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This article provides a theoretically consistent framework for welfare measwre-
ment under quantity restrictions and free adjustment of prices in equilibrium.
The paper extends Randall and Stoll's and Hanemann's results into a complete
inverse demand system. It is found that Randall and Stolls and Hanemann s
resuits should be modified to fit into the complete inverse demand system.
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I INTRODUCTION

Researchers involved in applied welfare analysis have conducted demand analysis
based on ordinary demands or mixed demands. Ordinary demand is the usual rep-
resentation of preferences for the individual consumer in the absence of rationing
(more generally quantity constraints), who is typically taken as making optimal de-
cisions for given prices and income while mixed demands (Neary and Roberts.
Chavas) is the representation of preferences for the consumer in the presence of
rationing on some goods. In addition to the two cases of ordinary and mixed de-
mands, another class of demands ie. inverse demands, can be conducted in welfare
analysis. The inverse demand corresponds to the case where all goods are rationed
and involves specific assumptions about the way rationed quantities adjust to keep

« I wish to thank W.N. Thurman, J. Easley and anonymous reterees for helpful discussion and
comments. All remaining errors are mine.
*+ Department of Economics and Business, North Carolina State University, Raleigh, NC 27695,
USA and National statistical office, 647-15 Yoksam Kangnam. Seoul 135-723, Korea. {e-mail: hjpark @
nsohp.nso gokr)



6 THE KOREAN ECONOMIC REVIEW Volume 13, Number 2, Winter 1997,

utility constant, and also a specific price normalization.” As a result, the implica-
tions of inverse demands are quite different from other demands.

Since the inverse demand model implies that all consumption goods in the
model are predetermined in the short-period enough to prevent to change quanti-
ties, there are restrictions on the consumers response. For some goods, the produc-
tion process for those goods may be such that market supplies of related goods are
determined largely in advance of current prices. As is well known, in an equilibri-
um under quantity rationing, prices may be exogenous if there is no price
adjustment process. However, there is no reason to assume the exogeneity of prices.
Furthermore, we can hardly assume that there is always a Walrasian equilibrium
on each market. It is especially true when we study the effect of all characteristics
of air quality (quantity of environmental and resource goods) on property values or
when quantity of nonstorable goods (fish, food, and fruits and so on) is predeter-
mined by production at the market level. For these reasons, a complete inverse de-
mand model may give much more sense than any other specification in these
cases.” Despite its obvious potential for application into those cases, the inverse de-
mand model has been virtually ignored in both theoretical and empirical works for
welfare measurement.

As a first attempt, Karl-Goran Maler (1974) showed that the concept of the
compensating and equivalent variations can readily be extended from conventional
price changes to such quantity changes. In a mixed demand model adapted to Ma
ler’s idea, Randall and Stoll (1980) demonstrated that Willigs (1976) bound can be
adapted to errors of approximation to the exact welfare effects of exogenous quan-
tity changes, which is called Randall and Stoll's bound.” In many empirical studies
of environmental economics, Randall and Stoll's results were misleading in the
sense that willingness to pay (call it WTP) and willingness to accept (call it WTA)
for changes in quantity of environmental quality characteristics should not much
differ without unusual income effects. However, Michael Hanemann (1991) demon-
strated that for quantity (of environmental quality characteristics) changes, WTP
and WTA are not presumed to be close in value and the difference between WTP
and WTA depends not only on an income effect but also on a substitution effect.

In this paper, we reexamine Randall and Stoll's bound and Hanemann's analysis.
It will be shown that the bound is still hold but the involved concepts should be
adapted to the inverse demand models and that while his fundamental result is

' See Madden (1991).

*One example of this model may be the case where there are significant transaction costs in-
volved in moving and in buying and selling houses or changing rental agreements in studying the
effect of air pollution on property values. Another example may be the case of commercial and rec-
reational fishery due to water quality change and the demand for fish. Note that there have been
increasing attempts to investigate systems of inverse demand equations. In the theoretical literature,
Theil (1976), Weymark (1980), Anderson (1980), Heien (1982), Chambers and McConnell (1983) pro-
vide some theoretical discussions of inverse demand systems.

* Robert Willig (1976) derived bounds for the difference between the correct measure of the com-
pensating and equivalent variations, and demonstrated that the difference is likely to be fairly small
in value.
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correct in the ordinary demand model with quantity restriction (ie. the mixed de-
mand model), it does not lead us to reach the same result in the inverse demand
model with quantity restriction. Further, we show that under appropriate condi-
tions, changes in the area under the inverse demand curve for goods can serve as
welfare measures for changes in the quantity constraints and that these measures
make no assumptions about prices in deriving the welfare measures.

The layout of the paper is as follows. Section II is concerned with inverse de-
mand models distinct from mixed demand models (ordinary demands with quantity
restrictions). Section Il develops modified Randall and Stolls bound in an inverse
demand model. Section IV deals specifically with Hanemann’s fundamental result
adapted to the inverse demand model. Taking a simple example, section V high-
lights the significance of difference from Hanemann's fundamental result. Section VI
closes the paper by concluding remarks.

II. INVERSE DEMAND MODELS

Following Hanemann (1991), this paper first will set up the ordinary demand
model with quantity restriction which is in fact Randall and Stoll's economy. It then
will derive a complete inverse demand model with quantity restriction from which
we obtain modified Randall and Stoll's bound. Consider an individual who maxi-
mizes a quasi-concave utility function, U(x, g} where x denotes a quantity vector
of conventional market goods and ¢ represents a quantity vector of rationed goods
or the supply of environmental goods or amenity. The individual faces quantity
constraints on its consumption of goods g but is unconstrained in its consumption
of goods x. Suppose that the individual could purchase x at the price px and the
hypothetical price of ¢ would be given at g The individual chooses his consump-
tion by solving:

V (g, peyn) = Maxy[U (x, @ | px+ pg— m = 0] (1)

where income is denoted by m and the income net of the cost of ¢ by n=m —pg
In such a case, conditional demand functions are: *

(]U:gl(pm Pu”’l) (2)
x=glq’ p., n) 2

where ¢' denotes a fixed quantity of environmental good's characteristics or ra-
tioned goods and n = m — p, ¢".” Note that if the individual has the freedom to

* Conditional demand functions were first considered by Pollak (1969). Some useful classical pa-
pers on consumer behavior in settings with quantity constraints are Howard (1977), Latham (1980),
Neary and Roberts (1980), and Deaton (1981).

S Hereafter,variables which are some functions of parameters represent optimal values unless any
special superscript is used and any confusion arises.
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choose both x and q, that is p, is assumed to be fixed as p. is, the optimal demand
for x is not a function of ¢

Considering the conditional demand function for g the virtual price chypothetical
market pricel of q (p,) can be implicitly defined in®

q" = gdpy po m) = gl 1o b re (g, ] (3)

where d.) denotes the conditional expenditure function. An explicit expression for
the virtual price p, is

b= fAa' b w) = g. 'La"p, el py u)] C)

Substituting the conditional indirect utility function x=1" (g p., n) resulting
from (1) into (4) yields implicitly 'the individual’s marginal-willingness-to-pay func-
tion' for ¢.” For the individual, the marginal-willingness-to-pay function may be
different from the market price even if the market for g exists. However, when the
hypothetical market price p, equals his marginal evaluation of the last unit received,
the marginal-willingness-to-pay function becomes equal to a conditional inverse
Marshallian demand function of g " Thus, when it comes to the aggregate behavior
from the individuals choice, it makes sense perfectly that the conditional inverse
Marshallian demand function would become the marginal-willingness-to-pay func-
tion for a representative consumer.” The model constituted by equations (2') and
(4) may be called the mixed demand model."

The mixed demand model explained above is the world for Randall and Stoll
and Hanemann. We now diverge from their world by putting our feet into a realm
of complete inverse demand models. In the inverse demand models, all goods are
assumed to be rationed and thus the individual has no freedom to choose both x
and ¢ In order to derive a complete inverse demand model, we lake inverses for
the 4(.) and x(.) for the whole.” We would then have:

" The concept of virtual prices was first suggested by Rothbarth (1940—41) and it 1s defined as
those prices which would induce an unrationed individual t= behavior in the same manner as when
faced with a given vector of ration constraints.

"1 would rather call it “conditional marginal-willingness-to-pav function.’

* Randall and Stoll (1980) ignored the distinction between them.

* Note that the conditional inverse Marshallian demand function has its argument p. because good
x is not a set of rationed goods. It is crucial to distinguish from the complete inverse demand func-
tions.

* For more discussion, see chavas (1984).

" To obtain a system of inverse demand functions from the ordinary demand system, conditions
for global invertibility are required [see Gale and Nikaido (1982); L. Cheng (1985)]

2 Note that in inverse demands, income is always linearly homogeneous in £.) and that income
net of the cost of ¢{=n) is not an argument any more because p.is not a fixed parameter.
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= filx, g, m)
.= fx, ¢ m) (9

As in the conditional inverse demands, the complete inverse demand functions are
marginal willingness to pay functions under the assumption that all goods are ra-
tioned and prices are freely adjusted to the Walrasian equilibrium. This is obvious-
ly not to be confused with the inverse of the Marshallian demand functions, where
only one price at a time is allowed to vary as in (4). When discussing inverse de-
mands in the one good context, the distinction will vanish. For any good, the slope
of the inverted Marshallian demand function (4) is simply the inverse of the slope
of the ordinary Marshaliian demand function. This is generally not true for inverse
demand functions; the calculation of the slope property of (5) from knowledge of
the ordinary Marshallian demand function will require the inverse of a Jacobian
matrix.” The case where the slopes of the iwo are equal will occurs when all un-
compensated cross price effects are zero. In this world distinct from Randall and
Stoll’s, we take a dual approach to derive WTP and WTA in the following section.

II. THE WILLINGNESS-TO-PAY AND-ACCEPT IN INVERSE
DEMAND MODELS : A DUAL APPROACH

Suppose now that the individual could purchase g in a hypothetical market at
the price p,, so—called the virtual price, in addition to x at the price p.. Note that
this market for q is entirely hypothetical because g is a fixed quantity of environ-
mental good’s characteristics or rationed goods and the individual does not have
freedom to choose g The dual problem to (1), given that all quantities are rationed,
is:

Dz, g w) = Min [rax+ 7,9 Ux, g =0"] (6)

where 7. denotes a normalized price of x by income, 7, is a normalized price of q
by income, and D{) is a distance function or indirect expenditure function.” This
generates a set of inverse compensated demand functions,

m.=ndx g uand = r,= 7,(x g «) . They give the relation between quanti-

" See LCheng (1985) for more general discussion In this case, the reciprocal of the direct price
flexibility (£) forms the lower limits, in absolute terms, of the direct price elasticity (e): e ! = [f,
e

* As is well known, the property of the distance function is that it is continuous in its arguments,
is decreasing in u and increasing, linearly homogeneous, and concave, first and second differentiable
almost everywhere in quantities-see Deaton (1979, 1981). This function has a rather natural interpre-
tation: it represents a scaling factor which scales all quantities up or down to attain a given indiffer-
ence curve. Note that in the special case when u=U(g"), we have that Xu ¢ =/. Hence, we can
always write the direct utility function in the equivalent implicit form Dy, @) =1.
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ty-constrained compensating and equivalent variations (call them WTP and WTA,
respectively).” Note that as shown by Deaton (1979), a useful property to be used is:

[Figure 1] The welfare changes in inverse demands
: . J - N §

D

Consider the case where g decreases while x is unchanged. The individual is
confronted with a change in his bundle of the good g from ¢’ to ¢' where ¢' <g"
without loss of generality. Let 7/=7(x, ¢° u") and 7/=n(x, ¢', u') denote the pric-
es (‘marginal-willingness-to-pay function) that would have supported ¢’ and ¢,
respectively. This can be illustrated with the help of Figure 1. Let the base indiffer-
ence curve be v’ in the diagram and assume homothetic preferences for simplicity.
For our convenience, we represent Ux, ¢) as UQ) where Q=(x g, a vector of
quantities. Furthermore, we express UQ) as UsQ") where Q°=(x", ¢°), ie, the ini-
tial consumption bundle, and s is a scalar measure of proportional scale change in
x and ¢ Thus, we may write (sQ°) as UXQ", s) for some purposes. In this function
UQ" s), if s=1 then we have the initial utility level.” Geometrically, the value of
the distance for Q' is the ratio OQ'/OA(=1/s) since it gives the amount by which
Q' must be divided to bring it to the indifference curve u""”

Note that, since the individual is presumed to face fixed quantities, the compen-

"t would be better to use QWTP (quantity-constrained WTP} and QWPA (quantity-constrained
WTA) to distinguish them from the more typical WTP and WPA in response to a price change. But
we use typical terminology to highlight similarity.

* Since UQ)=UXQ", 5) and an inverse of UX.) gives [X.), s may be defined as D(Q°, w), which im-
plies that for fixed quantities, it is a utility measure.

" Recall that the distance function can be defined implicitly by AQ/IXQw)} = u See Deaton
(1979) for details.
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sation cannot take the form of money income, as is usually considered in measur-
ing welfare changes due to price changes. In the quantity-constrained case, we are
only able to compensate him in the form of quantities, which are exogenous to
him. For this reason, the compensation scheme in inverse demand systems is quite
different from the one in ordinary or mixed demand systems. The former is more
pure compensation scheme than income-compensation scheme in the sense that
scale compensation (or quantity compensation) gives the consumer the resources
sufficient to increase consumption in equal proportions while, for income-compen-
sation, the consumer is offered the resources sufficient to increase consumption in
equal proportions, but then is allowed to substitute to a more desired bundle if
marginal valuations change. Therefore, the quantity-based compensating variation (
QCV) may be defined how much scale to compensate to increase the new con-
sumption bundle (¢') until the consumer is indifferent between the compensated
bundle and the initial bundle (¢"). In Figure 1, we may geometrically define QCV
by OA4-OQ'. Mathematically, using the direct utility function, the quantity-based
compensating variation (QCV) may be defined implicitly by

L (8)

U[D(g"f u")] - U[ D(Q', u)-QCV |

In our convenient form of preferences, his implicit WTP to avoid a change can be
rewritten as

u'=Ulx, ¢", D(x, ¢', u")] = Ulx ¢, D& ¢, u') + WT'P) 9

Similarly, the quantity-based equivalent variation (QEV) can be defined how
much scale to take away from the consumer to reduce the initial consumption
bundle (¢°) until the consumer is indifferent between the new consumption bundle
and the compensated bundle. In Figure 1 again, we may geometrically define QFV
by OQ’-OB. Mathematically, QFV may be defined implicitly by

_ o ®
= p@, u |7

Q" |
U[ D(Q", W+ QEV (10)

In our convenient form of preferences, his implicit WTA to accept a change can
be rewritten as

Ulx, ¢"D(x, ¢, u®) = WTAl = Ulx, gDl ¢, u)] = u (11)

Both WTP and WTA measure the amount by which the degree of rescaling of Q"
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exceeds the degree of rescaling of Q', ie, a quantity metric welfare affecting quanti-
ty change from Q' to Q. If WTP and WTA are positive, then g’ is preferred to ¢
Note that WTP and WTA depend in no way on how utility is measured, but de-
pend only on the indifference curve indexed by u, =0, L

As the inverse of indirect utility functions give expenditure functions, the inverse
of direct utility functions give distance functions. Thus, WTP and WTA measures
defined in (9) and (11) can be expressed in the explicit forms:

WTP= D(x, ¢',u"y— D(x, q¢', u") = D{x, q", u"y — D(x ¢", u") (12
WTA= D(x, q" u®) — D(x, q", ') = Dizg, g, u)— Dz ¢g", u') (13

Combining (12) and (13) with (7) and using the Fundamental Theorem of Calculus,

WTP= f . (x, q u")dg (14
ql)

WTA = f 7.z q u')dg (15)

q

These formula express WTP and WTA as areas under inverse demand curves be-
tween the old and new quantity verticals. The only distinction between WTP and
WTA is the level of utility the compensation is designed to reach. It should be em-
phasized that WTP and WTA are not monetary measures but unitless scale mea-
sures since all prices are normalized by monetary value, income. To recover mone-
tary values, they should be multiplied by income.

V. RANDALL AND STOLL'S BOUND IN INVERSE DEMAND MODELS

Using a procedure similar to Willigs (1976), Randall and Stoll (1980) derive
bounds on the difference between WTP and WPA. In order to do this in inverse
demand models, the area under an inverse demand function for g is defined as

A= fu 7, (x, g s)dp
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and the scale flexibility is defined as:"®

dogr (1, g, 5)
dogs

(16)
where s is a scalar measure of consumption bundle (x, ¢). Assuming that « is
bounded from below by « “ and from above by « ' over the range from (x, ¢") to
(x, ¢'), and using the mean-value theorem, and integrating (7), we obtain if # ' < 1
and k¥ > 1:"

0

2 2
p Lf;— < WTP—WTA< " ‘; (17)

which is similar to Hanemann (1991)s equation 15. The important differences be-
tween this bound and Randall and Stoll’s bound are « and A in (17) [£and A in
Randall and Stolls] The term « is the scale flexibility defined as (16), while
Randall and Stoll's £ is the income elasticity of the conditional inverse Marshallian
demand function defined as

g = Ologb o (bs ¢ m)
dlogm

Our term A is the area under an inverse demand function for g while their A4 is
the area under an conditional inverse Marshallian demand function for g

As Hanemann (1991) asked, does (17) tell us if WTP and WTA are likely to be
close in value? To answer this question, we examine the relationship between «
and 7 (income elasticity) to see the likely magnitude of the scale flexibilities. Using
techniques by Park and Thurman (1996), we obtain: *

7—1
0

. (18)

K =

where 7 is income elasticity and ox is the aggregate Hicks elasticity of substitution
between ¢ and x. Equation (18) is analogous to the “fundamental result” (equation
17) in Hanemann (1991). The critical differences between (18) and Hanemann's are &
and ¢ in our relation [£ and ¢, in Hanemann’s] Our 0a is the Hicks elasticity of
substitution, while Hanemann’s o; is the Allen-Uzawa elasticity of substitution. Both

* Randall and Stoll called this the “price flexibility of income” in the setting of ordinary demand
model with quantity restriction.

¥ See Appendix A for derivation.

® See Appendix B for derivation.
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of them are the same within two good case. In three good case, however, they will
be different assuming the third good does not move to the same direction in quan-
tity.?

As Hanemann (1991) found, the extent of the difference between WTP and WTA
depend not only on income effects but also substitution effects. In the case of zero
substitutability between ¢ and x, the difference between WTP and WTA could be infi-
nite, which is the same conclusion as Hanemann except for the different definition
of substitutability and price flexibility. However, the exact relationship is different
from Hanemanns and so equation (18) should be used in inverse demand models.
Even if we use the same meaning of substitutability (0) as Hanemanns and « =§
the interpretation and results are not the same. In the Hanemann’s (1991) result, if
either 7 =0 (no income effects) or 02 = oo (perfect substitution between g and x)
over the relevant range, then Hanemanns «"=«"=( thereby WTP=WTA =A"
In (18), if 7 = O(no income effects) then

e
Kk = . (19

Thus we still have substitution effects which may give a substantial divergence be-
tween WTP and WTA. If ¢ = oo (perfect substitution between ¢ and x) over the
relevant range, then we have « = —1, thus still obtaining the error of approxima-
tion for A. Therefore, some of Hanemann’s results should be modified to adapt
them into inverse demand models since, in some cases, they may give completely
misleading interpretation of empirical studies.

V. SIGNIFICANCE OF DIFFERENCE FROM HANEMANNS RESULTS

This section provides the significance of difference between our result and
Hanemann’s result by taking a simple example. Consider an individual who maxi-
mizes the quasi-concave utility function, Ux, g} where x denotes conventional mar-
ket goods and ¢ represents the supply of environmental good or amenity. Suppose
that the individual could purchase x at the (hypothetical) price p.and the price of
g would be fixed at p, We further assume that he has the following utility func-
tion:

Ulz, @) = alogg+ x ()

2 For more-than-two good case, both elasticities of substitution are not relevant. As Blackorby
and Russell (1989) point out, the indirect (or dual) Morishima elasticity of substitution should be
used in the primal space.

Z By Hanemann’s « (he actually used the notation of &), | mean that it has its arguments, price of
x, income and quantity of good g while our « has its arguments such as quantities of good xand ¢.
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In Hanemann's setup, the demands for x and g are given by:
P,=ap./q

r=m/p,.—a 21)

where m denotes income. It follows from (21) that the price flexibility of income
for g is:

EZ alngq(qs pr, m) — 0

ologm (2)
The term A also can be calculated simply as:
A= f a4, @)
® 4

Turning to our setup where x is assumed as rationed market goods, (20) gives
the following inverse demands for x and ¢

T, = a/ a+ ),
.= 1/(a+ 1) (24)
From (24), the scale flexibility of g can be obtained as:

X

fk=—-1- '&—4I=—1—W1, (25)

where ), denotes the budget share of good x. The term A for (24) is given by:

aql

- _a
A= q0 q(a+x)dq

(26)

To compare with Hanemann’s result, we let =1 and p' = 1/[a+x7] at the opti-
mum in (21). In this case, (23) and (26) would be equivalent. However, Randall and
Stoll's bounds are significantly different between them because (22) and (25) are
much different. Furthermore, if we do not assume that p. = /[a+x] at the opti-
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mum in (21), we have different terms of ‘4 in addition to the different bounds.
Therefore, Hanemann's and ours describe, in fact, a completely different world.

As seen in the previous section (section IlI), the fundamental difference comes
from different compensation schemes. While scale compensation in a complete in-
verse demand model provides the consumer with the resources sufficient to in-
crease consumption in equal proportions, income-compensation in ordinary and
mixed demand models offers the consumer the resources sufficient to increase con-
sumption in equal proportions but then allow him to substitute to a more desired
bundle if marginal valuations change. These different compensation schemes lead to
different concepts of WTA and WTP and different bounds.

VI. CONCLUSION

In this paper, we have reexamined Randall and Stolls bound in the tnverse de-
mand models. It finds that the bound is still hold but the concepts should be
adapted to the inverse demand models. Next, we also reexamined Hanemann’s fun-
damental result that the difference between WTP and WTA depends not only on
an income effect but also on a substitution effect. This paper finds that his result is
accurate and still validates analogy to the inverse demand models. However, the
exact relationship is not the same as Hanemanns and also some of his interpreta-
tion becomes incorrect if it is applied to the inverse demand models. The funda-
mental difference comes from different compensation schemes appropriate to the
models. It leads to different concepts of WTA and WTP and different bounds.
Thus, it suggests that our bound and fundamental result should be used in deriving
appropriate welfare measures and correct interpretation of empirical results from
complete inverse demand models.
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APPENDIX A

Derivation of equation (17)
Since the scale flexibility is defined as

dlognx, g 5)

£= ologs (Al)
where s is a scalar measure of scale of consumption bundle (x, g), we have
,@(;r_qz . (A2)
S 3
Integrating both sides. we have:
mdx ¢ 9 = 7,(z q")s" (A3)
where ¢ is a reference quantity for g Substituting this into (7) yields:
ﬁg%%ﬂ:MM¢M=m@mDM%MquJW (Ad)
Dx,qg’u’)=1 (AS)

where ¢’ is a reference quantity demanded and u’ denotes the initial utility level.
Solving the differential equations, we obtain a distance function:

Dz, qu) = [1+(1—K)fl 1% 9dgd" = 1+U-0)AT"" (A8)
Using the Taylor approximation,
1/1-« a KCZZ
- o~ - A7
(1-a) L+ 1o * 2i=r) (A7)

we obtain:
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kA

D(z q', u")—1= A+ 77«? =WTP (A8)
Similarly, we can get:
1-D(x q" u') = A—ﬁfzﬂ—'—zwm (A9)

Assume that there are upper and lower bounds on « (¢  and « ', respectively),
with neither equal to one. Using the mean-value theorem on 7{s%/7(s") and as-
suming conditions in proposition 3 of Haneman's are satisfied, then we can obtain
equation (17). Specifically, the Mean Value Theorem says:

S\t o (x g s0) (,5; K
<Sl> EACY TN s.) (Al0)

for s:2 s,

Setting s,=D(x, ¢') and s:=D(x, ¢")=1, where 1 drop its argument u for simple ex-
pression, we have:

nkhiondx g D(x q')) K
D(x,¢")" '< oD <D(z, ¢) (A1D

Rearranging and substituting from (A4), we obtain:

0<7dz 4 1) ‘”'s@%ﬂlm; a7 (A1)

and

Oé%@‘aa@ q') * g rdx, g 1). (A13)

Integrating (A12) and (A13) and rearranging, we have:

171 -kt 11 -4

[1+(1—« 1 A] <D(x g, u)<[1+(1—« ) A] (Al14)

if neither of « is equal to one and the terms inside the brackets are positive. Re-
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versing the roles of ¢' and ¢’ in (A14), we have:

1/1-% 11-¢ Y

[1=(—k9A1" ™ <D(x ¢" u)<[1-(1—x VA] (A1)

Applying Taylor approximation of (A7) to equations (A14) and (A15), and invoking
definitions of WTP and WTA, we get the required bounds of (17).

APPENDIX B
Derivation of equation (18)

Let €*=[&"] be the matrix of price elasticities of the Hicksian demands,

&’ = angir(,f;, W =l (B

where £'( - ) denotes the Hicksian demand functions. The price homogeneity con-
dition implies

'2:.‘.5,]'=0, =1 m (B2)
and symmetry implies that

W= W, =1 n (B3)
where w; is the budget share of good i The adding-up condition gives

Zw=1 (B4)

Let 7 =[7] be the vector of income elasticities of ordinary demand. Engel aggrega-
tion requires that:

Znaw=1 (BS)

We define e=[g;] as the matrix of uncompensated price elasticities of the
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Marshallian demands, ie, g=fp m)

_dnf{(pm)
€= np {B6)

Then, we can obtain the Slutsky equation in elasticity form as follows:
e/ =€ =W, (B7)

Consider the case where n=2 Combining (B2){BS5) and (B7), we can write

— | €n 612}
6 -
[621 En

: & — i, & =(1=w)y. ‘
= —enwi—wll—wy.) 511‘wi—‘(1""W1)(1"‘w1771)i (B8)
‘ 1—w, 1—w, )[

Let B=[b,] be the matrix of uncompensated price flexibilities of inverse demand.
Since dlogp)=¢"'dlog(q)—¢ "1 dlog(in), the matrix B can be obtained by inversion of
&

B=¢"
=[5
—w+ (l"ll)l)(l‘_ WI”I) “"(l“ll)x)‘”‘ (l _l})_lziqg
_ &l &l ,
Tl (1)) o —re(R) (B9)

Using the relation of k. to b,, we can derive the explicit expression for the scale
flexibility: ?

= l+&%ﬂz -l ‘("1:““)_;),(7179*) (BI0)

Using e, = o,w, we obtain the required expression, (18). For the multi-good
cases, see Park and Thurman (199).

Z k=2b, by definition of k.and homogeneity.
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