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EGARCH OPTION PRICING
WITH ASYMMETRIES IN THE MEAN EQUATION

TAE HOON KANG*

Black’s option pricing model systematically misprices actual option premiums.
The biases of Black's model may result from assuming non-stochastic volatility
and normality. A generalized autoregressive conditional heteroskedasti(GARCH)
option pricing model relaxes the assumptions of Black's model. This paper uses
an asymmetric ARCH-type models. Among ARCH-type alternatives, the
asymmetric EGARCH(0,1)-t model fits Chicago wheat futures prices better
than several alternative ARCH-type models. A Monte Carlo study shows that
Black's model underprices deep out-of-the-money put options relative to the
EGARCH option pricing model when the true underlying process is an
EGARCH process. Differences between Black's model and the EGARCH option
pricing model increase as time to maturity increases. When used to forecast
actual option premiums of Chicago wheat futures contracts, the mean squared
errors of the EGARCH option pricing model with deep in-the-money put and
call options and with deep out-of-the-money put options are significantly
smaller than those of Black’s model.
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I. INTRODUCTION

Ignoring non-normality and stochastic volatility likely leads to biased esti-
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mates of option premiums. Therefore, a correct option pricing model should
model not only the stochastic volatility but also the non-normality. Since the
Black-Scholes option pricing model(hereafter ‘OPM’) is based on constant vola-
tility, Black-Scholes model yields systematically biased estimates of deep in-the-
money and deep out-of-the-money options(Johnson and Shanno; Hull and
White). These inaccuracies may be due to inappropriate assumptions about the
futures price distribution.

Time-varying variance models can explain nonlinear dependence and lepto-
kurtosis. Bollerslev(1986) suggested the generalized autoregressive conditional
heteroskedasticity(GARCH) process as an effective way of modeling the dy-
namics of volatility. Bollerslev(1987) showed the GARCH(1,1)-t model pro-
vided a better fit to data. The GARCH(1,1)-t process fits most empirical data
better than the GARCH(1,1)-normal or a mixed diffusion-jump process.
Myers and Hanson also provided evidence that the GARCH OPM with a stu-
dent distribution performs better than Black’s OPM in predicting soybean op-
tion premiums. Engle and Mustafa estimates GARCH parameters from option
premiums and finds the GARCH OPM outperforms the Black model with im-
plied volatility. However, the GARCH process does not model skewness. An
Exponential GARCH(EGARCH) model that captures skewness was suggested
by Nelson. The EGARCH model and the GQARCH model consider skewness
by allowing the ARCH process to be asymmetric. However, asymmetry in the
dynamics of the mean returns has not been considered in past research. This
study considers the asymmetry in the mean returns with the GARCH, the
EGARCH, and the GQARCH models so that skewness in the mean equation
can be captured, and determines the most descriptive model of daily Chicago
wheat futures price distributions among several models that consider non-nor-
mality and conditional heteroskedasticity. The study also seeks to determine
whether time-varying stochastic volatility and conditional non-normality can
explain the biases in Black’s option pricing model.

II. STATISTICAL MODELS

Many competing statistical distributions have been proposed to model the de-
partures from normality: a symmetric stable Paretian distribution(Mandelbrot, B
or and Fama), student t-distribution(Blattberg and Gonedes), a mixture of nor-
mal distributions (Kon), and a mixed diffusion-jump process(Akgiray and
Booth). However, since these models assume the independence of successive
asset returns, they are inconsistent with empirical data that is known to be lin-
early or nonlinearly dependent. Further, these models are focused on capturing
leptokurtosis. Jorion found that combining a jump process with a simple
ARCH process provides a significantly better fit of the distribution of weekly
exchange rates than either process alone. The mixed jump-diffusion process
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also models skewness. However, combining the GARCH(1,1)-t process with a
jump process is not always significantly better than the GARCH-t process
alone(Brorsen and Yang). Thus, a GARCH(1,1)-t process is used as the
benchmark model, and other alternative models are compared with it. While
the GARCH model elegantly captures the volatility clustering in asset returns,
it ignores the possible asymmetric response of variance to positive and negative
residuals and restricts the parameters in the variance equation to be non-nega-
tive. Nelson suggested the Exponential GARCH(EGARCH) model that over-
comes these objections. LeBaron reported that the EGARCH model explains
skewness better in the distribution of weekly and monthly stock indices than
the GARCH model. Sentana suggested the Quadratic ARCH model ensuring
that estimated conditional variances are non-negative. The Generalized QARCH
(GQARCH) model provides a simple way of calibrating and testing for dy-
namic asymmetries in the conditional variance function. Sentana found that
GQARCH(1,1)-M model revealed a better fit than the GARCH(1,1)-M for
U.K. monthly excess stock returns. However, either Nelson’s EGARCH model
or Sentana’s GQARCH model considers asymmetry only in the volatility struc-
ture. Investors’ reaction to the price changes is asymmetric not only in terms
of volatility but also in terms of mean returns. If the asymmetric reaction of
investors is effectively captured in the mean equation, the asymmetries in the
volatility structure may not be significant.

The GARCH, the EGARCH, and the GQARCH, each under a student t
distribution, are considered here. Fach model is estimated with and without
asymmetry in the mean equation. The ARCH-type process can model well-
documented market anomalies such as day-of-the-week, seasonality in mean
and variance, and maturity in the variance equation. In the GARCH process,
the futures price changes, Yt, can be expressed as a stochastic process:

Y=A(U_,;0)+e, (1)

where f(I_, ; @) denotes a function of [, (the information set at time ¢t—1)
and the parameter vector &, and &, has a discrete time stochastic process

£ = { zh, in the GARCH-normal model and (2)
(»v—2/9'"*wh, in the GARCH-t model,

where 2z is i.i.d. normal with expected value of E(z)=0 and variance of Var
(z)=1 and ¢, is ii.d. student with degrees of freedom E(w)=0 and Var
(w)=v/( v—2) Therefore, 4 is the time varying variance of ¢, . The
GARCH(p, q@) model expresses h as a linear function of past variance and
past squared values of the process,
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h=a+Zae. +RB A, (3)
Equation (1) is the mean equation and equation (3) is the variance equation.

Since h, is the conditional variance of ¢,, it must be non-negative. The
GARCH model ensures non-negativity by making h, a linear combmanon of
positive random vanabl&s The EGARCH model ensures that h remains non-
negative by replacing & with In(%) in equation (3). For example, the condi-
tional variance of EGARCH(O 1)-t with one lag on the conditional variance
is

In(k)=a,+An(k)+n(e,_, /b, ) +o( | &, /h,_ — (/D). 4)

Over the range 0<e, ,/h,_, <, In(k)) is linear in €, ,/h,_, with slope 7 +
¢, and over the range —00<e Jh_ <0, In(k) is lmear in €_,/h,_, with
slope 7—¢. If 7=0, In(%) r&sponds symmetncally to &, /h_,, but if 70,
In(#) responds asymmetrically.

The variance equation of GQARCH(1, 2) is

h=a,+alc  —¢)V+ale ,~¢)+B K, (5)

where ¢, and ¢, measure dynamic asymmetries(Sentana).
Asymmetrxc pnce transmission models have been used in research on farm-

retail price transmission. Restrictions on short selling, asymmetries in informa-
tion, preferences of investors, and market psychology might cause differing
responses to past price rising or falling. The mean equation of the asymmetric
ARCH-type model is a special case of the Threshold Autoregressive Model of
Tong and Lim.

The model with asymmetry in the mean equation is obtained by segmenting
lagged price changes into one set for rising changes and another set for falling
changes. The logarithmic changes in returns, Yt, are segmented as,

YF, ={ Y, ¥,20
0, otherwise,
YN, Y <0
:{0 otherwise,
where Y, is the lo lf:mthmic difference of daily returns at time t. In the
asymmetric GARCH process, the mean and the variance equations to be esti-

mated are,



TAEHOON KANG: EGARCH OPTION PRICING 83

Y, =a,+38,YP, +3% YN, +4 Do, +2 Drys (6)
+a,D,,,+a,D,,, +a,SIN(2nK/252)+a,COS(2nK/252)
+a,SIN (27K/126)+a,COS(2nK/126) +¢,,

h=e,+2a.6 +2 k., +b Dy +b, Dy
+b,D,,,+b, D, +b SIN(2xK/252)+ b, CON(2%K/252)
+b,SIN(27K/126)+ b, COS(27K/126) + b, TTM,

where 0 and w, represent the net effect of the i~th positive and negative
changes of Yt, respectively, and m is the length of lags. The length of igs in

the mean equation is identified with the Schwarz criterion.” D denotes dummy
variables for each day of the week; D,,, =1 if Monday and 0 otherwise,
D, =1 if Tuesday and O otherwise, D,,,=1 if Wednesday and O otherwise,
and D, =1 if Thursday and O otherwise. SIN and COS represent the sine
and cosine functions, respectively, and 7 is approximated as 3.14. K in the
sine and cosine functions is the number of trading days after January 1 of the
particular year. Denominators in the sine and cosine functions are the specified
cycle length in trading days, so 252 indicates a one year cycle and 126 a half
year cycle. TTM is the time to maturity measured in the number of trading
days prior to maturity. The variance equation for the EGARCH model is ob-
tained by adding day-of-the-week, seasonality, and time to maturity variables
into equation(4). Maximum likelihood estimates of alternative models are ob-
tained using the statistical software package GAUSS(Aptech Systems Inc.)”

The asymmetry hypothesis is tested in two ways. One is that the total im-
pact of past price increases is the same as that of past price decreases:

H,: 5R8=3w ®

t

! Schwartz’s criterion is obtained by SC{m)=In(SSEm)+Qm *In(T)/T, where m is the length of
lags SSEm is the sum of squared residuals, Qm is the number of parameters, and T is the number of
observations. The value of m that minimizes SC is selected as the length of lags in the model.

2 For the GARCH models, since the GARCH terms(e and S in the variance equation) are
restricted to be non-negative, inequality restrictions are imposed by taking the exponential of the pa-
rameters, while there is no such restrictions for the EGARCH and the GQARCH modeis. The degrees
of freedom of the student distribution is restricted to be greater than three since the likelihood func-
tion is not defined for degrees of freedom less than or equal to three. The variance of the first L5
observations of price changes is used as an initial variance. The initial algorithm is Polak-Ribiere-type
Conjugate Gradient method and the initial step size is one. After a few iterations, the algorithm is
switched to the Davidson-Fletcher-Powell method and the Brent step-size method is used. The final
estimates are obtained with the Newton method so that the Hessian is used to estimate the informa-
tion matrix. All derivatives are calculated numerically.
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H, : H, is not true.

The other is that the speed of adjustment to price increases and to price de-
creases are the same.

H :0=w,Vi (9)

H, : H, is not true.

For the hypothesis tests of equations (8) and (9), Wald-F statistics are used.
The Wald test is not invariant in nonlinear models, but it is still asymptotically
valid (Dagenais and Dufour). The estimated t-ratios of the parameters of the
skewness terms, 7 in equation (4) and ¢ in equation (5) provide tests of
asymmetry in the variance equations of the EGARCH model and of the
GQARCH model, respectively.

. SAMPLE DATA

The alternative statistical models are estimated with the first differences of
the natural logarithms® of the daily futures closing prices of wheat at the Chi-
cago Board of Trade. The first differences of the natural logarithm are rescaled
by multiplying them by 100. The data are from Jan. 1982 to Sep. 1990. The
data were created using Continuous Contractor from Technical Tools. Chicago
wheat futures contracts are traded based on five maturities: March, May, July,
September, and December. The price series used is a continuous combination
of the five contracts. The rollover date is the 21st day of the month prior to
delivery.” Log differences are taken before splicing so that no outlier is created
at the rollover date. July option preminms, for example, are only predicted for
April 21 to June 20, the dates the July futures contract was used to estimate
the models. The daily option premiums over the simulation period are collected
from the CBOT DataBank of the Chicago Board of Trade.

Using a continuous series of nearby log changes implicitly imposes

3 Augmented Dickey-Fuller unit-root tests are conducted for futures prices, for the first differences
of the futures prices, and for the log differences of the futures prices. The test statistics are —1.80,
—7.56, and —6.80, respectively. The asymptotic critical value is —2.57. Therefore, the null
hypothesis that the time series has a unit root is not rejected for the futures prices, but rejected for
the first differences and the log differences. Both first differences and log differences remove
nonstationarity from the data, but Fama(1965) provides reasons for using log differences which are
percentage changes. First, the log difference is the return, with continuous compounding, from holding
the asset. Second, while the variability of simple price changes increases as the price level increases,
log differences neutralize price level effects.

4 The 2lst is selected because options expire on the Friday 10 days before the first notice day.
The first notice day is the last business day of the month.
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restriction that the parameters are the same across contract months. One
alternative would be to make a continuous series of July contracts, for exam-
ple. The drawback of such an alternative approach is that distant futures con-
tracts are often very thin. Closing prices reported will often be from a transac-
tion earlier in the day or may be a bid or ask quote. Therefore, the models
are estimated and option premiums are predicted only with near-to-maturity
data. .

Table 1 shows summary statistics of log differences of wheat futures prices
at the Chicago Board of Trade. The departures from normality are apparent
from the high kurtosis and skewness. The Kolmogorov-Smirnov test rejects
normality.

V. MODEL SELECTION AND VALIDATION

4.1. Procedure

Since the models are nested, the likelihood ratio test is used to select be-
tween the ARCH-type models, except EGARCH model, with and without
asymmetries in the mean equation. Model selection among the asymmetric
GARCH-t and the asymmetric EGARCH-t is conducted by selecting the
model with the higher Schwarz criteria. Schwarz criterion is useful for select-
ing among nonnested models with different numbers of parameters, because it
penalizes the model with more parameters.

If the GARCH or EGARCH models are well-specified and fit the sample
data, the standardized residual generated by the models should be i.i.d. normal
or student. The Ljung-Box and Mcleod-Li test statistics are used to test the
null hypothesis of no serial dependence in the rescaled residuals, (& /A, ) and
squared rescaled residuals, (/4,)° of the selected model. The Brock-Dechert-
Scheinkman (BDS) test (Brock et al.) is used to test the null hypothesis that
{Y} is i.id. The BDS statistic is based on the correlation integral. The statis-
tic for raw data is asymptotically distributed as a standard normal random vari-
able under the null hypothesis. However, Brock et al. have shown that the
distribution of the BDS statistic is not standard normal when the data are
GARCH residuals. The tables in Brock et al.(p.279) are used to obtain critical
values of the test statisticc The Kolmogorov-Smirnov goodness-of-fit test is
used to determine if the residuals have a t-distribution.”

4.2. Results
Table 2 shows the estimated log-likelihoods and the tests of no asymmetry
from the models of Chicago wheat futures prices. In the asymmetric GARCH

% The rescaled residuals are multiplied by (#(7—2)"* where v is the estimated degrees of freedom
of the model. This adjustment is needed because the variance of a t-distribution is (%(¥—2)).
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[Table 1] Summary Statistics of Daily Chicago Wheat Futures Prices over
January 1982 through August 1990.°

Statistics
Sample Size(T) 2170
Mean (1) —-0.0162
Standard Deviation (0) 1.4496
Skewness 0.5582*
Kurtosis” 20.3987*
D-statistic 0.0750*

* Units are percentages. Y, =[In(P)—In(P_,)]* 100.

* Skewness is computed by é(}fr—ﬂ Y/(n—1)o*=3.

© Excess kurtosis is computed by E(Y‘ —p )/ (n—1)ag'-3.

¢ The Kolmogorov-Smirnov Goodness-offit D-statistic. The critical value is 1.36/T/* at 5%
significant level for T observations.

° Asterisks denote the null hypothesis of normality (i.e., zero skewness and zero kurtosis) are
rejected at a 5% level based on the critical values by Snedecor and Cochran (1980).

model, the total impact of past rising prices is not significantly different from
that of past falling prices. However, the speed of adjustment for price rising is
significantly ~different from that of price falling, implying significant
asymmetries in mean returns. Asymmetry is also present in the mean equation
of the asymmetric EGARCH model and the asymmetric GQARCH model. The
skewness terms in the variance equation of the asymmetric EGARCH model
and the asymmetric GQARCH model are not significantly different from zero
(Table 2). Thus, when the asymmetries are captured in the mean returns, no
more asymmetries are found in volatility structure in the Chicago wheat fu-
tures prices.

Table 3 contains the test statistics used to select among models. Likelihood
ratio statistics are used to select between nested models. Differences in Schwarz
criteria are used to select between nonnested models. The asymmetric
EGARCH(0,1)-t process is selected and so its estimates are used in the simula-
tion to obtain option premiums. Table 4 reports estimates and test statistics of
the asymmetric EGARCH(0,1)-t model. The effects of lagged rising prices are
incorporated more quickly than those of lagged falling prices. The day of the
week effect are not significant in both mean and variance equations. Significant
seasonal patterns are revealed only in volatility. The Ljung-Box and McLeod-
Li tests do not detect any linear or second moment autocorrelations with the
standardized data, which implies the EGARCH-t process removed all the cor-
relation in the first and second moments. The BDS statistics show that the null
hypothesis of iid. is rejected with the raw data (Table 4), implying that Chi-
cago wheat futures price changes are not i.i.d.. For the rescaled residuals, how-
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ever, the BDS statistics do not identify nonlinear dependence.® Using the
Kolmogorov-Smirnov test, the null hypothesis that the EGARCH rescaled
residuals follow a student distribution is not rejected at the 5% significance level.

V. IMPLICATIONS FOR OPTION PRICING

McBeth and Merville argued that the Black-Scholes formula overprices out-
of-the-money options and underprices in-the-money options. However, Rubin-
stein argued that their conclusions did not always hold. Johnson and Shanno
obtained numerical results for general cases in which the instantaneous variance
obeys some stochastic processes. When volatility is a stochastic variable inde-
pendent of stock price, Hull and White showed that the Black-Scholes formula
overprices options that are at- or close-to-the-money and underprices options
that are deep in- and deep out-of-the-money.

[Table 2] Estimated Log-likelihoods and Tests of Asymmetry with Alternative
Models of Daily Chicago Wheat Futures Prices

Maximized Test Statistics of
Log-Likelihood  H : No Asymmetries
Models Vol
Variance'
Total Speed
Asymmetric GARCH(1,1)-t —3445.2 i 3.89* na‘
GARCH(1,1)-t —3449.1 na na na
Asymmetric GARCH(1,2)-t —3442.4 3.37 4.48* na
Asymmetric GARCH(2,2)-t —-34424 5.29* 6.29* na
EGARCH(0,1)-t —3437.3 na na 0.68
Asymmetric EGARCH(0,1)-t —3433.5 3.34 3.62* 0.30
Asymmetric EGARCH(1, 1)t —34335 3.19 3.54* 0.34
Asymmetric EGARCH(0,2)-t —3433.1 5.17* 5.17* 0.31
GQARCH(1,2)-t —3446.8 na na 0.03
Asymmetric GQARCH(1,2)-t —3444.4 3.52* 3.81* 0.12

* The sample has 2170 observations.

® Test statistics for the null hypothesis that there is no asymmetry in the mean equation.

¢ Test statistics of Ho: no asymmetry in the variance equation are the test statistics of the pa-
rameter representing skewness (7 in equation (4) and ¢% in equation (5)).

¢ Asterisks denote rejection of the null hypothesis of no asymmetry at the 5% level.

¢ Not applicable.

S Since BDS test statistics for EGARCH(0,1)-t model is not yet developed, the statistics for
GARCH(1,1)~t model is used as an alternatives statistics. It allows only a rough conclusion. One way
to make it clear is to show the distributions of EGARCH(0,1)-t and GARCH(1,1)-t to be
asymptotically the same.
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[Table 3] Test Statistics of Model Selection with Alternative Models

Hypotheses

Null Alternative Statistics®
GARCH(1,1)—t Asymmetric GARCH(1,1)—t* 7.77 %<
Asymmetric GARCH(1,1)—t Asymmetric GARCH(1,2)—t 5.77%
Asymmetric GARCH(1,2)—t Asymmetric GARCH(1,3)—t 0.22
Asymmetric GARCH(1,2)—t Asymmetric GARCH(2,2)—t 0.00
Asymmetric GARCH(1,2)—t Asymmetric EGARCH(0,1)—t 17.66 %
EGARCH(0,1)—t Asymmetric EGARCH(0,1)—t 7.55*
Asymmetric EGARCH(0,1)—t  Asymmetric EGARCH(0,2)—t 0.91
Asymmetric EGARCH(0,1)—t  Asymmetric EGARCH(1,1)—t 0.13
GQARCH(1,2)—t Asymmetric GQARCH(1,2)—t 8.90 %
Asymmetric GARCH(1,2)—t Asymmetric GQARCH(1,2)—t 17.79 %

2 Likelihood ratio test statistic is obtained by 2T % (L,—L;), where T(=2170) is the number
of observations, L, is the loglikelihood values under alternative hypothesis, and Lo under null
hypothesis.

* The statistic reported is the difference in Schwarz criteria which is obtained by 2T#(L1—L
o) — (K, —Ko) *In(T), where K; and K, are the number of parameters under alternative and
null hypothesis, respectively.

¢ Asterisks denote rejection of the null hypothesis in favor of the alternative hypothesis at the
5% significance level.

Black’s model specifies the option premium as a function of five underlying
parameters: the current futures price (Ft), the exercise price of the option (X),
the time to maturity of the option (T-t), the risk-free rate of interest (r), and
the variance of futures prices ().

The Black premium (B) is

~r(T-t)

B=[e [X#*N (—d») —F *%N(—d)] for put, (10

-r(T-t)

e [F,*N(—d)—X*N (—d;) ] for call,

where di=[In(F, /X)+(*/2(T—0)1/o(T—t)""%, d:=[In(F,/X)—(¢’/2(T—-1))/
o(T—t)""4, and N( + ) is the normal cumulative density function.

The EGARCH OPM can not be solved in a closed form, since the stochas-
tic volatility adds risk which can not be diversified into a riskless hedge port-
folio (Johnson and Shanno; Hull and White; Myers and Hanson). Thus, the
EGARCH OPM approximates the premium by providing expected option pric-
es at maturity with Monte Carlo integration. The EGARCH OPM is an Euro-
pean option premium. Only European options are considered since estimates of
American option premiums cannot be obtained with Monte Carlo methods
(Hull).
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[Table 4] Parameter Fstimates and Test Statistics of the Asymmetric EGARCH
(0,1)-t Process with Chicago Wheat Futures Log Price Changes

Estimated Estimated
Coefficients (t-ratio) Coefficients (t-ratio)

Mean Variance

" Intercept —~0.129%* (—0.152) Intercept  —0.0706  (—0.76)
Lag 1 positive 0.036  (1.011) 8 0.9795% (120.82)°
Lag 1 negative 0.044 (1.257) 7 0.1074% (4.91)°
Lag 2 positive 0.021 (0.610) ¢ 0.0043  (0.30)®
Lag 2 negative —0.128% (—3.839) D, 0.058  (0.399)
D,., 0.016  (0.216) D 0.171 (1.19)
Dy 0.035  (0.492) D, -0025  (-0.17)
Dy, 0.159%  (2.294) D —-0.163 (—1.022)
D 0016  (0.224) SIR252 0.049  (0.389)
SIN%s2 -0.017 (—0.52) C0S252  —0012  (—0.251)
08252 0.055  (1.78) SIN126 0.081 (1.123)
SIN126 -0017  (—0.53) COS126 0.106%  (2.144)
COS126 ~0.047  (—1.47) Maturity  —0.060  (—0.405)

Degrees of Freedom

v 4.61°

Wald F statistics

Day of Week in Mean 1.80

Seasonality in Mean 1.38

Day of Week in Variance 1.41

Seasonality in Variance 2.33%

Ljung-Box and Mcleod-Lid
€ ti2h(12)° 9.10
e/h(12)* 3.04

BDS tests (¢ =0)*

Raw Data
Dimension=3 7.43 %
Dimension=6 9.08 *
Dimension=9 11.63 %

Rescaled Data
Dimension=3 0.72
Dimension=6 0.13
Dimension=9 0.02

Goodnas—of -fit’

0.025

Astensks denote the rejection of the null hypothesis at the 5% significance level. t-values
are in parentheses.
* Since the GARCH terms are restricted to be positive, the null hypothesis lies on the bound-
ary of the parameter space. Under the assumptions of Moran, the t-statistic is distributed as a
mixture of a degenerate distribution and a half t-distribution. Hypothesis tests can still be con-
ducted i Jn the usual fmtuon with t-tests. However, the t ratio of @ is computed as

t=e"/(e’ Siae e )2 where S_2 is the standard error of e, because the inequality const-
raint was imposed on the parameter @ using an exponential transformation.
¢ The residuals are assumed to have a student-t distribution. The degrees of freedom of this
studenttdistributionlsr&nctedtobegreaterthantluee
¢ Both null h €, /h,_are not autocorrelated and that €. 4 are not autocorrel
are tested wil twelve degreés &f freedom. Test statistics are distributed asymptotically as
(12) under the null hypothesis.
¢ Ho .(The s;andardwed residuals are i.i.d. The hypothesis test is based on Table F.4 in Brock
et al. (p.279
" Kolmogorov-Smirnov D statistic. The critical value is D. = 1.36/T'*=0.029 where T is
the sample size.
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Two sets of T-t random numbers are generated: one from a t-distribution
with v degrees of freedom and another from a standard normal distribution.
Time is measured in number of trading days. Then, the futures prices F, are
simulated for T-t periods using estimates from the selected model to get the

futures price at maturity. Denoting this price at maturity {F, };, the simulated
option prices are

e"""’(l/n)ﬁf max{ X—{F, }, 0] for call, ,
E= ':1 11)
e"‘m(l/n)g} max{ {F, }—X, 0] for call,

where n=10,000 is the number of replications.

One efficient way to improve the accuracy of this calculation is to use the
control variate technique (Hammersley and Handscomb; Boyle). This tech-
nique requires solving a problem which is similar to the one under considera-
tion, but has an analytical solution. The solution of the simpler problem is
used to increase the accuracy of the solution to the more complex problem.
Essentially, a term is added to the EGARCH option price, E in equation
(11). The term has expected value zero, but is negatively correlated with the
error in E. The control variate is B - B,., where B is the analytical solution
to Black’s model in equation (10) and B,. is the Monte Carlo solution to
Black’s model. Two random number streams are used for B, and E. The
stream for B, is generated from a standard normal distribution. The stream
for E is generated as a t-distribution with the degrees of freedom from the es-
timated model, using the standard normal random number stream for B, .. The
two random number streams are generated using the same seed so that the ran-
dom errors in E and B, . are positively correlated. The EGARCH option price
calculated with the control variate technique (E) is

E'=E+(B-B,.). (12)

Vi. MONTE CARLO STUDY

A Monte Carlo study is conducted to determine the differences between
Black’s OPM and the EGARCH OPM. Differences between Black’s OPM and
the EGARCH OPM may be caused by not considering the observed condition-
al heteroskedasticity and non-normality in Black’s OPM. The extent of the
difference can be measured by the absolute difference (B—FE) or by the per-
centage difference {=(B—E")/E". The differences for short-lived option pre-
miums are not the same as those for long-lived option premiums. The differ-
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ences are also different by how much the option is in the money or out of

the money. Most commodity futures option exercise prices are within 10% of

the actual price. Futures-exercise price ratios (F, /X) of 0.90, 0.95, 1.0, 1.05,

and 1.10 are considered. In the Monte Carlo study, exercise price is $1.00.

Differences are measured from six months through two weeks prior to maturity.
The average unconditional variance of the EGARCH process

a - 2% _ 24 2 . %)

e d‘:’[u(l 2l %gf‘f{’lgzuﬁ’;z““”m] is used as an initial voli-
tility to generate conditional variances for E, and as the constant volatility for
Black’s analytical solution B and Black’s Monte Carlo sulution B, .. The
seasonality and the day of the week effects are not included in the Monte
Carlo study. Thus the difference in option premiums with the Black and
GARCH models in the Monte Carlo study reflect only the different distribu-
tional assumptions and non-constant volatilities. Maturities up to six months are
considered to illustrate the model’s predictions. But, of course, the model is
only valid in predicting actual option premiums which are within two or three
months of maturity. The asymptotic t-statistics for the simulated differences are
provided. These could be used to determine whether the reported pricing biases
are significantly different from zero. They are the ratios of the simulated dif-
ferences to the standard deviations of the differences.

6.1. Findings of Monte Carlo Study

In this section, the differences in option pricing between Black OPM and
the EGARCH OPM are calculated. Table 5 presents absolute and percentage
differences between put option premiums with Black's OPM and the
EGARCH OPM. Black’s OPM yields significantly lower premiums than the
EGARCH OPM for deep in- and deep out-of-the-money put options.
Absolute differences increase as time to maturity increases in deep in- and
deep out-of-the-money put options (Table 5, Panel A). Percentage differences
for deep in-the-money options also increase as time to maturity increases, but
those for deep-out-of-the money options decrease as time to maturity increases
(Table 5, Panel B). As time to maturity decreases, the time-value of deep out
-of-the-money options decreases very quickly and eventually becomes zero.
Therefore, deep out-of-the-money options close to maturity show extremely
high percentage differences. At-the-money option premiums are higher with
Black OPM than with the EGARCH OPM, but not significantly. Percentage
differences for at-the-money put options decrease as the time to maturity in-
creases.”

The simulation results confirm Hull and White’s findings that the Black-

7 When European options are considered, put-call parity must hold. The results of the Monte Carlo
study with call options are similar and, therefore, are not reported.
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[Table 5] Differences between Black’s Option Pricing and EGARCH Option
Pricing for Put Options When the True Process Is EGARCH

Time to maturity (months)
0.5 1 1.5 3 4.5 6
Panel A: Absolute differences®

Deep In-the-money —0.000015—0.00015 —0.00056 —0.00085 —0.00093 —0.001

(F,/X=090) (—0.18) (—125) (=3.19) (-436) (=399) (—3.86)
In-the-money —0.00011 —0.00019 —0.0004 —0.00089 —0.0011 —0.0019
(F,/X=0.95) (—139) (—169) (-3.03) (491) (=5.25) (—1798)
At-the-money 0.00037 0.00019 0.00009 —0.0009 -—0.0013 —0.0015
(F,/X=1.0) (5.74) (2.16) (0.83) (—-5.50) (-6.75) (—6.92)
Out-of -the-money -0.00018 —0.000098—0.00015 —0.0007 -0.0011 —0.0014
(F,/X=1.05) (—532) (—181) (—198) (=591) (-733) (-1775)
Deep Out-of -money —0.000064 —0.00027 —0.00026 —0.00079 —0.0011 -—0.0014
(F/X=1.10) (—563) (—862) (-572) (-875) (-932) (-897)

Panel B: Percentage differences (%)°

Deep In-the-money —0.00 -0.15 -0.56 —0.83 -0.93 —0.939
(F,/X=0.90) (—1207) (—657) (—14.39) (—849) (-399) (—1.84)
In-theamoney -0.22 -0.36 -0.73 —1.42 —1.63 —2.58
(F./X=0.95) (—147) (=751) (=356) (—174) (—147) (-047)
At-the-money 2.83 1.04 0.40 —2.57 —3.13 -13.15
(F./X=1.0) (105) (071  (L14) (-101) (-054) (-0.19)
Out-of -the-money -0.14 —2.48 —-222 —4.90 ~5.29 -5.10
(F,/X=105) (-606) (0700 (—058) (=232) (~022) (—162)
Deep Out-of-money —7295 —39.02 -—16.86 —1322 -—10.60 —890
(F,/X=1.10) (-1032) (—1492) (=761) (=650) (=377) (—0.91)

* Black’s option price minus EGARCH option price when exercise price is set equal to $1.00.
The absolute differences are measured in £ /bushel.
* [(Black’s price - EGARCH price)/EGARCH price]*100.

Note: Asymptotic t-statistics are in parentheses.

Scholes model underprices in- and out-of-the-money options when stochastic
volatility is present. Their argument that the Black-Scholes model overprices
close-to-the-money options is also confirmed. The absolute differences are
small but the absolute differences between the two OPM’s are larger for at-the
-money options than for in- or out-of-the-money options.

The asymptotic t-statistics in parentheses provide some evidence that the re-
ported option pricing errors are not due to sampling errors. In particular, dif-
ferences between Black’s option price and the EGARCH option price for
deep out-of-the-money options are always significantly different from zero.
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VI. PREDICTING PREMIA

To compare the performance of the EGARCH OPM and Black’s OPM, op-
tion prices are estimated for 1991 Chicago wheat futures for two month peri-
ods prior to maturity for each March, May, July, September, and December
contract. Both Black’s OPM and EGARCH OPM provide predictions condi-
tional on F,, F, , ..., F, ,,. Thus, they predict today’s premium based on
today’s information. The annualized risk-free interest rate is assumed constant
during the simulation period at r=5.5%." In this out-of-sample simulation®,

[Table 6] Ranges of Futures Prices During the Out of Sample Simulation Per-
iod and Strike Prices of In-, At-, and Out-of-the-Money Options
for Each Contract®

Maturity March May July September December

Panel A: Put Option

Price

Ranges (2.46,2.62) (2.62,2.93) (2.80,3.01) (2.59,3.01) (3.253.71)
Out-of Money 2.40 2.50 2.70 2.50 3.20
At-the-Money 2.60 2.80 2.90 2.80 3.50
In-the-Money 2.80 2.90 310 3.10 3.70

Price

Ranges (2.46,2.62) (2.62,2.93) (2.80,3.01) (2.59,3.01) (3.253.71)
Out-of -Money 2.40 2.50 2.60 2.40 310
At-the-Money 2.60 2.80 2.90 2.80 3.50
In-the-Money 2.80 3.00 3.10 3.20 370

? Units are in $/bushel.

8 During the simulation period, the range of the rate of return on treasury bills is (0.052, 0.058).

¥ The statistical model of CBOT wheat futures price changes is estimated using data from Jan. 1982
through Sept. 1990. The Black and EGARCH option premiums are simulated for the trading of Dec.
1990 through Nov. 1991, so the simulation is out of sample.
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[Table 7] Out of Sample Forecasting Performance of Black and EGARCH
p
Option Pricing for 1991 Chicago Wheat Options

Black EGARCH
Monevness® Out At In Out At In

panel A: Put Option

Mean Error® -0.24 -0.36 —0.49 -0.22 -041 —0.48

Root Mean

Squared Error® 0.96 1.34 1.33 0.76 1.17 1.31
panel B: Call Option

Mean Error® -0.31 0.09 0.44 —-0.24 0.02 0.54

Root Mean

Squared Error® 0.88 1.71 1.61 0.78 1.57 1.65

* The precise exercise prices for the in-, at-, and out-of-the-money options are given in
Table 6.
* Mean errors and root mean squared errors are in cents per bushel.

twenty-day historical volatility'”, which is seasonally adjusted'”, is used as the
starting value to generate unconditional variances in the EGARCH integration
process E, and as volatility measure in Black’s analytical solution B and in
Black’s Monte Carlo solution B,.. The model is only used to predict nearby
option premiums with up to about two months maturities. That is, for exam-
ple, the model is used to predict about July option premiums only over the
same time period that July futures contract data was used in estimating the
EGARCH model.

Results are given for both put and call options. The mean errors and root
mean squared errors (RMSE) of Black’s OPM and EGARCH OPM are com-
puted. Further, the Ashley-Granger-Schmalensee test is used to test if the

!0 For the purpose of forecasting option premiums using Black’s OPM, the implied volatility is a
better choice of variance in Black’s model than historical volatility because the implied volatility im-
plicitly contains information about all market conditions including non-normality. However, since the
objective is to test distributional assumptions between Black’s OPM and the EGARCH OPM, it is not
appropriate to use implied volatility because then Black’s OPM and the EGARCH OPM would be
conditioned on different information sets. It is theoretically possible, although not yet practical(because
of computer costs), to calculate an implied volatility for the EGARCH model. The EGARCH implied
volatility would not be the same as the implied volatility with Black model.

' The tustoncal volatility is wasonally adjusted by multiplying it by the seasonality index which is

calculated as 2 S, /(r~ to+l)/( Z} S, /20), where f is current date, r is the day of maturity, and
tzf

S, is unoondmonal variance of day T The unconditional variance is the expected value of eq. (6) cal-
culated using estimated parameters.
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mean squared error of Black’s OPM is equal to that of the EGARCH OPM.
Statistical tests were based on White’s heteroskedastic-consistent covariance ma-
trix because of likely heteroskedasticity due to differences in maturity and on
Newey and West’s autocorrelation-consistent covariance matrix because the
Ashley-Granger-Schmalensee test assumes independence.

The ranges of futures prices during the simulation period, and exercise prices

[Table 8] Ashley-Granger-Schmalensee Test of the Out of Sample Forecast
Performance of Black and EGARCH Option Pricing for 1991 Chi-
cago Wheat Options

g g F statistics® Conclusion Model Favored

Panel A: Put Option

Out-of -Money* 0.1275* 0.1164* 87.87* reject Hy EGARCH
(12.95) (8.34)

At-the-Money* 0.0435* —0.0833* na inconclusive None
(2.78) (—6.10)

In-the-Money* 0.0028 0.011 1.58 not reject Ho None
0.21) (1.74)

Panel B: Call Option

Out-of -Money* 0.0667* 0.0539* 30.40* reject Ho EGARCH
(5.56) (6.75)

At-the-Money* 0.1814* 0.0968 16.02* reject Ho EGARCH
(5.51) (0.80)

In-the-Money* 0.0021 0.0154 1.75 not reject Ho None
(0.06) (1.13)

* The Ashley-Granger-Schmalensee test is based on the following regression results:
4,=8+AC - )+e,.

B G —5B
Here, 4, = (¢ —e when ¢ >e¢

¢ —¢ when e >e

where ef is Black’s option price minus actual option price and e,c is EGARCH option price
minus actual price.
2, =ef+ef, assuming Ef>0 and Ef>0. 3, E,B, and éf are means of 23, qABe,_G, respectively.
*If both A and £ are negative, then F test with one half of regular significance level can
be used. However, if one of 3 and £ is negative, then t test of the other coefficient should
be used. If one of A and 4 is significantly different from zero, then the test is inconclusive.
¢ Ho: Mean squared error of Black’s OPM is equal to that of EGARCH OPM,

H,: Mean squared error of Black’s OPM is greater than that of EGARCH OPM.
¢ Hy: Mean squared error of EGARCH OPM is equal to that of Black’s OPM,

H;: Mean squared error of EGARCH OPM is greater than that of Black’s OPM.
* Asterisks denote significance at 5% level. Numbers in parentheses are t statistics.
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for in-, at-, and out-of-the-money options are in Table 6. Table 7 shows the
out-of-sample results over Dec. 1990 to Nov. 1991. A total of 1,214 out-of-
sample observations is provided. Except for at-the-money put and for in-the-
money call options, the mean errors of the EGARCH OPM are smaller than
those of Black’s OPM. For the Chicago wheat futures prices, the root mean
squared errors (RMSE) of EGARCH OPM are smaller than those of Black’s
OPM in all cases except for in-the-money call option. However, the differ-
ences are not large. The Ashley-Granger-Schmalensee (AGS) test (Table 8)
finds the mean squared errors of Black’s OPM are significantly larger than
those of EGARCH OPM for out-of-the-money put and call options, and at-
the-money call option. However, there is no winner for the in- and at-the-
money put, and in-the-money call options. Therefore, the EGARCH OPM
performs better than Black’s OPM for out-of-the-money put and call options
and at-the-money call option in this out-of-sample simulation.

Vil. CONCLUSIONS

This paper introduces a model that considers the asymmetries in the mean
equation of the various ARCH-type models, and determines the most likely
distribution of Chicago wheat futures price changes among alternative
autoregressive conditional heteroskedasticity models. The asymmetric EGARCH
(0, 1)-t with one lag on the conditional variance, which considers asymmetries
both in the mean and variance equations, was selected as the most likely
model of Chicago wheat futures price changes. This implies that considering
asymmetries not only mean returns but also volatility structure is important for
the fatures prices.

A Monte Carlo study using the estimated asymmetric EGARCH(0, 1)-t pa-
rameters shows that Black’s model values deep out-of-the-money put options
less than the EGARCH option pricing model does. However, Black’s option
pricing model values at-the-money put option premiums higher than the
EGARCH option pricing model does. In the Monte Carlo study, differences
between Black’s model and the EGARCH option model increase as time to
maturity increases, which confirms Hull and White’s findings. The EGARCH
option pricing model predicts actual option premiums of Chicago wheat more
accurately than Black’s model for deep out-of-the-money put and call options
and at-the-money call options.
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