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AN EVOLUTIONARY ANALYSIS OF GAMES WITH
PRE-PLAY COMMUNICATION*
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“It takes two to tell the truth—one to speak and another to hear.”
Henry David Thoreau

We consider a finite two-player game augmented by a round of pre-play
communication. We show that if outcomes satisfy a stability condition suggested
by adaptive dynamics, then pre-play communication effectively eliminates
inefficient equilibria. We characterize the set of outcomes that satisfy stability
conditions modeled after those used in biological game theory. A stable set of
strategies is a closed set of Nash equilibria with the property that no other
strategy can invade the population. If players have the same preferences over
equilibria, then only the efficient equilibrium payoffs are stable when there is
pre-play communication. We introduce a stronger notion of communication
stability designed to capture the idea that introducing new words to the language
should not destroy the stability of outcomes. A communication stable payoff must
be an efficient point in the convex hull of the set of Nash equilibria, and any
efficient element in the convex hull of Nash equilibria satisfying a regularity
condition can be approximated by the payoff of some communication stable set.
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I. INTRODUCTION

Although informal stories in game theory emphasize that pre-play commu-
nication allows players to coordinate on efficient Nash equilibria, these stories
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are difficult to capture in full models of the communication process. The basic
reason for the difficulty is that costless communication can never destroy a Nash
equilibrium. If all but one player decides to ignore everything that is said and
plays according to an equilibrium strategy, then the other player can do no
better than speak randomly and also follow the equilibrium. Several authors have
approached this problem by assuming that language exists and has a focal
meaning obtained from its use outside the model. They continue by making
behavioral assumptions that require players to believe the literal meaning of
messages provided that these meanings do not violate strategic aspects of the
game. Papers of Farrell [1988, 1993], Myerson [1983, 1989], and Rabin [1990,
1994} are examples of this work. Our approach is different. We do not assume
that words have meaning outside the model. Instead, we show that if outcomes
satisfy a stability condition suggested by adaptive dynamics, then pre-play
communication effectively eliminates inefficient equilibria.

We add a round of pre-play communication to a finite two-player game. Each
player simultaneously makes a statement from a finite language. The statements
are revealed and then the underlying game is played. Pre-play communication is
cheap talk in the sense that it does not directly enter the payoffs.

We characterize sets of strategies that satisfy stability conditions modeled after
those used in biological game theory. A stable set of strategies will be a closed
set of Nash equilibria with the property that no other strategy can invade the
population. We use an entry condition due to Swinkels [1992] that describes the
type of strategies that may invade. It requires potential invaders to use strategies
that are optimal responses to the population strategy both before and after entry.

When we allow pre-play communication, the stability conditions work in the
following way to move the population away from inefficient equilibria. Suppose
the population plays a strategy that achieves a payoff which is dominated by
another equilibrium payoff. If the possibilities for communication are sufficiently
great, then there will be some redundant communication strategies: messages that
are sent with probability zero in some element of the stable set. Invaders can
use unsent signals to announce that they are prepared to play an efficient
equilibrium in the underlying game, and to identify others similarly inclined. If
the invader plays against a member of the original population, then its message
will be ignored. The original population may interpret the new message in the
same way as one of the words players are expected to use, so that there is no
disadvantage to saying it. There is no reason for this invading strategy to die
out. If the invader plays against another invader, then they coordinate on an
efficient equilibrium, so there is an advantage to using the new strategy. The
original population strategy is not stable.

In the next section we describe the communication game and motivate the
solution concept. The third section describes a simple example. The fourth
section discusses a preliminary result that plays a crucial role in the analysis.
Section V presents an efficiency result for a class of common-interest games. If
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players have the same preferences over equilibria, then only the efficient
equilibrium payoffs are stable when there is pre-play communication. Section V
also contains an existence theorem for a related class of games. The sixth
section explains why the efficiency result cannot be extended, even to the class
of games in which there exists a unique efficient feasible payoff. Section VI
introduces a stronger notion of communication stability, designed to capture the
idea that introducing new words to the language should not destroy the stability
of outcomes. In that section we present our main results: A communication
stable payoff must be an efficient point in the convex hull of the set of Nash
equilibria, and any efficient element in the convex hull of Nash equilibria
satisfying a regularity condition can be approximated by the payoff of some
communication stable set. We obtain these results without assuming that players
have similar interests. Sections VIl and IX discuss the implications of assuming
that players do not talk simultaneously. Section X discusses some related papers
that use evolutionary arguments to select efficient outcomes in games.

. THE FRAMEWORK

We begin with a given finite two-player game!, which we call the underlying
game. We add to the game one round of communication. Each agent has access
to a finite set of messages (words) from a set M. For most of the paper we
assume that players have access to the same set of messages and speak
simultaneously. We discuss cases in which the players have asymmetric access
to communication in Section VII. The strategies of the players in the communi-
cation game are rules that specify a statement from A/, and a function that
maps the opponent’s statement into the set of strategies in the underlying game.
Payoffs for this game are precisely the payoffs obtained from the underlying
game.

Formally, let the underlying game be (7,w), where T= T\ X T,(7; is the
finite strategy set for player 4), and u=(u;,u;). If player i uses stategy
t; €T; for ;=1 and 2, then player ;’s payoff is u;(# ,%). In the commun-
jcation game with message space M, player ’s strategy space is MX T M,
and the payoff to player ; if player i uses strategy (m,,t;( - ))EMX THM s

Ui(my 6, ), my, () =u; (1 (my, my), ty(my , my)) 2. 0}

! We limit attention to two-player games because pairwise contests have been the standard
setting for evolutionary games. If we assume that all messages can be heard by all players, then
our results extend in a natural way to games with many players.

? In the reduced normal form of the communication game a player need not plan a response
to messages that it does not send. We can represent the pure strategies available to player i by
Mx TH, where player i's strategy (m;,t(-)) specifies that the player will send the message



8 THE KOREAN ECONOMIC REVIEW Volume 19, Number 1, Summer 2003

We denote the communication game with message space M and underlying
game (T,) by (M, T,U), where U= (U,,U,) and (1) defines U, In the
usual way, we extend payoff functions to mixed strategies using linearity.

Talk is cheap since the messages do not enter payoff functions directly.
Messages influence payoffs only to the extent that they affect the actions players
choose in the underlying game.

For this class of games there is always a Nash equilibrium in which players
play the same actions in the underlying game for all communication histories.
Nash equilibrium cannot force particular statements to have meaning unless the
statements are directly linked to payoffs. Nevertheless, allowing pre-play comm-
unication changes the strategic environment in a fundamental way. Strict Nash
equilibria in the underlying game are no longer strict equilibria in the communi-
cation game. This observation suggests that processes which use communication
to move the population gradually away from inefficient equilibria could evolve.
The outcomes that we study, which satisfy stability conditions suggested by
evolutionary processes used in biological game theory, cannot ignore cheap talk.

We work with a static stability condition that substitutes for a full description
of the evolutionary process. The original stability condition of this sort is the
notion of evolutionarily stable strategy (ESS) of Maynard Smith and Price
[1973]. This concept is poorly suited for application to extensive games (see
Selten [1983] or Swinkels [1992] for discussions of the problems). We use a
modification of ESS developed by Swinkels, who requires that strategies be
stable only against invasions that respond optimally to the perturbed environment.
We state the definition for a general two-player game with strategy set
S=38,xS; and payoff functions x=(x,x,), which we represent by (S, 7).
Let M(S,7) be the set of Nash equilibria of (S, x); let 4(S;) be the set of
mixed strategies of player # let C(0) be the carrier of ofthe set of pure
strategies given positive probability by ¢); let BR,(-) be the best response
correspondence of player ; for ;7 = 1 and 2; and for o=( 01,05)E 4(S)) %

4(S;), let BR(0)=(BR,(0,), BR,(0,)).

Definition. A set @ 4(S;)x 4(S;) is equilibrium evolutionarily stable (EES)
if it is minimal with respect to the following conditions:

@ is closed and nonempty. @
OCN(S, 7). (i)
There exists &' (0, 1) such that for all e=(0,&) and for all s=0,
if C(¢')CBR((1—¢)o+e0), then (1—e)o+edE0. (iii)

m; and respond to the message m; with #(m,). To simplify our notation we include a

description of redundant strategies. Our results do not depend on which of these specifications
we use.
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Conditions (i) and (ii) in the definition are familiar. They require that & be
a closed set of Nash equilibria. Condition (iii) is novel. It is the invasion
condition. It states that if o is in the stable set, and o responds optimally to
the perturbed environment, then the population average strategy following the
invasion is also in the stable set. Swinkels [1992] provides several motivations
for condition (iii).

The following informal story describes a process that justifies evolutionary
stability conditions. Two role-identified (row players and column players)
populations play in pairwise contests. The outcome of each contest determines a
players payoff. Participants play a fixed (mixed) strategy. Established members of
the population die regularly and are replaced either by another individual who
plays the same strategy or an invader. Invaders first enter the population on a
probationary basis. They survive if and only if they perform at least as well as
the rest of population for a finite interval following their arrival. Hence they
must not only do as well as the established population, but they must do as
well as any new invader that may follow it. Such a condition seems appropriate
if some members of the general population can change their strategy in response
to a perturbation faster than the invaders themselves or if there exists a pool of
potential entrants who are able to respond optimally to any population strategy.
When condition (iii) holds, & survives its probationary period against a popul-
ation strategy o. An EES set is a minimal set with the property that no
invasion from outside the set can survive.

There are three important differences between the ESS and EES stability
conditions. First, the basic notion of ESS assumes that the underlying game is
symmetric, and that roles players take (column or row) are not identified. We
choose to concentrate on games in which roles are identified primarily because
it allows us to discuss all two-player games without resorting to symmetrization.

Second, EES is a set-valued concept. ESS will never exist in games with
nontrivial opportunities for pre-play communication. The example in Section I
will make this clear.

Third, admissible invasions in the EES framework must respond optimally to
the population mixture that they induce. Without this restriction, pre-play
communication would disrupt the (Defect, Defect) equilibrium in the prisoner’s
dilemma since a strategy that used different messages could invade the pop-
ulation, play the Nash equilibrium against the existing population, and cooperate
with each other.3 Players with even limited ability to forecast future behavior
would not adopt this invasion strategy because they would realize that a new
group of invaders could take advantage of them by imitating their signal and

3 Robson [1990] considers the possibility of creation of extra strategies in evolutionary games.
These strategies play the same role communication does in our model. Robson demonstrates how
adding a strategy forces cooperation in coordination games and destabilizes the inefficient
outcome in the one-shot prisoner’s dilemma. He argues that the creation of further strategies in
the prisoner’s dilemma will restore the stability of the (Defect, Defect) outcome.
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then defecting. While we believe that condition (iii} is plausible in our
framework, it is not needed to prove our existence and efficiency results. Rather
it guarantees existence of stable sets in games like the prisoner’s dilemma with
pre-play communication.4

Swinkels [1992] shows that EES sets have several attractive properties. For
example, every EES set contains a proper equilibrium and satisfies the
never-weak-best-response property of Kohlberg and Mertens [1986]. EES sets
continue to be EES sets after weakly dominated strategies are deleted from the
game and (unlike ESS) are robust to the inclusion or exclusion of redundant
strategies.

Even though EES is substantially weaker than ESS, there is no guarantee that
EES sets exist. Swinkels presents an example, and in Section V we provide a
non-pathological example of a game in which pre-play communication destroys
all stable sets of the underlying game.

To obtain a general existence result condition (i) must be abandoned. Gilboa
and Matsui [1991] do this with their concept of cyclically stable sets. Gilboa
and Matsui show that cyclically stable sets, which satisfy a condition similar to
(iii) but need not satisfy condition (ii), generally exist. Matsui [1991] applies the
concept of cyclically stable sets to pre-play communication and obtains results
similar to ours. We discuss this work in Section X.

We use the following proposition to characterize EES sets.

Proposition 1. Let © be an EES set. If ¢ eMS,n) and C(¢)CBR(0), then
(1-NDo+Ad €6 for all A=[0,1].

Proof. Let o'eMS,7) and C(¢) BR(o). It follows that

C(d)CBR((1 =)o+ Ac) for all i€[0,1] 2
Let &'=sup {e:(l—¢go+ed<€® for all e=(0,¢)}. By (iii), &’>0, and by
(i), ¢'=(1—¢")o+e’0=O. From (2) it follows that C(¢')CBR({1—A)d +
Ao’) for all A=[0,1]. Therefore (iii) implies that ¢’ =1 and extablishes the
proposition.

. EXAMPLE

Before proceeding with the formal analysis, in this section we discuss a

* Cressman [1992] and Thomas [1985a and b] analyze a set-valued, symmetric version of
evolutionary stability that does not impose a restriction on entrants. This definition can be
adopted to asymmetric games without difficulty to obtain a stability notion that is more difficult
to satisfy than EES. Therefore our existence results would hold for this definition. It is
straightforward to show that our efficiency results would also continue to hold.
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simple example in order to illustrate the nature of our results. Consider the
game in Figure 1. This coordination game, which Binmore [1992] calls DODO,
has two pure-strategy Nash equilibria and a completely mixed one. There is no
conflict of interest in this game and there are many reasons to expect that
experienced players would coordinate on the efficient equilibrium. The inefficient
pure-strategy equilibrium is a problem for standard theory, however. If for some
reason a player believes that other players will be playing BAD, they receive
their highest payoff only if they play BAD themselves.

[Figure 1]
GOOD BAD
GOOD 2,2 0,0
BAD 0,0 1,1

Without pre-play communication it is difficult to see how players can move
away from the inefficient strict equilibrium since a unilateral deviation from the
equilibrium strategy leads to a strict decrease in payoff. If pre-play communi-
cation is possible, moving to the efficient outcome is possible. When players
have more than one communication strategy before they reach the underlying
game, the communication game will have no strict equilibrium. To see this,
focus on an equilibrium in which players receive the payoff one. Distinguish
two cases depending on whether exactly one pair of messages receives positive
probability in the equilibrium or more than one pair of messages receives
positive probability in the equilibrium. In the first case, there will be many
ways to respond to unsent messages; in the second case, there will be at least
one player who sends more than one message with positive probability; such a
player must be indifferent between which message it sends in equilibrium; it
may vary the probabilities that it sends either message and still respond
optimally. Games with pre-play communication lack strict equilibria, so they will
typically fail to have ESSs; this is why we use a set-valued solution concept.

We now explain how our solution forces efficiency in this example. Failure to
play a Nash equilibrium is not evolutionarily stable even without the possibility
of pre-play communication. Possibly the population is playing the mixed-strategy
equilibrium to the underlying game after some messages. In DODO this beh-
avior is not stable as a group of invaders that always plays the GOOD strategy
will be viable: When the population tilts slightly towards the efficient equili-
brium, it becomes uniquely optimal for more invaders ready to play GOOD to
enter. This argument does not depend on whether pre-play communication is
possible; it is the requirement that outcomes be stable against entrants alone, and
not pre-play communication, that destroys the mixed-strategy equilibrium in
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DODO 5

Suppose that the population has coordinated on an equilibrium in which the
players always use a particular (normal) message. Provided their opponent uses
that message, they play the BAD action. Otherwise (off the equilibrium path)
they do something that yields a payoff strictly less than one to anyone who
uses an abnormal message (this can be done, for example, if the response to an
abnormal message is play GOOD with probability one third and BAD with
probability two thirds). Against this population strategy it is not profitable for an
invader to use an abnormal message. The population punishes those who use
unfamiliar words. As long as abnormal words are not used, however, there is no
pressure to respond to them in a particular way. One generation of invaders that
appears to play exactly like the general population can enter the population.
These invaders always send the normal message and play the BAD strategy in
the underlying game no matter what the other player says. While these invaders
are no better than the general population, they are also no worse. Our solution
concept implicitly assumes an environment where there are repeated possibilities
for invasion, so all potential neutral invasions should occur in the long run.
Hence the population can drift towards a configuration in which players who use
an abnormal message are not punished.

Now consider an invading strategy that sends an abnormal message, and plays
the GOOD strategy in the underlying game if and only if it meets another
player who sends an abnormal message. This invader does not lose anything
when it plays the original population. It strictly gains when it plays another
invader. Consequently, it thrives.

We assumed in our discussion that there was a point at which everyone in
the population sent the same message. Given this assumption a player could use
an abnormal message to signal that it was willing to play the GOOD strategy
in the underlying game. For coordination games such as DODO it is possible to
prove that in any stable set there will be a strategy in which some message is
not sent. If the population were playing a strategy that used all messages with
positive possibility, then each player would be indifferent between the messages
that it chooses to use against the existing population. Moreover, both row and
column player can agree (in DODO) about which pair of messages lead to the
best outcome in the underlying game. An invasion of players who use a specific
message pair that leads to the favorite outcome can enter the population.

Pre-play communication in our framework only forces efficiency when we can
guarantee that every EES set contains a strategy in which there is an unused
message; guaranteeing this property requires two assumptions. First, there must
be no conflict of interest between the players in the underlying game. If players
do not have the same preferences over the equilibria in the underlying game,

’ In Example 1 playing the mixed-strategy equilibrium is ruled out by our solution concept; in
general mixed strategies may be elements of EES sets,
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then an invader using a pure signaling strategy may provide its opponent an
opportunity to take advantage of it. We discuss an example with this property
in Section VI.

We must also assume that the game is played by two role-identified
populations. Without this assumption we could not guarantee the existence of an
unused message. Pre-play communication does not lead to efficiency under a
single-population definition of stability even in a symmetric coordination game
like DODO. Consider the strategy that randomizes equally between each of two
messages, and then plays BAD if and only if its message is the same as the
message of its opponent. When everyone in the population uses this strategy, the
expected outcome of each meeting is coordination on the (GOOD, GOOD)
equilibrium of DODO with probability one half, and coordination on the (BAD,
BAD) equilibrium with probability one half. While a strategy that sends a
message with probability one (and plays appropriately in the underlying game) is
an optimal response to the population strategy, it performs poorly against another
strategy that behaves in the same way because when matched together their
messages agree with probability one, so they always coordinate on the (BAD,
BAD) equilibrium. Consequently the random strategy is, taken as a singleton, an
EES set (and even an ESS) for the communication game when viewed as being
played by a single population. In the two-population version of DODO, an
invading strategy profile that uses a message pair leading to the best equilibrium
reached by the population strategy can always enter. Since the invader’s message
pair may be asymmetric, the same conclusion does not follow in the
single-population version of the game.

Our argument demonstrates that inefficient outcomes are not evolutionarily
stable when we add pre-play communication to DODO. The argument hinges on
the way in which our solution concept permits strategies to change off the
equilibrium path. Section X discusses alternative models in which this type of
drift arises, and the implications of evolutionary solution concepts that do not
permit drift.

IV. THE BASIC LEMMA

In this section we present the basic lemma which demonstrates that if there
exists an element of an EES set that does not use a particular signal, then there
is an element of the EES set that also does not use the signal, but for which
there is an optimal response that does use the signal. That is, a player has
nothing to lose from using an unsent message.

In what follows we represent a (mixed-) strategy profile of the communication
game by a pair (g, 1), where p= (s, ;) and ux;(m;) is the probability that
player ; sends the message m, and 7=(z;,7,;) and r;(¢;m;, my) is the
probability that player ; takes the action ¢, in the underlying game following
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the message pair (m, , m,).

Lemma. Let & be an EES set, If there exists o=(x, €@ and (m,,m,)E
MxM shch that p,(m;)=0 for ;=1 and 2, then there exists ¢ =(un’,7)=6
such that U(o)= U(¢') and p; (7;)=0 for ;=1 and 2 and ¢t T, such that
(m;,t;)€BR;(g;) for j+; and ;=1 and 2.

The proof of the lemma is in the appendix. We provided the intuition for the
result in our discussion of the example. If the population is playing a strategy
that never uses a message, then there is nothing to prevent the population’s
response to the message from drifting until players interpreted the message
exactly the same way as a word used with positive probability.

V. GAMES WITH (EQUILIBRIUM) COMMON INTEREST

In this section we study pre-play communication when the players have
similar preferences in the underlying game. We study two types of games. In
one class of underlying games the players have the same preferences over
equilibria. When we add pre-play communication to these games of equilibrium
common interest the only possible EES payoff is the player’s most preferred
equilibrium payoff. In the other class of common-interest games the feasible set
of payoffs has a unique efficient point. For underlying games with this property
we show that there exists an EES set for the communication game that attains
the efficient payoff. We begin with a discussion of the two definitions. We then
state and prove the efficiency theorem and the existence theorem. We conclude
the section with an example of a communication game with no EES set.

A game (S,7) has equilbrium common interest (ECI) if s and s €&
N(S,n), then for ¢ and ;=1 and 2, r,(s)>r;(s") implies that 7 (s)> mi(s).
That is, both players have the same rankings over Nash equilibria.

The game (S, ) has common interest (CI) if x(S) has a unique weakly
efficient point. That is, there exists 7" =(x}, x3) such that

a(s’)=nr" for some s S, 3)
a(s)<z" for all s€S, and 4)
m;(s")=n; implies n(s)==x" for all s=S and /=1 and 2. 5

Condition (3) states that r" is feasible; condition (4) states that it is efficient;
and condition (5) states that it is the only efficient point. Plainly s*eM(S, 7).

Common-interest games are a natural place to look for effective communica-
tion. However, we show by example in the next section that the assumption of
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common interest is not sufficient to rule out inefficient EES sets. Instead we
must use the assumption of equilibrium common interest to rule out inefficient
outcomes. By focusing only on equilibria, there is a sense in which ECI is less
restrictive than CI. For example, any game with a unique Nash equilibrium has
equilibrium common interests. Moreover, if a game has equilibrium common
interests, then there may exist feasible outcomes (which are not equilibrium
outcomes) that both players prefer to their most preferred equilibrium outcome.
The prisoner’s dilemma is an example of a game that satisfies ECI but not CIL
On the other hand, CI is a less restrictive assumption than ECI in the sense
that players need not have the same preferences over inefficient equilibria. At
the end of this section we discuss an example of a game with equilibrium
common interest but without common interest. In the next section we give an
example of a game that satisfies CI but not ECIL

Throughout this section we assume that (7T, ) satisfies either ECI or CI and
in either case we denote by «" =(u;,u;) the payoffs of the most preferred
equilibrium.

First we show that stable sets in games with equilibrium common interests
must yield the efficient equilibrium payoff.

Proposition 2. Assume that (7, ) has ECI and M has at least two elements.
If @ is an EES set of (M, T, U), then U(g)=u" for all s<6.

We present a proof of the proposition in the appendix. The proof is in two
steps. First, we show that there exists an element of @ that does not use all
messages. To show this we start with an ¢ €@. If under o all messages are
sent with positive probability, then the strategy induces Nash equilibrium
behavior in the underlying game after all messages. By the ECI assumption,
players have the same preferences over these equilibria. Consequently, a strategy
that uses only a message pair leading to the best of these equilibria can enter
the population. Second, we apply the lemma to show that there exists a /<@
in which players can use an unused message without being punished. We use
this strategy to construct an element of & that yields the efficient payoff, and
to show that all elements of @ yield this payoff.

Since there is no guarantee that EES sets exist in all situations, Proposition 2
is of limited interest without an associated existence result. Proposition 3 proves
that EES sets exist in common-interest games.

Proposition 3. If (7, %) has common interest and M contains at least two
elements, then @={¢: U(o) =«"} is an EES set of (M, T, U).

Proof. & is a closed subset of Nash equilibria. If C(¢’)Yc BR(0), then
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Ul(dl',02)=U1(0)=uf and Uz(Ol, 02')=U2(0)=u§. (6)
It follows from (5) and (6) that
Uo, ,05)=UWU)=u" and o), 0, )= Ulo)=u". N

To show that @ satisfies condition (iii) in the definition of EES, it suffices
to show that U(¢')= «" whenever there exists &> such that C(¢)CBR((1—
o+ eod’).

However, it follows from the second pair of equations in (7) that

Ul(Ul,(1_6)02+60'2’):uI. (8)
Hence, to satisfy the invasion condition, it must be that
Ul(O'll, (1—8)0'2‘1“60'2’):74;- (9)

(9) can only hold if U,(6,",0,")=U,(0) = uj.

Applying the same reasoning to the second player leads to the desired resutt.
We omit the details of the routine verification showing @ is a minimal set

that satisfies the conditions of the definition.

The stable set @ described in Proposition 3 consists of all strategies with the
property that at least one pair of signals leads to the efficient equilibrium, and
that players always choose signals that lead to the efficient payoff. If A/ had
only one element, then there would still exist an EES set with payoff ", but
the set could be a proper subset of &. This is the case in common-interest
games that have multiple efficient equilibria.

While in general CI does not imply ECI, we can derive the following
corollary for 2X2 games by combining the proofs of Propositions 2 and 3.

Corollary. if (T, #) is a 2X2 game with common interest and M has at least
two elements, then {s: U(o)=«"} is the only EES set of (M, T, U).

For general games, the ECI and Cl assumptions combined are extremely
restrictive. They hold for the class of pure-coordination games, in which the
players have identical preferences. Npldeke, Samuelson, and van Damme [1991]
and Wimeryd [1991] study the effect of pre-play communication and evolution
in this class of game.

The assumption of common interest in the existence theorem is a strong one.
The next example suggests that it is difficult to weaken. The game in Figure 2
has two strict equilibria (UP, LEFT) and (DOWN, MIDDLE), and a mixed-
strategy equilibrium ((.8, .2), (.75, 0, .25)) with payoffs (7.5, 8). The players
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have the same preferences over equilibria, so the game has ECL It is not a
game of common interest.

[Figure 2]
LEFT MIDDLE RIGHT
Up 10, 10 0, 0 0, 8
DOWN 50 10, 10 15, 8

We will show that no EES set exists when there is pre-play communication
prior to the play of the game in Figure 2. Let M have two elements, « and
B, enlarging the message space would not change the example. Describe a
players pure strategy for (M, T,U) as a triple (£ X,Y) where & is the
message, X is what it plays if its opponent says o, and Y is what it plays if
its opponent says B. It is straightforward to check that if there is an EES set
for (M, T,U), then

o=(( @, UP, DOWN), [.5( a, LEFT, LEFT), .5( 3, MIDDLE, (.5,0,.5))])

must be in the set. Under ¢ half of the time both players say « and they
coordinate on the (UP, LEFT) equilibrium. The other half of the time the
message pair is (o, and the players coordinate on the (DOWN, MIDDLE).
Now consider the strategy

o=(( 8, UP, DOWN), ( 3, MIDDLE, MIDDLE)).

This strategy is an efficient Nash equilibrium of the communication game.
Furthermore, ¢ is an optimal response to all mixtures of ¢ and o'. Conseque-
ntly, for sufficiently small positive e, (1—e&)o+es must also be in any EES
set. Since (1—é&)o+edeNM, T,U) for all e=(0,1), no EES set can exist.

In the game described in Figure 2 there are two strict Nash equilibria. Since
the game satisfies ECI we know that any EES set must contain an efficient
equilibrium. When we add pre-play communication the population can move
from a state in which it coordinates on the (UP, LEFT) equilibrium (using o)
to a state in which it coordinates on the (DOWN, MIDDLE) (using o)
equilibrium. Hence any EES set for the game must contain both of these
strategies. In addition, our argument shows that any EES set containing o must
contain strategies of the form (1—e)o+ eo’; since these are not Nash equilibria
(o, dost not specify an optimal response to 4), no EES set exists.

While the example suggests that it is difficult to have an existence theorem



18 THE KOREAN ECONOMIC REVIEW Volume 19, Number 1, Summer 2003

that applies to a wide class of games with pre-play communication, we show in
Section VI that limitations on the set of available messages leads to existence
of EES sets under relatively weak conditions.

VI. ARGUMENTS: HOW PRE-PLAY COMMUNICATION FAILS TO
GUARANTEE EFFICIENCY

Proposition 2 applies to a limited class of games. One might hope that at
least it extends to common-interest games. The next example demonstrates that a
more general result cannot be obtained.

[Figure 3]

BALLET FIGHT BED

BALLET 2,1 0,0 0,0
FIGHT 0,0 1, 2 0, 0
BED 0,0 0,0 10, 10

Figure 3 depicts the battle-of-the-sexes-with-an-inside-option game. The upper-
left 2 X2 portion of the game is a standard battle-of-the-sexes game. In addition,
each player has a third strategy, corresponding to staying home in bed. With the
inside option, the game becomes a game of common interest, but not a game of
equilibrium common interest because players have different rankings over the
inefficient equilibria (BALLET, BALLET) and (FIGHT, FIGHT).

The game has three strict equilibria, which as singletons are the only EES
sets. Consider a communication game in which there are two signals, 1 and 2.
For this game, the strategy in which players choose each signal with probability
1/2, and then go to the BALLET if the sum of the indices of the signals is
odd and go to the FIGHT otherwise. This strategy profile, as a singleton, is an
EES set. To see this, observe that since each player uses all of its signals with
positive probability, and then chooses strict equilibrium actions in the underlying
game, any invading strategy must agree with the population strategy given any
pair of signals. Hence the communication game reduces to a constant-sum game
in which the unique equilibrium strategy for each player is to randomize equally
over both signals. No other choice of signaling strategy could satisfy (iii). In
this example, communication does not force the players to arrive at their favorite
equilibrium. Instead players waste all of their words arguing over which
inefficient equilibrium to play.

One method to avoid arguments is to assume that the message space has
many elements or that there are many rounds of communication, and assume
that each individual in the population uses a pure signaling strategy. In section
IX we discuss this approach.
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Another possibility is to strengthen the stability notion by requiring the
population strategy to resist invasions from groups that are not arbitrarily small.
If the cardinality of A is sufficiently great, then there will always be a pair of
signals that are used with arbitrarily small probability in any equilibrium. A
strategy that uses these signals to coordinate on the efficient equilibrium will not
be an optimal response to the population if the invaders make up a sufficiently
small portion of the population, but if invaders occur in lumps, so that there is
a positive lower bound to the ¢ in (iii), then there always exists a large
enough strategy space so that invasion is possible when the payoff is not
efficient.

In section VI we modify the stability notion in order to rule out arguments.

V. COMMUNICATION STABILITY

We demonstrated in the previous section that pre-play communication need not
lead to efficiency in our model. The message space can be jammed with the
players arguing over which of several equilibria to play. The argument must be
conducted over equilibria that are not Pareto ranked, but all of the equilibria
under discussion could be inefficient in the set of equilibria. It is in precisely
this type of situation that one would expect new messages to be invented and
used to reach the efficient outcome. In this section we introduce a more
restrictive notion of stability that requires outcomes to persist even if new
messages are permitted, and prove efficiency and existence theorems. The central
insight is that by allowing players to create new messages (at minimal cost) and
applying the appropriate stability concept, we are able to obtain versions of the
existence and efficiency theorems of Section V without making the restrictive
assumptions of common interests or equilibrium common interests.

Our goal is to characterize the EES sets of the communication game with
message space M (the M game) that remain stable when additional messages
are added to the language. When N strictly contains M, a strategy for the M
game is not a strategy for the N game: If the set of messages expands, then
the strategy must include a specification of whether to use the new messages
and how to interpret them if the opponent uses them. Therefore, it does not
make sense to require that an element of a stable set of the M game is also
an element of a stable set of the N game. Nevertheless, the additional words in
N can be superfluous; by extending strategies from the M game to the N
game we can find out when additional words would upset an equilibrium.

There is a natural way to extend a strategy of the M game to make it a
strategy of the N game. Let f: N-> M be a function with the property that
for all meM, f(m)=m. Given a strategy o= (g, r) of the M game, define
the extension o"=(x", ") to the N game by
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W= #G0 Em M and Mtm,m) =t m) Ay,

The definition of "( -) states that the extension of ¢ signals in precisely the
same way as ¢, in particular, the new messages are not sent. The extension
responds to messages from M exactly as the original strategy. In addition, it
interprets a new word as if it is one of the old ones. The definition of V()
asserts that f( -) acts as a translator: it turns words from the larger language
N into words of M. If new words are really superfluous, then they need not
be used, and, if used, can be interpreted as existing words. Our notion of
communication stability requires that if o is an element of an EES set @ in
the M game, then any strategy that can invade when the population plays o
does not lead to a short-term gain to the invader.

Definition. An EES set for ® for a communication game (M, T,U) is comm-
unication stable if for all NoM and o=@, if there exists ¢ >( such that for
all e<€(0,¢), C(d)CBR(ed +(1—¢€)d”), then for ;=1 and 2, j=*i and
ee€(0,¢),

Ulo; ,e0; +(1—d?) < Ula",e0; +(1—e)a}). 6 (10

C(6)CBR(ed' + (1 —¢)d”) implies that ¢ is an optimal response to the
perturbed population strategy ed +(1—¢&)d". If we did not assume that C(¢')C
BR(ed’ + (1 —€)d"), then it would be possible for strategies to enter and use
additional messages to coordinate on a nonequilibrium outcome in the underlying
game. It follows from C(¢')CBR(ed’ +(1—e)o”) that the inequality in (10)
can be taken to be an equation.

Condition (10) states that an invading strategy o can only enter the
population if it is an optimal response to the population strategy and it performs
better against itself than the population strategy performs against it
(Ui(o;,0,/)> U(6¥,0;")). Communication stability is therefore similar to the
idea of a neutrally stable strategy.” It does not permit a strategy that uses new
messages to grow unless that strategy is an optimal response to the perturbed
(post-entry) environment and the population strategy is not an optimal response
to the perturbed environment.

Communication stability is the correct criterion to apply if coining a new

® In this section U,(o;,0;) denotes the payoff to player i if player i uses o, and player
j¥i uses o,
" To be a neutral ESS a strategy ¢ must have the property that no invading strategy can do

strictly better than it when matched with a population that contains a small fraction of
individuals playing the invading strategy (and the rest playing o).
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word requires paying a cost that is infinitesimal relative to the payoffs in the
underlying game. If the population is playing an efficient Nash equilibrium
strategy, then there is no incentive to create new words. If there is an
equilibrium payoff that dominates the EES payoff, then it is worthwhile for
players to try to talk their way to a better outcome.

Extensions are well defined given f(-). For what follows, the choice of
F(-) does not matter: A set is communication stable with respect to extensions
defined by one f( -) if and only if it is communication stable with respect to
extensions defined by all f( -) that satisfy f(m)=m for all meM.

We view communication stability as a formalization of the rich-language
assumptions that appear in the work of Farrell [1993], Matthews, Okuno-
Fujiwara, and Postlewaite [1991], and Rabin [1990]. These authors assume that
there always exist unused messages that have, in contrast to our approach,
natural interpretations that all players understand and will believe if they do not
conflict with strategic considerations. Farrell [1993], Matthews, Okuno-Fujiwara,
and Postlewaite [1991], and Rabin [1990] study games with incomplete inform-
ation and their results are not comparable to ours.

Proposition 4, which we state and prove below, demonstrates that the
requirement of communication stability rules out inefficient payoffs. We prove
the proposition in the appendix. For intuition, consider again the inefficient EES
set in the battle-of-the-sexes-with-an-inside-option game discussed in Section VI.
If the language M expands to include another word, the extension of the equili-
brium will not be in an EES set. The extra word will be used by invaders to
coordinate on the efficient equilibrium. This property is true even when there are
multiple efficient equilibria.

Let 17 denote the convex hull of Nash equilibrium payoffs of the underlying
game.

Proposition 4. If @ is a communication stable EES set of a game with
pre-play communication, then o) is an undominated element in 7 for all
cEB.

All of our results suggest that the only possible stable outcome must induce
an efficient Nash equilibrium in the underlying game. We cannot expect stable
sets to exist unless the efficient Nash equilibria of the underlying game are
elements of stable sets themselves. Essentially this is the only assumption needed
in order to guarantee that communication stable EES sets exist.

Definition. 7" <7 is a regular efficient payoff if /7 and z>7z" implies
7 =nx" and there exist EES sets of (7T, «) with payoffs «° and o+, and
A=[0,1] such that =" =Au" +(1—A)v".
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If 7' =l is undominated, then it is a convex combination of at most two
equilibrium payoffs of the underlying game. A regular efficient payoff can be
attained by averaging EES payoffs. Without this condition #° cannot be an EES
payoff in the communication game. All efficient payoffs will be regular if, for
example, all of the efficient Nash equilibria in (7T, %) are strict.

Proposition 5. Let z"<IT be a regular efficient payoff. Given any >0, there
exists a message space M and a communication stable EES set of (M, T, U)
that leads to payoffs within & of #".

Proof. First suppose that r* is the payoff of a Nash equilibrium in the
underlying game and that there exists a stable set © of (7T, «) that leads to
the payoff »*. Let M contain only one message. @ gives rise to a stable set
of the communication game.

Now suppose that ~* is not an equilibrium payoff of the underlying game
but that 7" =Au(#")+(1—A)ul(s"), where »* and s*NT,u) (hence u(+*)
#+u(s") and A=(0,1)), and there exist stable sets @, and &, of (7T, )
such that »'€@, and s'=0,.

Find relatively prime positive integers % and / such that /)% and

W L& 1T r™) + [ (U= R Nul(s™)}, 7" 1 <6,

where if x and yeR? then | x,y| is Euclidean distance between x and .
Let M consist of the first / integers and @ consist of all stategies o= (g, 1)
such that g, (m)=1// for meM and ;=1 and 2, and

t( - ;my,my)EO, if m +my<k (mod /) and (1D

T( . ;ml,mz)E@s if m; +m2 >k (mOd l), (12)

where for positive integers % and /, % (mod /) is the remainder when £ is
divided by [ First we verify that @ is an EES set. Since &, and 6, are
EES sets, it must be the case that if o =(¢’,7) can invade @, then it
specifies actions that satisfy (11) and (12). Consequently, C(¢’)CBR((1—e¢)
o+ed’) for &0 if and only if C(o)SBR(¢’). Since k£ and / are relatively
prime, C(¢')CBR(¢') only if »'(-)=p(-).

It remains to show that these sets are communication stable. Enlarge the
message space to N and fix a translation function f Let o=@ and let ¢ =
(¢',7) statisfy (iii). It follows from C(¢') CBR((1—¢)d” +e0¢’) that (o‘i',o‘jN)
and (o0;",0;,’) (for i=;) induce Nash equilibria on the underlying game
following any pair of messages, and that the equilibria are elements of either
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®, or @, when at least one of the messages is an element of M (which

guarantees that both messages are interpreted as messages from M using f).
Therefore,

Ui(aY, 0, )=k Nu (") + [ (1= B/ Nui(s") (13)

because, for example, no matter what message player one sends, (0,",0)) and
(6V,0,") must induce the same mixture between equilibria in @, and @,
Since ¢,” is an optimal response to o},

Uio;' 0} )2 Ui(a?, o) =kl Nu;(r" )+ 1 (I~ B/ 1ui(s). (14)

Finally, observe that U(g,’,0y) and U(s}",0;") must be elements of 17, and

that [k/1]u(#")+[(I—R)/1u(s") is an efficient element of 7. Consequently
(10) follows from (13) and (14).

There are two unsatisfactory aspects to the existence theorem. First, there may
be many efficient Nash equilibrium payoffs in the underlying game, some of
which are not EES payoffs. This does not mean that the others should be
ignored. It means that a dynamic process that describes the invasion need not
settle down. Even if one thinks that the stability conditions captured by EES
and communication stability are appropriate, Propositions 4 and 5 only
demonstrate that processes describing these stability conditions could settle down
to only a subset of feasible payoffs for the underlying game, and that subset is
contained in the convex hull of the set of equilibrium payoffs. Dynamic
behavior that does not settle on a particular payoff seems to be a likely
outcome of a fully specified dynamic adjustment process.

The second difficulty is that we must fix the size of the message space in
advance. This restriction is strong when there is a unique efficient equilibrium
payoff in the underlying game. The game in Figure 2 demonstrates that EES
sets need not exist in a communication game (M, T,U) when there is a
unique efficient equilibrium payoff in (7,z) and M has cardinality greater than
one. For general games it is communication stability, a restriction imposed in
order to model the possibility of communication, that forces efficiency. Allowing
pre-play communication only enables players to obtain mixtures of Nash
equilibria. When there are multiple efficient stable equilibria in the underlying
game, the restriction is less severe: Any regular efficient payoff can be
approximated by payoffs from an EES set for a communication game with an
arbitrarily large message space.
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V. ONE-SIDED COMMUNICATION

Thus far we have assumed that both players had access to languages with the
same number of words. If both players have access to potentially different, but
arbitrarily rich, languages, then Propositions 1 through 4 continue to hold. Since
Proposition 5 shows that it is not necessary to create asymmetric languages to
guarantee that a family of communication stable EES sets exists, allowing
players to have different message spaces does not allow us to strengthen the
result. If one or both of the players have access to bounded languages, then not
all of the mixtures of equilibria will be feasible. At the least, the notion of
efficiency used in Section VI must be modified to take into account that the set
of Nash equilibrium payoffs of communication games would not be dense in the
convex hull of Nash equilibrium payoffs of the underlying game. We do not
pursue this restriction. Instead, in this section we consider the case in which
only one player is able to speak.

[Figure 4]

0,0 13, 5 5, 13
0, 1 5, 13 13, 5
4,4 75, 1 85, 1
6,0 6,0 6, 0

Consider the game in Figure 4, which is taken (with a tiny modification)
from Swinkles [1992]. There are three Nash equilibrium outcomes in the game.
In the first, the strategies are ((1/2,1/2,0,0), (0,1/2,1/2)), which yields payoffs
(9,9). In the second, the row uses (0,0,0,1) and the column player chooses a
strategy to which this is an optimal response; the payoff of this equilibrium is
(6,0). In the third the strategies are ((3/23,3/23,17/23,0), (1/5,2/5,2/5)) and the
payoffs are (36/5,71/23). Since the payoffs associated with the different outcomes
are Pareto ranked, this is a game of equilibrium common interest. The first
equilibrium as a singleton is an EES set. The second set of strategies is an
EES set, while the third equilibrium fails to be a part of an EES set (players
coordinating on the first equilibrium can invade). Allowing only the row player
to talk in this game does not rule out the outcome in which the row player
chooses its fourth strategy in the underlying game no matter what it says. The
stable set that supports this behavior in the communication game contains all
signaling strategies for the row player provided that it plays the fourth strategy
in the underlying game and requires that the column player play a strategy that
supports the equilibrium independent of what the row player says. A strategy in
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which the row player uses one of its first three strategies in the underlying
game cannot invade for the same reason that it could not invade when there is
no communication: A mixture of row's first two strategies is never a best
response to a strategy of column that supports the equilibrium.®

The example brings out a feature of our approach to pre-play communication
that typically does not appear when language is assumed to have a focal
meaning. In that literature, if only one player is able to communicate, then that
player is assumed to be guaranteed to achieve its favorite equilibrium.

As Thoreau observed, effective communication requires two parties: one to
speak and another to understand. When both players have rich languages, they
are able to use their language to demonstrate their ability to understand. If only
one player can speak, then attempts to communicate need not succeed.

Imagine that most of the population of column players is deaf to the new
word. If the word GRYNSPAN is only used by communicators, then players
who use the language to reach efficient outcomes can do so at no cost; they
are able to modify their behavior accordingly if matched with players who do
not communicate. When there is only one-sided communication the speaker does
not know whether its opponent is listening. If the population consists primarily
of agents who do not listen, then a player who wishes to use a new word to
signal its intentions must plan to use a strategy that not only leads to a good
equilibrium, but also responds optimally to the deaf population. The game in
Figure 3 demonstrates that it is not always possible to do this.

One-sided communication leads to efficiency in some circumstances. For
example in the game in Figure 1 there are two Pareto-ranked singleton EES
sets. Without communication there is no way to guarantee that the players will
arrive at the efficient outcome. Nevertheless, any potential EES set that leads to
the payoffs (1,1) must contain the strategy in which the row player always says
one thing (ALAS) and plays BAD and the column player responds by playing
BAD, but if the row player said something else (GO FOR IT), the column
player plays (1/2,1/2). A strategy profile in which the row player says GO FOR
IT and plays GOOD and the column player plays GOOD given the other signal
(and BAD otherwise) can invade. Similar reasoning demonstrates that the player
who talks can get its favorite outcome in the battle-of-the-sexes game. In fact,
in any 2x2 game, if one player can talk, then the only possible EES payoff
for that player is its most preferred equilibrium payoff.

While one-sided communication does not guarantee -efficiency, the talker’s
favorite equilibrium payoff will be communication stable in some game with

¥ Formaly, if an invading strategy of the row player is going to use one of the first three
strategies with positive probability, then it must be that column’s response is in the set D=
{L,CR) : L,CR=0, L+C+R=1, 13C+5R<6, 5C+13R<6, and 4L+7.5C+8.5R=6 with equality in
at least one of the three inequalities}. It is straightforward to check that no strategy profile in
which the row player plays one of its three strategies with positive probability can satisfy
condition (iii) in the definition of EES for any response in D.
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one-sided pre-play communication provided that the payoff is a regular efficient
payoff (that is, it can be attained in an EES set of the underlying game).
However, even if only the row player can talk in the nonexistence example in
Section V (Figure 2), the arguments there demonstrate that no EES set exists
when the row player has more than one message available.

[X. CONSECUTIVE COMMUNICATION

This section discusses communication in which players speak consecutively
rather than simultaneously. The framework differs from the previous section in
that we allow both players an opportunity to communicate. Without loss of
generality we assume that there are just two rounds of communication. In the
first round player one (the Row player) sends a message. Player two (the Colu-
mn player) hears this message and sends a message of her own in the second
round. Finally the players choose actions for the underlying game contingent on
both messages. In this framework, we show that arguments cannot occur: Any
EES set must have an efficient payoff.

Let " be an efficient point of the set of Nash equilibrium payoffs of
(T, ).

Proposition 6. Assume M, has at least two elements for ;=1 and 2. If @ is
an EES set of (M, T, U), then there exists g @ such that (o) = «".

The method of proof of Proposition 6 is very similar to those of Propositions
2 and 3 and it consists of four parts (The detailed proof is provided in Kim
and Sobel [1992]). The first two steps of the argument demonstrate that every
stable set contains a strategy in which the players send only one of the
messages with positive probability. If one player is randomizing over several
strategies, there is nothing to stop the population from drifting to a situation in
which he uses only one of his messages. The second step extends the first step
and shows that each stable set must have an equilibrium in which both players
use only one word. If the population of first players is using only one word,
then the population of second players can drift to a situation in which it is
using one of the words that leads to the highest payoff. The last two steps are
nearly identical to the arguments in Section V. The third step shows that the
population can drift to a strategy in which each side uses only one word, but
that different messages do not lead to lower payoffs, and the fourth step
demonstrates that from such a configuration a strategy that can obtain an
efficient payoff is able to invade.

The main difference between this result and Proposition 4 is that we
guarantee that a stable set contains an efficient outcome without invoking
communication stability: Arguments cannot occur if players are not allowed to
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speak at the same time. Allowing both players a chance to talk does eliminate
the possibility of sticking at an inefficient equilibrium, because it gives the
second player the opportunity to acknowledge that she has heard and understood
that the first player has tried to move from an inefficient equilibrium (two-sided
communication makes it possible to use an unsent message without being
punished by the dominant population).

When players must speak at the same time, convex combinations of Nash
equilibria of the underlying game can be stable in the communication game.
Nontrivial forms of cormelation are not possible when players speak sequentially
because player two will always make a statement that leads to her highest
expected payoff. Therefore no eclement of a stable set can induce a mixture of
Nash equilibria to the underlying game that give different payoffs to the second
player to speak.

Just as there is an existence problem when players send messages simul-
taneously, there is an existence problem when players take turns speaking in
games without common interests. It is straightforward to show that if we use
communication stability then versions of Propositions 4 and 5 apply. Specifically,
each communication stable set in a game with alternating communication must
contain an efficient payoff, and given any Nash equilibrium payoff of the
underlying game that is regular and undominated by other Nash equilibria there
exist message spaces for which the result is communication stable (generally the
message space will be trivial for at least one player, however).

X. RELATED WORK

In this section we discuss other papers that use the evolutionary approach to
model communication in games.

Warmeryd [1991] characterizes neutrally stable strategies in pure-coordination
games with pre-play communication and complete information. Players must use
pure strategies. In 2 X2 games, he obtains the efficiency result. In larger games
the result does not hold: Neutrally stable strategies that support an inefficient
equilibrium exist provided that the population is able to punish invading
strategies by switching to an even less efficient equilibrium.

Bhaskar [1998] also examines complete information games preceded by a
round of simultaneous signaling played by a single population; he permits
randomization at the individual level. He shows that unless there is a countably
infinite set of messages, neutrally stable strategies need not lead to efficiency
even in pure-coordination games. We pointed out in Section Il that a similar
result holds for our solution concept if we assume that a single population plays
the game.

Bhaskar obtains Wirneryd’s [1991] results (that neutrally stable strategies must
be efficient in 2X2 common-interest games with pre-play communication, but
need not be for larger games) when players make small mistakes in signaling.?
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Bhaskar also studies a model in which players may misinterpret their opponent’s
message. This type of mistake rules out punishments for generic underlying
games and permits Bhaskar to prove a version of Proposition 2.

Fudenberg and Maskin [1991] also study the effect of imposing evolutionary
stability on games with pre-play communication. They assume that the underlying
game is finite and symmetric, that there is a potentially unlimited number of
rounds of pre-play communication in which the players speak simultaneously.
They further assume that players make mistakes with small probability. Talk is
not completely free, but its cost is infinitesimal relative to the probability of
mistakes.

Fudenberg and Maskin obtain an efficiency result. Any evolutionarily stable
payoff must give each player at least as much as it gets in its least favorite
strongly efficient outcome (where an outcome is strongly efficient if it
maximizes the sum of payoffs) in any evolutionarily stable payoff. This result is
stronger than ours in two respects. First, outcomes are not stable in Fudenberg
and Maskin’s sense if they are inefficient relative to the set of feasible payoffs
rather than relative to the (smaller) convex hull of the set of equilibria in the
underlying game. This difference is the result of our restriction to equilibrium
entrants. The prisoners dilemma with pre-play communication fails to have a
weak ESS because players who used different messages could invade the
population and then cooperate with each other. As we explained earlier, EES
does not allow this type of invasion. The set of all equilibria in which
individuals never cooperate is an EES set.

Second, arguments are not possible in the Fudenberg-Maskin model. The
population consists of a finite number of individuals who play pure communi-
cation strategies. There always exists a communication history following which
some message is not used. An appropriately chosen message of this form avoids
arguments.

Fudenberg and Maskin are able to prove existence if there is a symmetric,
strict, strongly efficient equilibrium in the underlying game. This condition holds
automatically in symmetric games with common interests. The result would hold
for a version of our solution concept that requires symmetric entry, but does not
hold for the asymmetric version we use in the paper.l0 Fudenberg and Maskin
can also prove existence if there exists a strict symmetric equilibrium that is
better than a strict strongly efficient equilibrium. This result does not hold in

® Unlike Wameryd’s [1991], Bhaskar [1998] must assume that players tremble in order to
obtain the efficiency result in the 2X2 case. Otherwise one can support an inefficient outcome
with a randomized punishment.

' Consider the game in Figure 5 with w=4. When we allow pre-play communication (using a
nontrivial language), there is no EES set that yields payoff three to each player because some
element of a set supporting this payoff would permit the entry of a group of invaders to
recognize each other and coordinate on one of the asymmetric strict equilibria when they play
each other while playing the symmetric strict equilibrium against the original population.
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our setting, as demonstrated by the variation of the battle-of-the-sexes game in
Figure 5 (with w>5). The strict symmetric equilibrium in which all players
choose their SAFE strategy is evolutionarily stable. Because players have
identified roles and are able to use mixed signaling strategies, they are able to
correlate on an outcome that alternates between (BALLET, FIGHT) and (FIGHT,
BALLET) with equal probabilities. This correlated equilibrium dominates the
outcome in which individuals always play SAFE. Consequently, an outcome that
yields payoff three will not be communication stable. It will also fail to be part
of an EES set when the language is nontrivial.

[Figure 5]
BALLET FIGHT SAFE
BALLET 0,0 w, 1 0,0
FIGHT 1, w 0,0 0,0
SAFE 0,0 0,0 3,3

Matsui [1991] applies a variation of the Gilboa and Matsui [1991] idea of
cyclically stable sets to show that the only cyclically stable set in 2X2
common-interest games with pre-play communication contains only efficient
equilibria. The corollary of Section 5 contains the conclusions of this theorem.
The essential difference between cyclically stable sets (CSS) and EES sets is
that cyclically stable sets of strategies need not satisfy condition (ii) of EES.!l
The efficiency result does not generalize to larger games because arguments can
arise (the inefficient strategy that is an EES set for the example in Section V
is also a CSS). Also, since Matsui does not impose a requirement that stable
strategy profiles be equilibria, CSSs consisting only of inefficient, nonequilibrium
strategies will exist for 3X3 (or larger) games.

Sobel [1993] presents existence and efficiency results for common-interest
games with pre-play communication using a static evolutionary stability concept
that, like Gilboa and Matsui’s cyclically stable sets, does not assume equilibrium
behavior, He obtains an efficiency result for general common-interest games
assuming a finite population of players who use only pure strategies. The paper
uses its stability concept to obtain efficiency results for two different types of
common-interest games, infinitely repeated games and incomplete-information
games with cheap-talk. It contains a survey of other papers that apply
evolutionary stability to these games.

No one has presented a dynamic foundation for the EES concept. There is
the question of whether there is any dynamic foundation to the results that we
present in this paper. There is a connection between local stability of an

' Matsui [1992] compares EES sets to cyclically stable sets.
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outcome under the replicator dynamic (or closely related processes) and outcomes
that satisfy static stability conditions. In particular, Cressman [1992] shows that
in symmetric games Thomas’s ES sets are necessarily locally stable for pure-str-
ategy dynamics. In common-interest games, the efficient outcomes that we
identify as evolutionarily stable, and only those outcomes, are locally stable with
respect to the replicator dynamic.

Matsui and Rob [1991], Noldeke, Samuelson, and van Damme [1991], and
Kim and Sobel [1995] have shown that only efficient outcomes arise as limits
of an evolutionary dynamic process in pure-coordination games with pre-play
communication. These papers assume that the population of players is finite; that
players change their strategies randomly; and that mistakes or mutations occur
and cause the models to have a unique ergodic distribution, which they can
characterize. As in this paper, movements arise because with positive probability
the population will select an optimal response to its current configuration. The
dynamics of these models exhibit the drift that occurs in EES sets. In fact,
these dynamics permit even more drift: EES does not allow strategies to drift
outside an equilibrium component, while in Ngldeke, Samuelson, and van
Damme [1991] strategies can drift arbitrarily at unreached information sets.
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APPENDIX

Proof of the lemma. Fix a strategy profile for the communication game
o=(u, 0. Let (m,, my) EMxM be a pair of messages such that ,,(m;)>0
for ;=1 and 2. Now define the strategy profile o =(g’,7") such that ,'(-)
=p(+),

ity imy,my) if  myFmy
o (ty;my, my) it my =,
o (ty;my,my) if my+Fm

and

Tl’(fﬁml,mz)‘—‘[

7y (ty;my, my) = i, . o
2 M T TR {Z’z(tg;ml,mz) if m=m.

Since ¢eN(M, T,U), ¢ differs from ¢ only following (7 ,m;), and pla-
yers can do no better using ; than other messages, it follows that ¢ €

N(M, T,U). Furthermore, C(¢’) €BR(0) because ¢ is a Nash equilibrium and
o agrees with o on the equilibrium path. Consequently the lemma follows
from Proposition 1.

Proof of Proposition 2. First we show that there exists s @® that does not
use all signals. Let o=(7%,7)€®, and let (m;, m,) lead to the highest
payoff for player one of all message pairs sent with positive probability under
0. Since the underlying game has ECI and o is a Nash equilibrium, this
message pair also leads to player two’s highest payoff. Define o= (y, 1) so that

(- )=7(-) and pg;(m;)= 0 .lf mi#:”fi. g; is an optimal response to
1 if m;= m;

both ¢; and g; for j=i Hence, by Proposition 1, c€@.

Take o= (y, 7)< 6 as above (so that 4;( -) places probability one on a
proper subset of M) and assume, in order to obtain a contradiction, that
Uo)#u". Let o =(u',7r) satisfy the conclusion of the lemma. Let s* be a
Nash equilibrium strategy profile of the underlying game such that z(s")> Uld').
Define o’ =(p"’,7’") where

0 if m;FEm;
1 if m;=m,‘

u;"(m;) ={ and

T(tmy,my) if  (my,my)+ () my)

f”("m"”‘z):{ O it Oy, my) = (g m0y)

Since s*eMT,u) and u(s*)=Wo), ¢ N(M, T,U). Furthermore, C(s")
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CBR(c¢’) by the lemma. It follows from Proposition 1 that (1—¢)d +eo’€®
for all e<[0,1] and hence, by the definition of EES sets, (1—¢&)d +ed’ &
MT,uy for all e<[0,1]. This leads to a contradiction since, for
e€(0,1), (1 —&)d +ed” &M T,u) (the unique optimal message for player one,
given that the other player uses (1—¢&)o,” +e0,”” is my, but under (1-—¢)

0)" +eo;”’ player one uses other messages with positive probability).

Proof of Proposition 4. Take o=@ and assume, in order to reach a contradic-
tion, that (X(o) is a dominated element of /7. By the lemma, we may also
assume without loss of generality that for each meM, there exists
(m, t;) €BR,(¢;) for j#i Since JT is a nonempty, compact, convex subset of
R?, there exist a pair of Nash equilibrium strategies for the underlying game,
call them »* and " (" could be equal to s*), such that 2(#*) and u(s")
are extreme points of I7, and positive integers £ and / such that /=% and

LR/ u(# )Y+ (1= B/ u(s™)> Uo). (A2)

Construct an N game in which N has / messages in addition to those in M.

Denote the additional messages by 1, 2,---,/ Consider the strategy o= (72,7
defined by

0 if meM

”"(m")={ 1t myeym 24

en(timy, my) if myor myeEM

) 7 (1) if m; +my <k (mod/) and
wt;my, my)= m;&M for i=1 and 2

s (¢t) if m; +my 2k (mod!/) and

m;&€M for /=1 and 2.

It suffices to show that C(DCBR(eo+(1—¢)d”), but that (10) does not
hold.

o specifies that players use Nash equilibrium strategies following every pair
of messages. Furthermore, given that one player signals according to (- ),
the other player (;) obtains the expected payoff [#// lu; (¥ )+ (I—R)/1]
u;(s*) if it uses any signal in N\ M, and expects no more than U (o)
otherwise. It follows from (A2) that o is a Nash equilibrium. % is also an
optimal response to the population strategy o™ Given that the other player is
using oY, a player is indifferent between all of the messages in A4, but
messages in N are all treated as words in M by ", so any signaling strategy
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is part of an optimal response to . Consequently, C(0)CBR(eo+(1—¢)a").

When an agent playing the new strategy meets an agent playing the
population strategy, both players obtain the payoff that they would have under
the population strategy. If two players using the new strategy meet, then they
obtain the payoff given by the left-hand side of (A2). It follows that

U5, €5+ (1—e)d) =e{[ M 11u;(r )+ [ (I~ B/ Duls)}+(1—¢) (A3)
U;'(UN) and

Ui(o¥ , eo;+(1—e) oY) = U(d") = U(a). (A4)

Combining (A2), (A3), and (Ad), we see that U;(eo+(1—e)d)> Ui(aY, &5+
(1—e)oV). Hence o does not satisfy (10) and @ cannot be communication
stable.
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