Structure Design A Design B Design C
Zero Mode Zero Mean Zero Median

Infeasible ISB 0.0102 0.0102 0.0102
IVAR 0.0459 0.0459 0.0459
IMSE 0.0561 0.0561 0.0561

Proposed ISB 0.0299 0.0300 0.0300
IVAR 0.0903 0.0909 0.0859
IMSE 0.1202 0.1209 0.1159

Inconsistent ISB 2.93 0.4569 0.0441
IVAR 44.50 6.64 2.73
IMSE 47.43 7.10 2.77

s.d. of ME 0.5

Design A Design B Design C
Infeasible ISB 0.0102 0.0102 0.0102

IVAR 0.0459 0.0459 0.0459
IMSE 0.0561 0.0561 0.0561

Proposed ISB 0.0304 0.0288 0.0304
IVAR 0.0890 0.0914 0.0858
IMSE 0.1193 0.1202 0.1162

Inconsistent ISB 0.7639 0.1311 0.1386
IVAR 28.97 3.60 2.82
IMSE 29.73 3.73 2.96

s.d. of ME 1.0

Design A Design B Design C
Infeasible ISB 0.0102 0.0102 0.0102

IVAR 0.0459 0.0459 0.0459
IMSE 0.0561 0.0561 0.0561

Proposed ISB 0.0299 0.0300 0.0300
IVAR 0.0856 0.0852 0.0860
IMSE 0.1155 0.1152 0.1160

Inconsistent ISB 0.9545 0.3625 0.2290
IVAR 26.86 5.85 6.29
IMSE 27.81 6.21 6.52

s.d. of ME 1.5
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