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SHOULD WE WAIT FOR A NEW TECHNOLOGY?

KISANG LEE -HYUN PARK*

This paper shows the mechanism of technology dissemination when two rival
firms decide timings of either international adoption or domestic imitation for a
newly available technology. The set of optimal strategies for a dynamic Nash
game includes immediate (but, not delayed) simultaneous international adoption;
and sequential decisions for technology dissemination. The paper also illustrates
that there is no technology adoption and whereby this waiting problem is due to
the usual structure of contingent profits and costs of dissemination in a
duopolistic market. Therefore the paper explains that the rivalry and sirategic
behaviors cause a slow and incremental process for dissemination of emerging
technologies.
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I. INTRODUCTION

Invention and innovation plays an important role in persistent long-run econo-
mic growth since the industrial revolution. Since most countries in the world
adopt and use technologies rather then invent or innovate them, the benefit of a
new or improved product or production process, however, accrues through its
adoption and imitation or dissemination to the country until it is supplanted. In
order for a country to benefit from invention and innovation, there must be
incentives for firms adopt emerging technologies. This paper examines the effect
of international technology adoption and its domestic imitation when the new
technology has been perfected in international R&D markets. We analyze the

Received for publication: Jan. 29, 2001. Revision accepted: May. 10, 2001.

* Kisang Lee, Department of Economics and Trade, Sejong University, 98 Kunja-dong,
Kwangjin-ku, Seoul, 143-747, Korea; Tel: +82-2-3408-3146; Fax: +82-2-462-0146, e-mail: kslee@
sejong.ac.kr

127



128 THE KOREAN ECONOMIC REVIEW Volume 17, Number 1, Summer 2001

extent and timings of both technology dissemination processes when more than
one rivalry firm determine strategically their optimal adoption and imitation in a
small open economy.

Empirical observations including Rosenberg and Birdzell (1986) and Mokyr
(1990) suggest that dissemination of a new technology is a slow and incremental
process and that firms do not adopt a new technology simultaneously. There are
mainly four classes of works to explain such deterrence of technology dissemi-
nation. Firstly, Stenbacka and Tombak (1994), Hendricks (1992), and Jensen
(1992) attribute this to market uncertainties about, for example, profitability;
investment cost; a time lag between adoption and its implementation; and
innovative capacity of rivals. Secondly, Farzin et al. (1998), Purvis er al. (1995),
Dixit and Pindyck ((1994) examine irreversibility with technological shocks as a
source of the slow imitation of a new technology. Thirdly, Fudenberg and Tirole
(1985) and Riordan (1992) analyze that preemptive strategies can deter techno-
logy dissemination. Fourthly, as in Kamien and Schwartz (1972), Reinganum
(1981) and Katz and Shapiro (1987), the present paper focuses that the rivalry
of international adoption and domestic imitation affect the delay of timings of
international technology adoption for a new technology (refer to up-to-date
survey, Reinganum (1989) and Bridges er al. (1991)).

We consider a small open economy where there are two ex ante identical
firms in an industry for a given new advanced technology available from
international markets. Two rival firms are assumed to be operating the current
best technology. When a profit-enhancing new technology is available to the
firms, each firm can be the adopter of the advanced technology, paying a higher
adoption cost and expecting a higher future profit stream. Or, the firm can be
an imitator of the available technology in the domestic market, paying a lower
imitation cost and thereby expecting a lower future profit stream. Of course,
domestic imitation by a firm can occur only after the other firm buys the new
technology at some earlier time. In this simple model of technology dissemi-
nation, essentially following Reinganum (1981), Fudenberg and Tirole (1985), we
are concerned with the game-theoretical analysis on the nature of international
technology dissemination when a firm decides to be an imitator in the domestic
market in the presence of positive externality effects.

This paper presupposes that the mechanism for international technology adop-
tion is different from the one for domestic imitation. Even though technology is
non-rivalry and non-exclusive, perfect non-exclusion is not observed in interna-
tional markets for various reasons including the difference in general-purpose-knowledge.
Hence, technology dissemination in the international market is likely to require a
means of transferring or licensing, which often involves expensive adoption cost.!

! Lee and Park (2000) reports two empirical findings for asymmetry between domestic and
foreign technology dissemination including Kindelberger’s (1995) survey on European experiences
in technology diffusion among countries.
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The closest work to ours is the insightful paper by Kamien and Schwartz
(1972) and Reingnum (1981), which addresses the questions of equilibrium
timing of R&D when there is a rival for innovation and limitations. The present
paper, however, deviates from theirs in five main aspects: First, rather than
analyzing R&D competition, it emphasizes a two-person game at the market for
technology adoption and imitation. As in Stenbacka and Tombak (1994) there
are two potential buyers for a new technology from a foreign market and leads
to strategic decisions. Second, there are ex post heterogeneous firms and this
paper thereby is concerned with the timings of international adoption and
domestic imitation in the presence of the beneficiary firm for a newly arrived
technology in its own economy. Third, it generalizes a usual cost function of
imitation in the literature by assuming the function to be a function of both the
timing of international and domestic dissemination. That is, our paper also
generalizes Reinganum (1981) by imposing that two firms face two different
costs and contingent profits at the market conditions for acquisition of the new
technology. Forth, it shows a mechanism of seeking for all possible outcomes,
including a waiting game problem permitting possibility of no introduction of a
new technology to be optimal strategies, which was recognized, but analyzed by
Kamien and Schwartz (1972) and Reingnum (1981). Finally, the optimal timings
of strategic decision depend not only on the cost reductions for dissemination
over time, but also on the flow of profits, relying on each firm’s market
condition.

One of main contributions of this paper is to determine an open-loop equili-
brium timing for strategic decisions in the presence of exogenous technological
progress. Contrary to the model in Stenbacka and Tombak (1994), we focus on
strategic timing decisions and thus its ex post position to be either adopter or
imitator for a newly arrived technology, despite the facts that information is
perfect and firms are ex ante identical. This paper also shows that when
domestic imitation effect is strong enough, there is no strategic timing equili-
brium even under perfect information.2 Intuitively, the domestic imitator follows
the international adopter too soon, lessening the profit opportunity to be a first
mover in international. That is, even though moving first gives some positive
benefit for a firm, moving second gives more benefits for the firm, so, each
firm wants the other firm to move first, resulting in a socially inefficient
waiting game problem in the technology dissemination game. It suggests that a
proper government policy can stimulate technology dissemination at monopolis-
tically competitive markets.

This paper processes as follows. Section 2 builds a dynamic model for Nash
timing problem in technology dissemination. We characterize the dynamic Nash
equilibrium for optimal international adoption and domestic imitation of a new

: Notably, under an uncertain environment, Fudenberg and Tirol (1985) show a continuum of
equilibria.
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technology in Section 3. Section 4 specifies the cost functions for adoption and
imitation in order to demonstrate the waiting game problem. Concluding remarks
follow in Section 5.

[I. THE BASIC MODEL

In a small open economy23 an industry composes of two identical rivalry
firms. Each of these two firms, say firm 1 and firm 2, is assumed to be a
Cournot-competitor with each other, facing given market demand.4 Initially these
two firms are using the current best technology available, the old technology,
denoted by o. At time ¢=(), a profit-enhancing advanced technology,’ the new
technology, denoted by », is available to both firms. Each firm has two
alternative actions regarding the advanced technology: (1) buying the technology
from the international market, paying the international adoption cost c(¢), which
is the function of the adoption time ¢ at which the firm purchase the technology
from the foreign seller; (2) waiting until the rival firm buys the advanced
technology from the international market; and imitating it at some later time by
paying the domestic imitation cost d(s;#), where ¢ is the international adoption
time by the other firm and s is the time elapsed between the domestic imitation
and the international adoption. That is, the actual imitation time occurs at ¢+s.

We will make the following assumptions regarding the international adoption
cost and the domestic imitation cost. Similarly to the expenditure function for
R&D in Kamien and Schwartz (1972) and Reinganum (1981, 1989) and many
others in the R&D literature, the cost of international adoption and domestic
imitation is a function of time. This cost also is a one-shot sunk cost and will
be bome by the disseminating firm at time ¢.

First, we assume that the adoption cost function is a positive and strictly
decreasing convex function of the adoption time.

ASSUMPTION 1. ¢(#)>0; ¢'(#) <0; ¢"(t)>0, for all [0, c0].6

This adoption cost is considered as the price of the new technology in the
international market, referring to Lee and Park (2000) in the economy with one
buyer and one seller. This assumption is also equivalent to those in Quirmbach
(1986) and Fudenberg and Tirol (1985). For example, these cost functions:

> Lee and Park (2000) generalize to economies where technology adoption is decided by
strategic bargaining between a seller and buyer in international technology markets.

* This technology dissemination game is similar to an R&D game as in Kamien and Schwartz
(1982) and Reinganum (1987).

5 Such formulation for technology is equivalent to one for cost reduction for a new technology
in our model.

5 Note that ~(¢), ¢'(¢) is the first and second order derivative in term of £, respectively.
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c(t)y=ae ¥ c(t):—lf, k>(), satisfy the above assumption.

Second, we impose conditions on the domestic imitation cost. This imitation
cost function generalizes the constant cost of imitation in Quirmbach (1986) and
Katz and Shapiro (1987). The role of this assumption will be discussed below.

ASSUMPTION 2. For each ¢, d(s; )>0; d°(s;t)<0; d%(s;¢)=0, for all
se[0, ];7 and for each s, d'(s;t) <0, d(s;8)20, d°(s;t)=d"(s;¢)=0
for all +=[0, o).

At the first part of this assumption, the domestic imitation cost is a decrea-
sing convex function of the time elapsed between domestic imitation and interna-
tional adoption. The latter part of the assumption says that this cost function is
also a decreasing convex function in term of the international adoption time.
This concavity in addition to technical assumption ¢%(s;()=2%s;t)=0 is required
for ensuring existence of optimal strategy.8

A firm has adopted once the advanced technology, and then the cost for the
other firm to acquire the technology by domestic imitation is less than the
international adoption cost. It suggests that technology bears the public good
natures: non-exclusive and non-rivalry.? That is,

ASSUMPTION 3. d(s;t)<c(t+s) for all s, ¢>0; and J(0;¢) = c(¢) for all ¢.

This is equivalent to saying that the adopting firm has a choice between
domestic imitation and international adoption for acquiring the technology. This
assumption is standardized as in Fudenberg and Tirol (1985). An example of
such a domestic imitation cost function satisfying Assumption 2 and 3 is

dis, t)=ae ¥ k n>0.

There are four possible states for the industry regarding the technology each
firm uses,

(0, 0), (n,0), (0, n), (n, n),
where the first coordinate is for firm 1’s technology; and the second coordinate

is for firm 2’s technology - either the old technology o or the new technology ».
At time t=(, each firm must determine when to buy or adopt the new

7 Note that ¢%(s;¢) is the first partial derivative with respect to argument o where o=s, ¢;
and 4%(s; ) denote a second partial derivative in terms of arguments ¢, 8 where a, =35, &

® Notice that we need not assume the cost function to be jointly concave in s and ¢.

° Recently, this idea is widely used in the endogenous growth theory (see, for example,
Romer (1986) and Lucas (1988)).
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technology, maximizing the expected discounted net profit. This profit is a
function of the other firm’s choice and each firm is assumed to be a Nash
competitor with the other. Assuming that the market demand is stationary over
time the profit allocation generated by Coumot competition is constant over time
in each of above four states. Let n(x;y) be a profit per period for a firm
when the firm chooses the technology x, x=0, », when the other firm chooses
technology v, y=o0, n. This is, the profit for each firm depends on how the
other chooses its technology. For given (%, ), %, 9= o0, », the profit per period
for both firms is (7 (x:3), n(y;x)) at the state (x, y) where x, y= o0, n.

Now, we assume profit for each state and their relations as followings:

ASSUMPTION 4. Profit for all possible states has the following rank and
property:

a{n;0)>r(n;n)>n(o0)>n(o;n)>0, 7(n;,0)— nlo;0)>n(n;n)—nlo;n).

This profit function subsequent to its own technology generalizes one in the
literature, for example, Quirmbach (1986), and Katz and Shapiro (1987). This
assumption states that the increase in profit for the international-technology
adopting firm is greater than the increase in profit for the domestic-technology
imitating firm.!0 The second inequality can be justified by recognizing that a
new technology leads higher profit than an old technology to both firms.!!
However, the firm’s profit for technology adoption is greater when the rival firm
chooses not to do the same. The second part of assumption insures the profita-
bility of a new technology in the domestic market. That is, the configuration of
profits incorporates not only the way in which the new technology offers high
profits for the both, but also the nature of competition determines the relative
position for each firm in the market.

Let ¢, and ¢, be the time of action of either buying or adopting by firm
i=1,2, and firm j+4 j=1, 2, respectively. The interest rate is represented by
». Then the firm ;'s discounted net profit V;(¢;;¢) of moving at time 7= ¢,

given firm ;'s move at ¢=¢, is the following: When #<¢;;
Vz'(tz;t]): (ll)
1, oc
f{ eiﬂ[n(n;a)—ﬁ(o:o)]dtﬁLfr e "lrxlnin)—alo;0)ldt—e "c(t,).

However, when ¢,> ¢,

' This assumption can be shown to be satisfied when a production cost function is of

constant marginal cost and the market demand is linear.

"' We realized that the full justification for this assumption requires for specifying the demand
and the nature of competition for their outputs.
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Vit t) = (1.2)
ftt'e"”[n(o;n) —noidt+ [ e x(nin) = n0;0)ldi— e "t~ tit).

Notice that V,(t;;¢,) are continuous at #==¢; since d(0;t)= c(¢) for all ¢

But they are not differentiable at that point.

For an analytical simplicity we will exclude the possibility that a firm will
not adopt the technology at all. This can occur if the adoption cost or the
imitation cost is too high to guarantee the firm a positive value from the
technology adoption or imitation. That is, we assume that, given ¢;, there exists

some ¢, such that V,(¢;, t;)=0, where 7, j=1, 2.
[l. THE OPTIMUM TIMING FOR THE NEW TECHNOLOGY

The timing problem for the new technology can be summarized in a game
theoretic framework: The game is represented by I'={(1, 2), ®, V), where (i)
there are two players, firm 1 and firm 2; (ii) the strategy space is
S=5,xS,=6 where S;=[0, e] for i=1,2 and the pure strategy for player
i is t,e8,; (i) the payoff function V,, V, is given by Equations(l.1)-(1.2).

DEFINITION 1. The best response for firm ¢ to ¢ is

RZ'(tj):inf{f,'ES,':Vi(t,'. f;‘)ZV{(t,‘,, t,) for all t,’ES,-, (f,, l']'), (ti,, tj)
6.
The mapping R;;S;->S; is i's best response function.

DEFINITION 2. A strategy pair (', t;) is a Nash equilibrium for the game
rif () 4'eS,, i=1,2; () Vi(4;6)2V(4;t;), for all 485, and V,(4;
)=V, (ty: 1)) for all t,eS,. That is, (¢, &) is a Nash Equilibrium if # =
R, (t) and # =R, (#7).

Hence, the best response function for firm 7, /=1, 2, to fim j, j(*i)=1, 2, is

R{(t;)= inf[arg max Vit t)]= inf{argl maxl% rr%%)ﬁ]Vi( t,;t]-),, rrﬁlx }/,-( it
LEMMA 1. If a firm moves first, ie. buys the new technology, then the
fim’s optimal adoption time is either 0 or ¢ independently with the other

firm’s imitation time. Furthermore, the optimal adoption time ¢"+( satisfies

a(n;0)—n(o;0)=7rc(t")— (7). 2.1
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However, when ¢* =),

r{n;0)—n(o;0)>rc(0) — c'(0). (2,2)

PROOF. Without loss of generality, consider the case in which firm 1 moves
first, that is ¢ <t Suppose #'=1¢" is optimal for the first mover, firm 1.
Then, t*<¢, Also, firm 1's problem is

max V,(#;6)
Hhelo, t]

- f,tze‘ "[x(n;0)—nlo;0)]dt+ f:oe‘”[n(n;n)—n(o;o)]dt— e Melt).

The first order condition is

*allé(z,—g;i) =—e¢ "[[zn(n;0)—n(0;0)]—[rc(t,) —c (#)]1].

It is clear that the second order condition for optimality holds under Assumption
1. Since t*<t,, the solution is not binding by ¢, Thus the above equation for
) d Vl( t 1 tz)
dh
7(0;0) =we(t")—c(t"). However, when ¢"=0, x(n;0)—x(0;0)>rc(0)—

(0). Therefore, since the RHS of Equation (2) is strictly decreasing in ¢, ¢”
is unique and independent of ¢,. Q.E.D.

Note that Equations (2.1) and (2.2) are analogous to Equation 3 in Katz and
Shapiro (1987). The LHS of Equation (2.1), n(%;0)— n(0;0),!2 represents the
forgone profit due to the delay of the international adoption by one period, and
the RHS of the same equation, »c(t™)—c'(¢+"), tepresents the sum of the saved
service flow of the imitation cost ¢(¢) and the cost reduction »c(¢) due to
waiting one more period. At optimum in the interior the marginal cost and the
marginal benefit should be the same when the adoption is chosen at a non-zero
finite time. Related to capital investment theory, the first term on the RHS
also corresponds to the capital gain of not spending earlier.

implies that the optimal adoption time ¢"+( satisfies 7(#n;0) —

LEMMA 2. When a firm moves second, ie., it is the domestic adopter of the
new technology, the optimal imitation lag for the firm is s"(¢)+0, given the
international adoption time ¢ by the rival firm, such that

" In our model z(n;0)—n(0;0) can be interpreted as an “imitation incentive”. Similarly, Katz
and Shapiro (1987) rtefer to n(»n;0)— n(0;0) as a “stand-alone incentive” in the context of
dynamics R&D competition.
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a(n;n)—n(o;m)=rd(s"(¢); ) —d*(s"(t);t). (3.1
On the other hand, when s*(#)=0,

r(nin)—n(o;m)>rd(s™(¢)) —d(s*(£):1). (3.2)

Furthermore the imitation lag will be shortened as the adoption time is delayed,

i'e., _a,%;_t(f_l <0_13

PROOF. Without loss of generality, consider the case where firm 1 moves
second, ie., #,=f+s, s>0. This firm’s problem is as the following:

max Vl(t2+3; fz)
se[0, o]

ffz+5
[

—e ""d(s;ty)

e "[x(o;n)—x(o;0)ldt+ f:sef "[7(n;n) — n(0;0)]dt

The first order condition for this optimal timing for domestic imitation is

8V1(t2+s;t2)

R =—e U [ a(nim)—wo;m)]—[7d(s;t,) — d*(s;8)]]-

Therefore, we have Equations (3.1) and (3.2). Clearly, the second order condi-
tion for a maximum is also satisfied under Assumption 2.
Now, under Assumption 2, using the implicit function theorem on Equations

(3.1) and (3.2), we get %—”—=[rds(s;t)—d“(s;t)]_l[-—ra’f(s;t)-#d“(s;t)]
<( for all ¢+ Q.E.D.

Analogous to Equations (2.1) and (2.2), Equations (3.1) and (3.2) indicate that
the benefit of domestic imitation is large enough, with respect to the sum of
the cost reduction for a waiting period and the saved cost flow that dissemi-
nation occurs immediately after a new technology is available in the economy.

Lemma 1 and Lemma 2 establish the set of possible Nash timing equilibria
in pure strategies as follows: (0, 0); (0, s"(0)); (s"(0), 0); (¢, £) (£, £+
S (F4s7(F), £). In particular, the following lemma excludes the
non-zero symmetric equilibrium:

LEMMA 3. There is no non-zero symmetric Nash equilibrium in pure strategies,

" This property is also investigated in Fudenberg and Tirole (1985) and Stenbacka and
Tombak (1994). However, their results depend on the role of ex ante a leader and follower.
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ie., (£, £), is not an equilibrium.

PROOF. It suffices to show that, for given # >0, s"(#)>0. Suppose s*(¢")=0.
We have z(n;n) —n(o;n)2rd(0;t) —d¥(0;£)>rc(£) — ()= n(n;0)— n(0;0).
The first inequality is due to Lemma 2. Assumption 2 yields the second
inequality: That is, ¢'(¢)>d*(0;¢) since for all ¢ c(¢)=d(0;t) and c(t+s)>
d(s:t) where s#0. The inequality: 7(n;n)— z(o;n)>n(n;0)—x(0;0) contra-
dicts to Assumption 4. Q.E.D.

This lemma excludes the possibility of ex post identical firms at the strictly
positive time once a new technology is introduced. Hence, contrary to Stenbacka
and Tombak (1994), strategic actions of both firms will distinctively identify
their position of in the technology dissemination game. Under the similar proper-
ties of these cost functions the asymmetric equilibrium of optimal dissemination
of a new technology was found in Reingnum (1981) and Quirmbach (1986).

The following lemma shows that a firm prefers moving first, that is, buying
the new technology at a foreign market at time ¢ if and only if there exists
the critical value 7 where the other firm adopts this technology later than

f(=t").
LEMMA 4. Given s*, +"=0, there exists a unique 7 such that
V(D> (=<)Vi(t+5s"(¢), 1) as t>(=<)E

PROOF. Suppose firm 2 moves at time ¢. Then the difference in the net profit
between moving first and moving second for firm 1 is given by A(8)=V,(t";1)
— V,(++s"(¢);1). By Lemma 3, 4(+")<0. Also notice that

Lim 4(5) = f:‘[”(n;o) —n(o;0)le Mdu—e " c(t")

57t _
—Iij.rg{f, [7(o;n)—n(o;0)]e ™ du

t—cc

+ Lim [f: 'm[ [x(nin)—m(oi0)]e ™—e " O UG(s" (£);6)]du|>0.

Therefore there exists some sufficiently large number 7 such that A(T)>0.
Since A(¢) is a continuous function in #, we can use the intermediate value
theorem to conclude that there exists a 7, such that, 7>%>" which satisfies
A(F)=0.

Now it is clear that that 4(¢) is a strictly increasing function of ¢. That is,
by using the envelope theorem, we have: %A(t)z% Vl(t*;t)—g? V(45"
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(¢);8)>0. Therefore there is unique 7 that holds the Lemma. Q.E.D.

Now, we can describe the best response function each firm as follows. First
note that 7(n;0)—x(0;0)<rc(0)—c’(0) implies #(n;n)—x(o;n)<rd(0;0)
—d*(0;0), which can be shown easily under Assumptions 3 and 4. Therefore,
by Lemma 1-4, we need to consider only three cases for the best response

function as below:

CASE 1. Suppose n(n;0)—z(0;0)=27rc(0)—c'(0) and n(n;n)—x(0;0)=rd
(0:0)—d*(0;0). When £>0, R;(¢;)=0 for all 4, j=1, 2i%;.

CASE 1I. Suppose n(n;0)—n(0;0)<rc(0)—c'(0) and z(n;n)—x(o0;0)<rd
(0;0)—d°(0;0). When t,27, R;(t;)=0 for all 4, ;=1,2, i+, When ¢;<f,

R.(t;)=s"(¢;), for all ¢, j=1,2, i#;.

CASE IIL Suppose 7(n;0) — 7(0;0)<rc(0) — c’(0). When £,27, R(t;)=¢"
for all i,jzl, 2, lIF] When fj<f, Ri(tj):t,'+5*(tj) for all i, ].:1, 2, l*]

Figure 1 illustrates for Case III that firm 2’s optimal time decision in Nash
competition is along s(#)-curve as ¢ moves from Q up to #; and at that point
jump down to :* and stays there as ¢ increases from 7. First, notice that
R(F)+t+s"(F), but Ry(F)=1¢" by the inequality condition in Case III.
Second, it is clear that Ry(#) is not continuous at =7 not only because
R, (f)+f by Lemma 3, but also because Lemma 2 (ie, —a-%t@l<0, s >0,
and thus 8V(Z“(s*)-|:s‘;f(s‘)) >0) and Lemma 4 (ie., when s*=0, V(¢*;F)>
V(%;7) since ¢7 is optimal for given 7), contradicting to the continuity of
R,(T) at 7, in which there exists e>0 such "= R,(F)=¢"+e.

[Figure I] Firm 2’s reaction function in Case III
Ra( fl)

bt st(#) /
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The following proposition characterizes the set of Nash equilibria in pure
strategy.

PROPOSITION 1. The timing problem I'={(1, 2), @, V} has following solu-

tions in a small open economy:

{. In Case 1, there is the only Nash equilibrium { (0, 0), (0, 0)}=@x @.

2. In Case II, there are Nash equilibria in pure strategies if and only if
s"(0)=7. Hence, if exist, the set of Nash equilibria is {(0, s"(0)),
(s"(0), O=Ox0O.

3. In Case IIlI, there are Nash equilibria in pure strategies if and only if
t"+s"(¢*)=¢t". Hence, if exist, the set of Nash equilibria is {(¢*, ¢"+
ST, (PTG, e oxo.

PROOF. Suppose the first mover’s optimal technology adoption time from the
international market is ¢*. We consider the most general Case III. Lemma 1
implies that ¢ is independent of the second mover’s domestic technology imita-
fon time. Since n(#;0)— x(0;0)<rc(0)—c’(0) implies »7(0;0)—d°(0;0)>
x(n;n)—m(o;n), the second mover’s optimal imitation time, given the adoption
time t* is +*+s"(t*). Therefore, by Lemma 4, only candidates for Nash
competition will move first if and only if the other firm moves later than 7.
Hence, the equilibria will occur if and only if ¢ +s"(¢")=7.

In the case I, Lemma 1 implies that the first mover’s optimal adoption time
is t*=0; that represents the immediate international adoption. Since z(x;x)
~m(o;0)<rd(0;0)—d°(0;0), the second mover will adopt the new technology
in the domestic market at s*(0). Finally, by Lemma 4, the equilibria will occur
if and only if s"(0)>F.

For Case 1, it is clear that Lemmas 1 and 2 imply that immediate adoption
is optimal for international technology adoption and thus immediate imitation is
optimal. Q.E.D.

The proposition shows that immediate technology adoption is the only symme-
tric solution in a non-competitive market. Note that Reinganum (1989) and Katz
and Shapiro (1987) conjecture this possibility in models of R&D competition.
Unlike our result, they focus only on the interior solution for positive timing for
actions as in Case III. Therefore, this proposition generalizes the literature by
explicitly characterizing the comer solutions. Case II is in fact the special case
of Case IIl. Both cases show the existence of the ex post heterogeneous firms,
whereas Stenbacka er al. (1994) assumes ex ante heterogeneous firms.i4

" Since this model is a partial equilibrium analysis and there exists the public-good nawre of
technology, we can only conjecture welfare ranks for the above cases. That is, the immediate,
simultaneous adoption (Case I) is not necessarily yields higher social welfare than sequential
adoption and imitation (Case IT or III). It is reasonable to guess that the social welfare for Case
I can be higher than Case 1L
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[Figure 2] Nash Solutions for Case III
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Case III is illustrated in Figure 2 below. In Figure 2, where ¢*+5s'(¢")>7,
the best response functions interest at (:*, t*+s"(¢")) and (+*+s"(¢%), ¢%),
and they are two Nash equilibria. Clearly, Case II is when ¢*=0.1

IV. THE WAITING GAME PROBLEM: AN EXAMPLE

In the previous section we found the set of Nash equilibria, if exist, in the
economy for technology adoption and imitation. We now specify the adoption
cost function and the imitation cost function to illustrate properties of those
equilibria. Later of the section, we also demonstrate the waiting problem of
technology dissemination.

Let a cost function for adoption for a new technology be c(#)=ae™*, where
>0 and £>(. This function satisfies Assumption 1, i.e., ¢(¢)<0 and
c"(¢)>0. We also specify a cost function for technology imitation: d(s;¢)=
oe”¥e ™, where h>k Note that the imitation cost function is exponentially
decreasing function of the time elapsed between the imitation time and the
adoption time, with the rate of exponential coefficient 4. It can be considered
that the coefficient 5— % represents the degree of the domestic diffusion speed
of the technology. Given k, the greater % the faster domestic diffusion, and thus
the lower the imitation cost. In sum, this imitation cost function satisfies Assump-
tion 2.

Together with the adoption cost function, the imitation cost function also

kt

'S A referee pointed out an interesting question for selecting one of Nash equilibria, yet

rational expectation models convey the similar feature. In order to dealing with this question, we
need to introduce more structures and behavioral assumptions.



140 THE KOREAN ECONOMIC REVIEW Volume 17, Number 1, Summer 2001

satisfies Assumption 3. It is easy to check that Assumption 3 holds, ie., for
all ¢=0, since ae ¥e M<ae ®'7Y for all h>k d(s;t)<c(s+¢); and d(0;¢)
=c(#).

Optimal Technology Adoption and Imitation Time for a New Technology
Firm 1’s problem as a first mover is as following: rn[ax Vi(t:ty), where
1hel0,t

—(k+MH

V1=f{fze“"[ﬂ(n;o)—n(o;o)]dt+f{vm[n(n;n)—n(o;o)]dt—a,e _ Here

1

we maintain Assumption 4 for configuration of profits. The first order condition
is: [7(n;0)—n(0;0)]—alk+ Ye ¥ =0. Therefore the optimal adoption time is
n(n;0)=7(0;0) .44,

o >

as followings: When

«_ 1 n(n;0)—no;0) 1.
R T (4.1)

when ”(”;O);”(O:O) Zk+ 7,

t =0. 4.2)

It confirms that the optimal adoption time is independent of the other firm’s
imitation time, but depends on ex post the market structure. It also is decreasing
in [7(n;0)—n(0;0)] and increasing in @, », & An increase in sufficiently
large profit, [7(#n;0)— x(0;0)]; and a sufficiently small initial cost «; an
interest rate »; and a marginal cost of adoption k£ stimulate the immediate
purchase of the technology.

Now consider the optimal technology imitation time with our specific cost
functions. Without loss of generality, let firm | be a domestic adopter for
technology and then its problem is the following: Given ¢#,, technology adoption

by firm 1 n?ax]Vl(tﬂ"s, t,) where
se{0,00

s+t

Vlzf, e "[x(o;n)—n(0;0)]dt
+ f e "lx(n;n)—x(0;0)ldt—ae AT
s+t

Clearly, the first order condition is: [ (%;#n)—n(0;0)]—a(h+ e R =,

Therefore the optimal imitation lag s*(#) is as followings: When

eMa(nim) —aloimd] _, .0 v
a

s’(t2)=—%[ln[ n(n;(y?t()h;néo;n) ]+kt2]; 5.1
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when ek[[n(n;n‘)y— wloinm) 5 p4

s (B)=0. (5.2)

It is worth noting properties of the optimal imitation lag. First, as in Lemma
2, the optimal imitation lag is a decreasing function of the adoption time, ie.,

__j_lds;]tt <(Q. That is, the imitation lag will be shortened when the adoption for

a new technology is delayed; but the size of that reduction is less than the
delay of the adoption. Second, the imitation will be hastened, the greater the
[7(n;n)—n(o;n)]; the smaller the interest rate »; the smaller the degree of
diffusion speed 4.

We now pin down Nash timing equilibria. Using Equations (4.1) and (4.2)
and Equations (5.1) and (5.2), the possible Nash timing equilibria can be shown
to be as follows: When =~ (”;O);” (0i0) 3444, the optimal adoption time is
t"=0. On the other hand, given ¢#* =0, the optimal imitation lags are followings:

sy — L (mn)—n(o;m) | ¢ xlm;m)—x(o;n)
5(0)_—hln[nna’zh+r)0n]lf n'nnaﬂon <h+ 7.

$(0) =0 if ”Q”;’Q;”(O;") 2ht 7.

When Z(2i0)=7€0i0) _ )1 . the optimal time for the technology adoption
is ¢t*+0. Furthermore, given ¢= ¢ the optimal imitation lags are followings:

(r{n;0)—~ (o)At 7

(n;0)—n(0;0)
(k47 < = (o) A F 7

S =0 i (k2 ELB=T0D G

s‘(t‘)z—%ln[ (mln;m) ~n(o;m)Nktn) ] if

We demonstrate the set of all Nash equilibria in Figure 3 for the relationship
between the magnitude of 2 and %, and the possible realization of equilibria.
(For diagrammatic simplicity we employed (k+ 7)x(h+») space instead of
kx h space.)

First, let us identify all regions in Figure 3. The conditions for Equations
4.1, 42), (5.1), and (5.2) determine the four regions. In Regions I-a and I-b,
where both the cost reduction rate # and the domestic diffusion speed % are
low, the adoption and the imitation will occur immediately, resulting in an
equilibrium at (0, 0). In Regions II-a and II-b, where % is small and % is large,
the adoption will occur immediately and the imitation will occur at some time
later, resulting in a possible equilibriom at (0, s*(0)). In Regions Ill-a and III-b,
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[Figure 3] Nash Solutions with Values of £ and #
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where both % and % are large, the adoption will occur at some positive time ¢°,
and the imitation will occur at some later time, resulting in a possible
equilibrium at (¢*, ¢*+s"(¢+")). Finally in Regions IV-a and IV-b, where % is
large and % is small, the adoption will occur at ¢*, and the imitation follows it
immediately, resulting in a possible symmetric equilibrium at (¢7, ¢7).

n(n;0)—x(0;0)

Second, the slope of OA-line is Cnim)—nlon under the condition for
s*(¢+*). The condition that s> 4 for Both’ Cost ‘Functions for technology adoption
and imitation also determines that the slope of OB-line is45°. Together with
Assumption 4, OA-line lies above OB-line. Hence, only regions below OB-line
are relevant and thus we confirm Lemma 3, i.e., the solutions in Region IV are
excluded.

The Waiting Game Problem in Technology Dissemination

Recall that Proposition 1 assumes the existence of Nash Equilibria. In this
subsection we will examine when equilibrium may not exist. This non-existence
is identified as a waiting game problem, which realized in the literature (e.g.,
Katz and Shapiro (1992)). We find in this subsection that this waiting game
problem for optimal timing decision is common in a model of technology
dissemination.

This problem occurs when a firm moves first at time ¢ and the other firm
follows at time ¢+ s(¢). Since ¢+s(¢) is less than f—defined in Lemma 4, the
first firm is better off to choose its imitation time, [¢+s(¢#)]+[s(t+ ()]
Therefore no firm moves first, and thus there is no equilibrium in this game.
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[Figure 4] Non-existence for a Nash Technology Dissemination Game

t

This waiting problem comes from an individual firm’s unwillingness to adopt
unilaterally; expectations about when the rival firm will follow are crucial to the
behavior of the initial adopters.

Intuitively, the waiting game problem can arise if the domestic diffusion of
the technology is too fast, resulting in an imitation lag that is too short. The
shortened imitation lag will raise the follower’s net profit and lower the leader’s
net profit. Even though the net benefit of the leading is positive, the net benefit
of the following is greater than that of the leading so every firm would rather
be a follower than a leader. That is, there will not be any leader; no firm can
be a follower either. The figure below demonstrates such possibility.

Now we will demonstrate the waiting game problem in our model. Since we
cannot explicitly compare  the size of  and t"+s7(¢") (because  is mot
explicitly determined in Lemma 4), we will compare the change of ¢ and s"(¢7)

with respect to the domestic diffusion speed 4, to see the relationship between
the size of % and equilibrium outcomes.

Recall that 4(£)=V,(¢t*;¢)— Vi(t+5s"(¢);¢) in Proof of Lemma 4. We may
also recall that ¢ satisfies that 4(¢)=0. Using the condition for optimal s*(¢*)

for t*=0 under our specification of the cost functions, we have A(¢) as follo-
n(n;0 —x(0;0)
a 3

wings: When &+ »>

. t
A(t):ae—(k+r)r[e~(h+r)::(t)_l]+f-e——»m[”(n;o)_ﬂ_(o;o)]du
5T t
+f{ e “[x(n;n)—nr(o;0)ldu.

7r(n;0)—7r(o;o)1

When £+ r» < -
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A(t)=a[e W= hrna 114 fotegm[n(n;o)—ﬂ(o;o)]du

t+5°(1)
+ft e ™ n(n;n)—n(o,;0)ldu

First, consider Regions IlI-a and II-b in which (#, s" (¢*)) is an equilibrium.
The relation between s° and 2 can be expressed as a—sa%—l = % [% In
r(nin)—x(o;n) k+7r 1 9s*(t*) : .
[ 2o =00 h+7]+ h+r]' Hence —*5,—= <0 if and only if k+r<

b ) )
[e ””] ;((Z"zg:gggf%][hnL ). Furthermore, using the implicit function
theorem for A( E) above,’ we have At g all » under Assumption 4; the
decreasing property of the optimal imitation lag, ie, J‘%}l <0 (see the

argument below Equation (5.2)).16 Given the reference-curve, say DE-curve for

"%ﬁl =( in Figure 5, which approaches to OF-line whose slope becomes
[e—l][ x{n;0)—x(0;0)
n(n;n)—n(o;n)

the property that «Z,% >(). Therefore, these points can suffer from the waiting

game problem.

} as h->o00.17 That is, all points below DE-curve has

[Figure 5] The Waiting Problem with Values of % and 2

k+r A
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_
- \\
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x(n;0)—7(0;0) (-2} (II-b) : (0, s*(0))
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@

'* We apply Leibnitz’s Rule for differentiating an integral with respect to a parameter, see for
example Rudin (pp. 144, 1973).

" For illustration, we add a technical assumption in order to ensure DE-line intersects with

OB-line: ¢ '[z(n;0)—n(0;0)}<x(n;n)— x(0o:n). Otherwise, there is no solution at Region III-b.
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Now, consider Region II. That is, 9s°(t7) ==% Uzl [ (nin)—x(o; ")]

oh alh+7)
h—}- ] when t*=0(. Therefore, %“—l <0 at ¢*=( if and only if
h+ r>[ "*’][ ”(”’")a 2(0im) | In particular, we define h¥» where

85"(t) _ This becomes Z{iml=n(o; n 7Ty . Taln;0)—n(0;0)
Hence, CD-line represents #+» and thas locates between OA-line ahd OB- llne
at ptr=-E#i0) = 700:0) for the (p+ ) —axis. Using the same method as

a
the above case that ¢*+(, it is easy to show that —5- dh >( whenever

—as—a%f—l <(. Hence, all points at the right area of CD-line also suffer from
the waiting game problem. We then recognize that equilibrium strategies in
technology dissemination game can occur on the Regions I-b; the part of Region
[I-b at the left of CD-line; and the part of Region III-b below OB-line and
above DE-line.

In sum, all points below CDE-curve satlsfy >0 and bear the waiting

game problem. That is, as 4+ » increases, the mutatlon lag is shortened,
whereas 7 is increased. Therefore when the degree of the domestic diffusion
speed # is high (relative to the rate of cost reduction for the international
adoption ), the gap between 7 and ¢*+s°(¢") should be wider. Hence, is
suggests that the waiting game problem can be caused by a relatively high
domestic diffusion speed.

[V. CONCLUDING REMARKS

We defined technology as the exclusive right to use a blueprint to produce a
commodity in a certain limited market. Because of the single unit-demand
characteristic of a technology, the decision to adopt a new technology is a
timing problem, rather than a quantity problem. In our dynamic game-theoretical
setting, we show Nash equilibria in models of technology dissemination. We also
demonstrate possibility of non-existence of a solution in the waiting problem
under a usual technology competition.

The basic model in this paper is general enough to provide many avenues for
extending our analysis. We could introduce an international firm in the
technology-adopting sector, so that we might investigate some interesting ques-
tions by including, for example, strategic behaviors between technology buyers
and sellers, preemptive strategies, limitation and licensing, and uncertainties of
innovation. We also could add a market for a manufacturing good produced
with a new technology to endogenize a dynamic comparative advantage in
international markets. It would enrich our analysis in the context of completing a
final good market and its underlining technology. Finally, we could extend our
framework to a model with network externalities as in Katz and Shapiro (1992).
We will leave these interesting topics for future research.
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