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DISEQUILIBRIUM BEHAVIOR AND SATISFICING
IN THE CENTIPEDE GAME

YOUNGSE KIM*

We reexamine subjects’ behavior in the centipede game experiments studied by
McKelvey and Palfrey (1992, Econometrica). We assume that players choose acts
according to a modified version of case-based decision theory. The calibration
results of this paper show that 'satisficing” can explain the actual subjects’
behavior surprisingly well. More precisely, it is shown that 86 to 92 percentage
of the observed behavior is consistent with our model prediction. In our model,
the initial aspiration level is not constrained, and the calibration results can be
used to evaluate whether the inferred initial aspiration levels are consistent with
the payoffs resulting from the subgame perfect equilibrium outcome.
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1. INTRODUCTION

Experimental studies make it clear that models of game behavior demanding
perfect rationality of the players seem to perform poorly with even very simple
games. Consider the situation in which rational players play a finite-horizon
extensive form game of perfect information. Traditional theory can “generically
propose a sharp prediction, called the subgame perfect equilibrium. The trouble
is that experimental studies have reported drastically different behavior in some
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well-known games, such as ultimatum bargaining games and the centipede game
as studied by McKelvey and Palfrey(1992). Any Nash equilibrium to the centi-
pede game results in miserably low individual payoffs despite the possibility of
all players becoming much better off. Contrary to this extreme prediction of
perfect equilibrium, experimental studies reported that the outcomes in the
centipede game were widely dispersed with the mode in the middle.

We propose a model to explain the observed behavior which violates perfect
rationality and, in particular, backward induction argument.) This paper develops
a general theory which can be used to evaluate subjects’ behavior and applies
the theory to the simple four-move centipede games. The model can be des-
cribed as follows. Players form their own initial aspiration levels right after
being informed about the game but before playing it. This is meant to capture
that, without explicitly modeling how, each subject’s initial aspiration level is
determined by factors such as the informational condition, the first mover
advantage or disadvantage, the subject’s model of opponents’ play, his experience
of having faced similar situations before and knowledge about game theory.
Once initial aspiration levels are formed, players adapt in subsequent periods to
their experience. The dynamic model of this paper is heavily based on Gilboa
and Schmeidler’s(1995, 1996) case-based decision theory (CBDT henceforth).

In our approach, a player chooses .a strategy to maximize the objective
function which is the sum of the differences between experienced payoffs and
the current aspiration level. The objective function, which Gilboa and Schmeidler
derived from a set of axioms, has an element of bounded rationality and habit
persistence. The aspiration level evolves over time, which is set to be a
weighted average of its previous value and the best average payoff over all
strategies. Using Binmore's(1987) terms, in our model the ‘eductive’ process
determines the initial aspiration level, and the ‘evolutive’ process governs the
subsequent learning process. Traditional theory, to verify whether a particular
outcome is indeed an equilibrium, often presupposes an introspection process that
seems beyond the cognitive limit of human subjects. On the other hand, recent
developments in learning and evolution, showing how an equilibrium gets to be
played, often assume agents who can do nothing but make occasional adaptations
to previous history. Our model may be an approach to incorporate these two
features into one framework.

This paper shows that satisficing can explain the subjects’ observed behavior
surprisingly well. We define the minimally inconsistent path(s) to be the one
that, among the paths predicted by the model, is least different from the actual
play. Here, ’least’ is measured in terms of the number of periods. The

" Camerer et al. (1993) used a software system to record the information subjects looked at
and to draw inferences about how people think in a ultimatum bargaining game. They concluded
that ‘any model that assumes players backward induct is a poor descriptive account of how
people think. Such a model might make reasonable predictions, but models that incorporate better
representations of human cognition could make even better predictions.’(p.45)
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calibration results show that the proportion of periods at which the observed
behavior is consistent with our model ranges from 86 to 92 percent depending
on the payoff size and the player’s role. The result does not change significantly
regardless of whether the stake is small or large. We also define the minimally
imperfect initial aspiration to be the number that, among the initial aspiration
levels consistent with any minimally inconsistent paths, is nearest to the perfect
equilibrium payoff. If there is some minimally inconsistent aspiration equal to
the perfect equilibrium payoff, we can not reject the hypothesis that the subject
made his initial choice on the basis of rational expectations. It is shown that
roughly half of the subjects’ minimally imperfect initial aspirations coincide with
the perfect equilibrium payoff. This suggests that our claim would remain true
even if half of the subjects can rationally calculate the equilibrium payoff and
set their initial aspiration levels accordingly.

It has been recognized that satisficing can capture many salient features of
experimental results. Examples include repeated prisoner’s dilemma (Selten and
Stoecker, 1986), bargaining problems (Mitzkewitz and Nagel, 1993) and a
repeated zero-sum game (Mookherjee and Sopher, 1994). The most widely
applied framework of satisficing behavior is the stochastic learning mechanism
due to Bush and Mosteller(1955) and Harley(1981). In this approach, each
player is assumed to adapt his strategy from one round to the next by
increasing the probability assigned to the chosen strategy if it tesulted in a
payoff exceeding the aspiration level, and decreasing it otherwise. Fixing the
aspiration level to be zero, this approach presupposes positive payoff in
economic term or stimulus in psychological term. Roth and Erev(1995) showed
by simulations that the interme- diate term predictions of modified Harley's
models track well the observed behavior in three games: a sequential best-shot
game, a market game, and an ultimatum bargaining game. Roth and Erev
suggest that subjects used essentially the same learning rules regardless of game
structure and location and that 'the observed differences reflect different patterns
of adaptations’,

We apply a modified version of CBDT on the following ground. Above all,
we believe that the environment CBDT presumes is similar to the environment
subjects often face in actual laboratory experiments. Gilboa and Schmeidler
remark that CBDT is particularly appropriate in analyzing situations involving
“ignorance”, which refers to the situation in which neither the states of the
world nor probabilities on them are naturally defined.2) In many experimental
studies, subjects are asked to make certain decisions, while being placed in
unfamiliar situations especially in initial stages. Hence, this paper attempts to test
how well CBDT works in situations that we believe are the most pertinent.

? Gilboa and Schmeidler added the notion of “ignorance” to the Knightian distinction between
risk and uncertainty. To demonstrate how backward induction breaks down in some repeated
strategic form games, Dow and Werlang(1994) apply concept of non-additive probabilities, which
is a model of uncertainty.
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Second, the deterministic nature of our model enables us to check whether and
to what extent actually observed paths of subjects’ choices are consistent with
the theory. This is in sharp contrast to Roth and Erev that relied heavily on
simulations, although our approach can convey the same insight and intuition.
Last, the informational requirement of CBDT is less demanding relative to other
learning models. A case-based player needs to know nothing about others’
choices or characteristics, nor the structure of the game at hand. All he must
remember are the number of times that each strategy was chosen, if ever tried,
and its average performance.?

The structure of the paper is organized as follows. The next two sections
build up the model and explain central notions for subsequent analysis. Section
4 describes the centipede game and demonstrates how our model works. Section
5 reports the calibration results. The final section concludes.

II. THE MODEL

The stage game is a finite two-person extensive form game of perfect
information. At each decision node one player decides between a finite number
of actions. Let §* and S=S'xS? denote the set of player-i’s pure strategies
and the set of strategy profiles, respectively. Let s* and s denote typical elements
of the sets S§* and S, respectively. Each strategy profile determines a terminal
node zeZ giving a vector of payoffs, one to each player. Let z':Z—R denote
player i's payoff function. Also let x' and # denote the lowest and highest
payoff achievable in the stage game for player i, respectively. It is well known
that this class of games has generically a unique subgame perfect equilibrium.
Let IS, denote the set of payoffs that player i receives on the subgame perfect
equilibrium.

According to game theory tradition, a strategy is defined as a complete
contingent plan. In belief-based learning approaches, it is important to specify
off-the-equilibrium beliefs and plays. However, in our model of bounded
rationality, it is more sensible to assume that players do not distinguish between
two pure strategies that lead to the same terminal node. For this reason, a
“strategy” in this paper refers to a pure strategy that remains after realization
equivalent strategies are merged in an equivalent class.

Imagine that the stage game is repeatedly played at periods #=1, 2, ---, T,
where T may be finite or infinite. Player ; updates his strategy at period t,
according to player i’s payoff realized up to (#—1), relative to his present

3 Belief formation models, such as Fudenberg and Kreps(1992) and Canning{1992), require that
players observe the empirical frequencies of opponents’ realized strategies in order to form beliefs
against which to choose a best response. Evolutionary dynamics, such as Kandori, Mailath and
Rob(1993) and Young(1993), require that the aggregate characteristic of the population be
observable.
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aspiration level. Let H/ denote playet i’s aspiration level at the beginning of
the period 2. The set of T-histories is a subset of @=(R*xSxRHT. A
T-history w={H,, s,, 7)I1<t<TYeQ" will be interpreted as follows: for all
t>1, the pair of aspiration levels is H,=(H}, H?) at the beginning of the
period, a strategy profile s,= (s}, s?) is chosen, and it yields a payoff vector

of x,=(x'(s), ©*(s,)). The projection fumctions ¢/: Q" —S* and o* = (o}),ci<7
have the obvious meaning.

Next we define a function C:Q’xS'x 727 to be the set of periods, up

to a given time, at which player i played a given strategy, according to a given
history. That is,

Clo, s', ) ={r<dsi @) =5},
We also define the number of times player i played a particular strategy s* by

Ko, s, H=#Ca, s, ne{0,1,2, -, T}

The strategy is evaluated by the sum of the differences between experienced
payoffs and the current aspiration level. Formally, player i’s objective at period #
is to choose a strategy that maximizes the following UF-function:

oL 0, . if K'(o, s', £)=0
vle s v {tec?z:s.» [0 - B, K, 020 O

where 7' (w) is the player i’s payoff at period ¢ along the history w. If the U

maximizing strategies are multiple, then player ; is assumed to choose one of
the strategies by some deterministic tie-breaking rule. Notice that the value U
directly depends only on the current aspiration level H. Tt will be often
convenient to express the ¢/ function in the following form:

. P _ 0, _ if K'(w, s, )=0
U, s 0= gty 5, O[T, 5, H— B, i Ka, &, 020 D

reCF«J,S‘, ‘)"rt(W)
K(w,s', t)

where [1'(w, s', ) = is the absolute average payoff of the
strategy s'.

Now consider the aspiration revision rule. For a given adjustment weight
@'e[0,1] and the initial aspiration level Hi=H'e[x’, @], player i updates
his aspiration level in an adaptive manner. Specifically, the present aspiration
level is the weighted average of its previous value and the maximal average

payoff, where the maximum is taken over all strategies. On the other hand, if
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player ; had no opportunity to move at (#—1), then the resulting stage game
payoff is used in revising the next period aspiration level. More formally,

H:iz (1 _ai)Hti-] + ai s"”e'?'ff) {—1:[—"(3", t)}’ (3)

where S*(¢) is the set of player i's strategies which were chosen before ¢ This
tevision rule has the desirable property that if the same strategy profile is
repeatedly played then the aspiration level approaches the realized payoff.

. THE ANALYSIS

In this section we explain how the theoretical framework just developed can
be used to evaluate observed behavior. Experimental data at individual level
provide the sequence of realized outcomes. Since there is a set of strategies
which is consistent with a given outcome, corresponding to a sequence of
realized outcomes there is the set of the sequences of strategies that is
consistent with the actual data. We call it as the set of actual paths. Let §°
and 8'=(8}),<.cr be the set of actual paths for player ; and its typical
element, respectively.

Now we want to characterize the paths of strategies that are consistent with
our model, namely the sequences of strategies that a player who behaved as if
he was a modified CBDT decision-maker would have chosen. To this end, fix

the initial actual choice 8} as given. We can then generate the subspace of

T-histories that, starting from the initial strategy 8, are compatible with {F*
-maximization and aspiration revision rule. Formally,

O={we|si(0)=:s!, si(w) cargmax U'(s', 1), V=2, and
3 a’=(0, 1) such that (H/),.,r evolves by Eq.(3)) 4)

Focus on a particular subject playing player-i’s role, so we suppress the
superscript § whenever there is no confusion.

We say that a play of player ¢ is consistent with the model if s'e{s¢'(w)lw<=Q},
where ¢'(w) is the projection function. Suppose that the observed play of a
particular player is not perfectly consistent with the model. We postulate that his
intended play is the path minimizing the number of periods at which he
behaved inconsistently, More formally,

Definition 1. Define the set Q*(s‘) to be the set of minimally inconsistent
(MIC, in short) histories that is associated with the actual path §°, where
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Q' (sH)={wedl t{tlsi+d(w))< t{Hsi+d ()}, Vre . (5)

Let O*= U,.Q (8) be the set of all MIC histories. Define a[.Q (5] to be

the set of MIC paths that is associated with the actual path s, where ¢°(.) is
the projection function from histories to strategy choices. Clearly, 3% ~Ug '[9 (5]
is the set of all MIC paths.

Corresponding to each MIC path, there exist pairs of the initial aspiration
level and aspiration revision coefficient, (H, o), that are consistent with the
given path. Let a minimally inconsistent aspiration level (MICA, in short) be the
initial aspiration level which is compatible with some MIC path for some
revision coefficient, .

The following story is what we keep in mind about how people behave.
Subjects form their initial aspiration levels after being informed of the game but
before ever playing it. We do not attempt to model how players form their
initial aspirations. We belicve that un-modeled factors, such as rationality of
players, the first mover (dis)advantage, whether the player has faced a similar
situation before, affect the level of initial aspiration. For this reason, if there is
some MICA equal to the perfect equilibrium payoff, we may not be able to
reject the hypothesis that the subject made his initial choice on the basis of
rational expectations. Hence, we are interested in the MICA that is nearest to
the perfect equilibrium payoff. We call it to be the minimally imperfect initial
aspiration level (MIPA, in short) and the MIC paths associated with MIPA to
be the minimally imperfect (MIP, in short) paths.

We want to formally define these notions. Let A'={H'(w)<[0.4, 6.4\0cQ"}
and A2={HYw)<[0.1,3.2\0=Q"} be the set of player 1’s and 2’s initial
aspiration levels that are compatible with some MIC path. Now the notion of
minimal imperfection is defined as follows.

Definition 2. Define the minimally imperfect initial aspiration level(MIPA, in
short) to be:

Al=arg 1nf |z — Hl, (6)

H‘en

where IT%,, is the set of perfect equilibrium payoffs to player-i and the
argument is taken over H's. Also define a minimally imperfect path to be an
clement of the set {s'e X |H'(w) =24’} where H'(.) is the projection function
from histories to initial aspiration levels.

We will later demonstrate how to check consistency and calculate the minimal
imperfect initial aspiration level and the corresponding path, using an individual
datum in the centipede game.
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IV. THE CENTIPEDE GAME

The Four-move Centipede Game. Consider the centipede game studied by
McKelvey and Palfrey (1992, MP henceforth). Figure 1 illustrates the four-move
extensive form. An experimental treatment was conducted with stakes four times
those indicated above. This experiment is labeled “high payoff”. Each player has
three strategies in our sense, namely T, P;T;,, and P,P,.,, for ;=1,2. As
was previously noted, although player-i has four pure strategies, 7;T;,,,

P;Ti3, T:;P;yy and P;P;_,, for i+1,2, we consider two strategie T,;7T;,,
and T,P;,, as one strategy.

Since any Nash equilibrium to this game involves player-1 playing T, the
unique subgame perfect equilibrium clearly makes the same prediction. That is,

TMle=1{0.4} and I1%,={0.1} Experimental outcomes are quite different from
the Nash prediction. Each player played the game nine to ten times against
different opponents. MP’s aggregate statistics found only 37 out of 662 games
ending with T, while 23 of the games end with both players passing at every
move. The remainder of the outcomes are scattered in between.

A Heuristic Example. We demonstrate . how to calculate the set of MIC paths
and the MIPA. The datum is for the third subject of player 1's role in MP
experimental treatment Session 2.4 Throughout the example, we suppress the
index ; and the dependence of aspiration level on the adjustment coefficient, a,
and the initial aspiration level, H. The first, second and fourth row of Table 1
respectively indicate the index of round, the observed terminal node in each
round and the realized payoff to the particular subject at hand. From the series

[Figure 1] The Four-Move Centipede Game

P, P. P, P,
I (2 (1) (2) 6.4
N \ O/ L6
Tl T2 T3 Ttl
04 02 1.6 0.8
0.1 0.8 04 32

* The calculations are purely mechanical. We do not suggest at all that the chosen subject’s
behavior is particularly interesting.
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[Table 1} A Heuristic Example #,

t 1 2 3 4 5 6 7 8 9
z 3 3 2 2 1 1 1 1 1
X PT PT | Pe | Po. T T T T T
. 1.6 1.6 0,2 0.2 0.4 0.4 0.4 04 04
path A| PT PT | PT PT T T T T T
map. | L6 1.6 | 343 | 09 0.9 0.9 0.9 0.9 0.9
path B| PT PT PT T T T T T T
map | 16 L6 | 3453 | 343 | 343 | 3453 | 3453 | 3453 | 34p3
path C| PT PT PP T T T T T T
map | L6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
path D| PT PT PP T T T T T T
map | 16 1.6 1.6 1.6 | 16 1.6 1.6 1.6 1.6

Note: The “map” means the maximal average payoff.

of realized terminal nodes we can figure out the corresponding series of
strategies which are consistent with the observed play. This is shown on the
third row. Notice that there are four possible paths depending on s,={PT, PP}
and s,e{PT, PP}.

Consider the first possible path, labeled as ‘path A’, in which (s, 54)=
(PT, PT). The sixth row, labeled as ‘map A’, of Table 1 shows the
sequence of maximal average payoff along this path. In order for PT to be
consistent from #=2 to ¢=4, it must be that

PT=arg max {0,1.6—H, 0},

{T.PT, PP}

PT=arg max {0,3.2—2H; 0},

{T, PT, PP}

and
PT=arg max {0,3.4—3H, 0},
{T,PT.PP)

For the switch from PT to 7" at (=5 to be consistent with the model, it must
be that

T=arg max {0,3.6—4H; 0},

It is straightforward to check that plays from #=6 to =9 are consistent,
regardless of the parameter values. Hence, this subject’s play is perfectly
consistent with the model if there exists (a, H) satisfying the following two
conditions:
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H(a, H) siéi and Hy(a, H)>0.9 )

It is easy to show that there exists such (e, H) satisfying the above
inequalities. This path is perfectly consistent with the theory, and is thus
minimally inconsistent. Among those Hs satisfying Eq.(7), the value H=0.9 is
the nearest to the equilibrium payoff, 0.4. Therefore, the MIPA is 0.9.

Consider the second possible situation, labeled as ‘path B’, in which The
corresponding sequence of maximal average performances along path B appears

on the eighth row, labeled as ‘map B’, of Table 1. In order for s,=PT to be
consistent, it must be that

PT= argmax{O 1.6— H; 0}.

5e=(T.PT,

Likewise,

PT=arg max {0,3. 2— 2H, 0},

s;€{T, PT, PP}

PP= arg max {0,3.4—3H, 0},
T=arg max {0,3.4—3H, 0.2— H:},

and
T= arg max {(¢+—5)(0.4—H,),3.4—3H,,0.2—H,}, for +=6,7,8,9

It is easy to show that there cannot exist a pair of parameters, (e, H)<[(0,1)
x[0.2,6.4]] such that strategy T maximizes the objective function at =7, 8
and 9. We can also show that all other five equations cormresponding to the

period ¢=2 through =6 hold for (@, H) pairs in the area encompassed by
three equations:

a=0, (®)
H=1.6, and 9
Hy(a, H)=H(1—a)°*+1.62a(1—a)’[(1— ) +1] (10)

34 (-2 +(U—a)+1]1=1.5.

Since the smallest value of H satisfying the above three equations is 1.5, we
conclude that the MIPA is 1.5.

There remain two possibilities of actual path, labeled C and D in Table 1. It
is tedious but straightforward to show that, for each of those two paths, the
number of inconsistent plays is non-null. Therefore, we conclude that this
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subject’s play is perfectly consistent with the theory along the singleton set of
MIC path, s={PT,PT,PT,PT,T,T,T, T, T}, and that the MIPA is 0.9

V. CALIBRATION RESULTS

Table 2 reports the calibration results.) The first column indicates the number
of periods at which the observed path is distinct from some MIC paths. Reading
downwards, each cell reports the number of subjects whose play was inconsistent
for the corresponding number of periods. Consider the low payoff case. Our
model perfectly predicts plays of 28 subjects out of 58, and 51 subjects except
at most two periods. The last row of the table indicates the aggregate proportion
of periods at which the observed plays are different from MIC paths. It is
shown that 88.3 percentage of player-1s’ plays and 89.7 percentage of player-2s’
plays are consistent with the model.

The results with high payoffs are not significantly different. At the aggregate
level, 86 percentage of player-1s’ plays and 92 percentage of player-2s° plays
are consistent with the model. More precisely, we test the goodness-of-fit of two
frequency distributions. The null hypothesis is that the frequency distribution with
high payoffs fits well the low payoff counterpart. The chi-square statistics are
201 for the player-1s and 1.22 for the player-2s, both of which are lower than
the critical value 7.81 at the 5% significance level. This implies that there is
good agreement with the null hypothesis.

[Table 2] The Results of Minmal Inconsistency

Player Is Player 2s
Low payoff High payoff Low payoff High payoff
treatment treatment {reatment treatment

None 14 6 14 5
1 5 0 5 2
2 6 2 7 3
3 or more 4 2 3 0
% 11.7 14.0 10.3 8.0

Notes. 1. The total number of subjects is 78, among whom 58 are for the
low-payoff treatment and the remaining 20 are for the high-payoff

treatment.

2. The first column indicates the number of periods at which the
observed path is minimally inconsistent with the model. Each cell
indicates the number of subjects whose play is consistent EXCEPT the
corresponding number of periods.

3. The last row indicates the aggregate proportion of periods in which
the actual path different from the minimally inconsistent paths.

% Computer programs and worksheets are available upon request.
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Table 3 summarizes the frequency of MIPAs. The second row of the table
indicates the number of player Is (respectively, player 2s) whose MIPA is
exactly equal the perfect equilibrium payoff, 0.4 (resp., 0.1). The third column
indicates the number of subjects whose MIPAs lie between 0.2 and 0.8 (resp.,
0.1 and 0.4). The last column indicates the number of subjects whose MIPAs
are no larger than 1.6 (resp., 0.8), which corresponds to one-quarter of the total
stake. Twenty two subjects out of 39 player-1s have their MIPAs equal to the
perfect equilibrium payoff ($0.4), while fifteen out of 39 player-2s have their
MIPAs equal to the perfect equilibium payoff ($0.1). All except one of
player-1’s have their MIPAs no larger than the quarter of the total stake, and
30 out of 39 subjects of player-2’s role have their MIPAs no larger than the
quarter of the stake.

If a particular subject’s MIPA is equal to the perfect equilibrium payoff, we
can not reject the hypothesis that the subject made his initial choice on the
basis of rational expectations. The results on MIPA show that roughly half of
the subjects’ MIPAs coincide with the perfect equilibrium payoff. This suggests
that half of the subjects might rationally calculate the equilibrium payoff and set
their initial aspiration levels accordingly. By definition, the MIPA is the
aspiration level that is made as tight as possible to the equilibrium payoff. This
means that the actual initial aspiration levels are widely dispersed, which plays a
crucial role in the behavior not converging to the equilibrium prediction.

[Table 3] Summary Frequency of MIPAs #,.=0.1

Player-1s Player-2s
Equal to x,.=0.4 22 Equal to z,.=0.1 15
Between 0.2 and 0.8 27 Between 0.1 and 0.4 23
Between 0.2 and 1.6 38 Between 0.1 and 0.8 30
Total number of 39 Total number of 39
subjects subjects
Minimum payoff 0.2 Minimum payoff 0.1
Maximum payoff 6.4 Minimum payoff 3.2

Note. 1. All low and high treatments are aggregated.

An informal description of intuition follows. Assume that player 1s’ initial
aspiration levels are widely distributed over the interval [0.2,6.4], while those of
player 25’ are distributed over [0.1,3.2]. Around the top of the game tree, the
payoff from TAKE are so small that most subjects do not satisfy. Player 1's
choosing T, would yield the payoff 0.4, which is very close to the lower
bound of the interval [0.2,6.4]. Similarly, player 2’s choosing T,, given the
chance to move, would yield 0.8 which is around the quartile of the initial
support [0.1,32]. Thus, the satisficing players would have extremely negative
bias against the strategies prescribed by the subgame perfect equilibrium. Around



YOUNGSE KIM: DISEQUILIBRIUM BEHAVIOR AND SATISFICING IN THE CENTIPEDE GAME 257

the root of the game tree, on the other hand, backward induction stops exerting
a considerable -influence; since players stay with a sub-optimal strategy as long
as it fares better than their current aspirations. Both effects work together so as
to make the outcomes disperse over all terminal nodes. As suggested above, this
remains true even if half of the subjects can figure out the game correctly and
set their initial aspiration levels accordingly.

The salient feature of time-series data is that outcome distributions tend to be
more inclined to the subgame perfect outcome as subjects gain more experience.
Frequencies at the first terminal node Z, and the last terminal node Z; both
fluctuate between O and 0.103. Frequencies at node Z, increase from 0.276 to
0483 as time passes, whereas those at node Z, decrease from 0.241 to 0.050.
The terminal node Z, in the middle shows a widely fluctuating frequency from
0.310 to 0.448 over time. We identify this trend as a gradual movement towards
subgame perfection, though not necessarily a convergence. Player 1s are more
likely to be frustrated by choosing the strategy P,P; as time passes since
player 2s eventually leam to choose 7, at the final decision node unless his
aspiration level is very low. Some player 1s learn that the strategy P,P, did
not perform satisfactorily in previous matches. Note that this scenario does not
necessarily mean that players eventually learn to backward-induct, since there can
be those player 2s who could not confirm the fact that strategy P, T, is better
than P,P,. MP observed that there are several subjects who pass at every
opportunity they have. In our framework, a player may always pass if his initial
aspiration level is quite low and has not confirmed the fact that a better
strategy than PP is available.

VI. CONCLUDING REMARKS

Our model is deterministic. Many seminar participants and referees suggest
that the right direction is to allow tie-breaking randomization and to estimate the
maximum likelihood parameters. Although I agree this MLE method makes
another sense, I intentionally did not follow their advice. The reason is that,
from the traditional theorist’s viewpoint, the decision-maker in our model may
be hard to accept. Decision-makers maximize an objective function that
incorporates aspiration and cumulative payoffs, but not the average realized
payoff. Aspiration evolves in an adaptive manner but not in a forward-looking
way. If we allow players to randomize or tremble, the parsimony of the model
might be extremely problematic.

Besides the aspiration update, we could have introduced another type of
dynamic, namely expansion of the set of choices. Roughly speaking, if strategies
that were available resulted in unsatisfactory outcomes, the decision-maker begins
searching for new available strategies, which leads to an enlarged set of choices.
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If we modify the model in this way, it turns out that the set of available
strategies, S’, can be treated as a choice variable of the outside analyzer who is

free to choose S° to make the data fit the theory.7 To put it polemically, if
some player would always choose the same strictly dominated strategy this could

be justified as being completely rational under the approach pursued here by
simply assuming that the player fails to realize that other strategies are available.
However, in order to let the model parsimonious, we do not formalize this idea.

One obvious shortcoming of this paper directly stems from lack of data. The
existing experiments were conducted for nine to ten periods, on which our
analysis of consistency are based. This is clearly not sufficient for a study of
dynamic processes. The high performance of our model might be even due to
the fact that it fits only ten-period time series data.

A number of questions are raised about works that are currently being
undertaken, and problems for future research. There are other competing theories
available. A model of bounded rationality is the Bush-Mosteller(1955) type
stochastic learning approach. There are also attempts to reconcile experimental
data with more traditional game-theoretic predictions. Camerer and Weigelt(1988)
and McKelvey and Palfrey(1992) use the home-made priors approach, but such a
method seems to difficult to generalize to other games. Fudenberg and Levine
(1997) argue that, using the self-confirming equilibrium notion introduced by
Fudenberg and Levine(1993), the proportion of players that would need to have
irrational payoffs to generate the observed path is small. They report that the
average loss of a player is $0.03 to $0.64 in a game involving stakes between
$2 and $30. From a methodological point of view, while Fudenberg and
Levine's analysis are based on the aggregate probability distribution over
outcomes, we consider the complete history of each individual player’s choices.

It will be interesting to compare which approach fares best in applicable
experimental data. The companion paper(1995) exhibits high performance of our
model in the ultimatum bargaining game and the sequential best-shot game.
Again, a critical limitation is that the existing experimental studies provide very
short periods data. An agenda for future research is to conduct laboratory
experiments for a much longer periods and to test various theories by using new
experimental data.



YOUNGSE KiM: DISEQUILIBRIUM BEHAVIOR AND SATISFICING IN THE CENTIPEDE GAME 259

REFERENCES

Binmoge, K. G. (1987), Modeling rational players, I and II, Economics and
Philosophy, 3, 179-214, and 4, 9-55.

Bush, R. R, and Mosteller, F. (1955), Stochastic Models for Learning, New
York: Wiley and Sons.

Camerer, C., Johnson, E. J., Rymon, T., and Sen, S. (1993), Cognition and
framing in sequential bargaining for gains and losses, In Binmore, K. G.,
Kirman, A., and Tani, P. (eds), Frontiers of Game Theory. MIT Press,
pp.27-47.

Camerer, C., and Weigelt, K. (1988), Experimental tests of a sequential equilibrium
reputation models, Econometrica, 56, 1-36.

Canning, D. (1992), Average behavior in learning models, Journal of Economic
Theory, 57, 442-72. :

Dow, J, and Werlangm, S. R. C. (1994), Nash equilibrium under Knightian
uncertainty: breaking down backward induction, Journal of Economic
Theory, 64, 305-24.

Fudenberg, D., and Kreps, D. (1992), Lecture on Learning and Equilibrium in
Strategic Form Games, CORE Lecture Series.

Fudenberg, D., and Levine, D. K. (1993), Self-confirming equilibrium, Ecorometrica,
61, 523-45.

__ (1997), Measuring players’ losses in experimental games, Quarterly
Journal of Economics, 112, 507-36.

Gilboa, 1., and Schmeidler, D. (1995), Case-based decision theory, Quarterly
Journal of Economics, 605-39.

Gilboa, 1., and Schmeidler, D. (1996), Case-based optimization. Games and
Economic Behavior, 15, 1-26.

Harley, C. B. (1981), Learning the evolutionarily stable strategies, Journal of
Theoretical Biology, 89, 611-33,

Kandori, M., Mailath, G, and Rob, R. (1993), Learning, mutation and long-run
panilibria ip_camesFraggmerrica 1 27:56




260 ) THE KOREAN ECONOMIC REVIEW Volume 14, Number 2, Winter 1998

Seiten, R., and Stoecker, R. (1986), End behavior in sequences of finite
prisoner’s dilemma supergames: a leamning theoretic approach, Journal of
Economic Behavior and Organization, 7, 47-70.

Simon, H. A. (1955), A behavioral model of rational choice, Quarterly Journal
of Economics, 69, 99-119.

Young, PH. (1993), The Evolution of conventions, Econometrica, 61, 57-84.



