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EXACT MAXIMUM LIKELIHOOD ESTIMATION OF FRACTIONAL
MODELS AND TIME SERIES NATURE OF
THE REAL GNP OF KOREA*

YANG SEOB LEE™

An exact maximum likelihood estimation algorithm for estimating univariate
ARFIMA(D, d, q) model is suggested. The transformation method based on Chol-
esky decomposition is useful in that it can easily incorporate well-established technig-
ues of estimating ARMA(D, q) model and also avoids the problems of Sowell
(1992a). For the development of an exact maximum likelihood estimation method
that is used throughout the study, the algorithm of Ansley(1979) for general
ARMA(D, q) model is incorporated. A small simulation shows that any one of max-
imum likelihood estimation method and the method of Li and McLeod( 1986) does
not clearly dominate the other in precision und dispersion, although the latter has
known truncation problem, in the samples of length 100. The performances of maxi-
mum likelihood estimation when the true fractional differencing parameter is close to
the boundary of 0.5 are relatively poor, however that can be improved by reparam-
eterizing d. Estimating ARFIMA models by exact maximum likelihood method de-
veloped in this study, a time series nature of quarterly real GNP series of Korea is
analyzed. When two intervention variables are introduced under the assumption of
known events, all three types of the models, deterministic trend model, stochastic
trend model, and more general fractional model, seen to estimate the series reason-
ably well. However, the likelihood ratio test and spectral analysis show that the stoc-
hastic trend representations appear to be less adequate in capturing the low fre-
quency behavior of GNP than fractional representations und deterministic trend rep-
resentations.

I.INTRODUCTION

Recently ARFIMA(p, d, q) (autoregressive fractionally integrated moving
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average) model is receiving more attention as an alternative to standard ARIMA
(9, d, q) (autoregressive integrated moving average) model as the former can de-
pict more general type of long-run dependence in the data than the latter can do.
Granger(1980) showed that univariate fractionally integrated series can be obtain-
ed by aggregating simple, possibly dependent, dynamic microeconomic variables.
Most of important macro-variables are thought to have the data generating pro-
cess of that nature, for instances GNP, unemployment, interest rates, personal
consumption, exchange rates, etc. Numerous studies have been followed to esti-
mate the fractional integration parameter in macroeconomic series. However, the
estimation techniques employed in earlier studies appear to have more limitations
than the maximum likelihood estimation method suggested in Sowell(1992a).

Especially, ARFIMA(p, d, q) models are general enough to incorporate both
of the competing stochastic trend model and deterministic trend model as iwo
extremes. The integer value restriction of d =1.0 means stochastic trend model
and d =0.0 means deterministic trend model in a ARFIMA(p, d, ¢) represen-
tation. The traditional distinction and testing between difference stationarity and
trend stationarity become less justified as the integration order d can take real
values. The unit root tests with fractionally integrated series are known to have
different limiting distributions due to flexible integration parameter and naturally
conventional unit root tests have quite low power against fractionally-integrated
alternatives. [see Sowell(1990) and Diebold and Rudebusch(1989)] As the correct
specification of a series is very important for the testing, it can be rewarding to
employ ARFIMA(p, d. q) modeling for model selection, which explicitly takes
account all parameters including integration parameter d, as illustrated in Sowell
(1992b).

For the estimation of fractionally integrated series Sowell(1992a) suggests a
maximum likelihood estimation method that does not suffer from truncation or
approximation unlike other methods. His simulation shows that, at least, uncon-
ditional maximum likelihood method appears to perform better than the esti-
mation method of Geweke and Porter-Hudak(1983) and Fox and Taqqu(1986).
However, in general ARFIMA(p, d, gq) form, the estimation algorithm of Sowell
is somewhat complicated for programming and also conveys a few other pro-
blems. It can not handle the model with repeated AR roots as the partial frac-
tion decomposition simply can not be applied. The calculation of autocovariances
becomes cumbersome when roots are complex, and likely to have some degree of
inaccuracy when at least one AR root is approaching unit circle boundary, be-
cause truncation is inevitable to evaluate infinite summations. [see p. 174 equa-
tion (9)]

As an alternative to Sowell, an exact maximum likelihood method is pursued
in this study, which is not only simple and flexible to use in that we can incor-
porate well-established algorithms of ARMA estimation, but does not suffer tho-
se problems of Sowell. And then a small sample performance of maximum likeli-
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hood method is investigated, also with that of another time-domain estimation
method of Li and McLeod(1986)". This comparison will provide more convinc-
ing evaluation of maximum likelihood estimation. Additionally, as an application
of ARFIMA model, more appropriate representations for the real GNP of Ko-
rea are investigated. The issues of difference stationarity and trend stationarity in
the series will be addressed in a more general context of considering ARFIMA
alternative.

Next section presents a method for evaluating the maximum likelihood for
ARFIMA(p, d, q) model employing the Cholesky decomposition of covariance
matrix, which can be easily combined with many conventional ARMA algo-
rithms. In this study, the algorithm of Ansley(1979) for general ARMA(p, ¢) mo-
del is incorporated. A smail simulation shows that maximum likelihood method
does not dominate the method of Li and McLeod, vice versa, in bias and
root-mean-squared error in the entire range of d, even though the latter has
known truncation problem. Also, it is shown that the bias of maximum likeki-
hood method, which becomes larger as true fractional integration parameter d
approaches boundary of 0.5, can be improved by reparameterizing d away from
boundary into safe region. Section III shows that the GNP series can be reason-
ably estimated in terms of all three models; stochastic trend model, deterministic
trend stationary model, and ARFIMA(p, d, q) model with no restriction. Those
models are estimated with two intervention variables under the assumption of
known events, the second oil shock and political crisis that largely overlap in
time. However, the results of likelihood ratio test for restrictions and spectral
analysis reveal that, not like the other two representations, the stochastic repres-
entations do not appear to capture the low frequency behavior of real GNP ser-
ies. The final section summarizes the results and concludes.

I. FRACTIONAL TIME SERIES MODEL

2.1 Aspects of Fractional Model

Fractional time series model, often called long-memory model. 15 dis-
tinguished from usual ARMA(p, g) model in that it can parsimoniously capture
wide range of long-run dependence with a single real valued integration par-
ameter. The autocorrelation function p{ - ) of fractional time series exhibits a hy-
perbolically decaying pattern, while that of stationary ARMA(p, q) series shows
a geometrically decaying pattern. Thus the former is called long memory process
and the latter short memory one. A time series v, ={y,,--, ¥,! following a long

VIn Sowell(1992a), the method of Li and MclLeod was ignored as inferior method due to trun-
cation problem. However, no simulation evidence was presented. This study shows that small simu-
lation results do not support his assertion in later section.
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memory process of ARFIMA(p, d, q) is denoted as

HLY1—L) y, =& L)e, —0.5¢d<0.5 (1)
where & ~ #d(0, ¢°), AR polynomial (L) = (1 —¢ L —-- —¢,L’) and MA pol-
ynomial (L) =(1—-6,L —---—4,L°) have all roots out side the unit circle and

no common zeros, and (1— L)” is the fractional differencing operator.

An ARFIMA(p, d, q) process can have various characteristics according to
the values of parameter d. [see Hosking(1981), Granger and Joyeux(1980) for de-
tails| The autocorrelation at lag &, p(k), is proportional to &' implying that the
value of d is crucial to the memory property of a series. As a corollary the au-
tocorrelations do not have a finite sum for 0(d (0.5, and have a finite sum for
d {0, which corresponds to strong positive dependency between distant observa-
tions for 0(d (0.5 and mild negative dependency between distant observations
for —0.5(d (0. For d{0.5, the process is covariance stationary as it has finite
variance, while invertibility requires that ) —0.5. On the other hand, for 0.5 <
d< 1.0, the process is covariance nonstationary as the variance becomes infinite.
One peculiar feature of ARFIMA(p, d, @) series is the mean-reverting behavior
for d (1.0. For the series the effect of any shock persists, but eventually the effect
dies out. This is quite different from the unit root process for d = 1.0 where any
shock has a permanent effect on the process. [see Cheung and Lai(1993)] The fre-
quency domain feature of ARFIMA(p, d, @) series is characterized by the
low-frequency of spectral density function. As the frequency A approaches zero,
the spectral density of ARFIMA(p, d, q) series converges to ¢cA™™, where ¢ is the
constant related to a stationary ARMAC(p, ¢) series for d =0.0. Thus, a variety of
spectral shapes near the origin can be produced according to the values of d.

ARFIMA(0, d, 0) process, a process driven only by fractionally-integrated er-
rors,

(I—L)dyt=£z, (2)
can be useful for the analysis of general ARFIMA(p, d, q) models. The differ-

ence operator (1 — L)’ in equation (2) can be rewritten as, by using the binomial
expansion,

d ¢ i — F(l_d)
(I-LY=Zhl. b= TCar;+n - ®

The notation I'( - ) represents gamma function. The binomial expansion is poss-
ible as long as d ) —1.0. The estimation method of Li and McLeod(1986) sug-
gests transforming the original series in the optimization process by employing
the finite version of equation (3). Obviously truncation is inevitable and this aspect
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was pointed out as the source of inferiority by Sowell(1992a). The inverse of
(1 =LY exists if d (0.5 and then we have

yzz(l_L)'d & (4)
=u, (5)

where %, represents fractionally-driven errors. Similarly, the following can be ob-
tained.

PN . IUtd
(I=D"=%rL  B= " G+ (6)

It can be shown that the sequence i4*! is square-summable as long as d (0.5.
The condition guarantees that the process in equation (2) has a finite variance
and is covariance-stationary. [see Granger and Joyeux(1980) and Hamilton(1994)
pp. 448-452) As the process is covariance-stationary for d (0.5, we can construct
a positive definite symmetric covariance matrix in Toeplitz form. To obtain the
autocovariances, first the spectral density of v, equivalently #, is expressed as

D) =11—¢e"|*e/2n) (7)
= (2sin(A/2)) “&'/(2n). (8)

The autocovariances at lag period s are denoted by

)’(s) = [1r emf\ dA. (9)
= (o/n) |7 cos(sAN2 sin(A/2)) " dA (10)
- (=1)r({-2d) 1 B
= Ta=d+s)-d=s °- $70L2~ (11)
_ I'(1—2d) I'(d+s) . o

The derivation of the autocovanances can be found in Brockwell and Davis
(1987, p. 468) and Granger and Joyeux(1980). Equation (12), which is more con-
venient to evaluate, is obtained by applying the equation (8.334.3) of Gradshtevn
and Ryzhik(1980). From the results we can construct ( 7 X T) covariance matrix

el
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Q= [(i—jDl (13)

where 7, 7 represents zth row and jth column respectively. As the symmetric mat-
rix £2 in equation(13) is positive definite for & (0.5, the lower triangular matrix
can be obtained by Cholesky factorization. The inverse of €2 is decomposed as

Q7= (cC), (14)

where C is the lower triangular matrix. Then it is easily shown that C ™' can be
applied to transform {y,} into { y*}, a process driven by white noise errors as the
following,

Yi=C"Y,, (15)

where Y7 = (3% %) and Y, = (y:--+ ¥,)" respectively. This transformation will
provide a tool to handle general ARFIMA(p, d, g¢) models in the following sub-
section.

2.2 Estimating ARFIMA(p, d, ) Model

The transformation procedure of equation (15) can be extended to general
ARFIMA(p, d, q) models. If d (0.5, the stationary and invertible ARFIMA
model (1) can be rewritten as

v=¢(L)§(LY1— L) ¢ (16)
= (L )u,. (17)

Given d, as the autocovariance matrix of #, can be calculated, the transformation
of y, is straightforward. Note that the fractionally-driven errors are changed into
nicely-behaving ones by the transformation, and the transformed series becomes
usual ARMA(p, g) series. Assume this stationary and invertible mean-adjusted
ARMA(p, q) series is with covariance matrix o @, where the matrix @ has the
Cholesky decomposition @= DD . This implies that the original series y, can be
transformed twice to obtain a sequence { &} of 7#d normal random variables, that
is

&=D"'C"y, (18)

=Dy (19)
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where €,=(e, - &,)". Accordingly, the likelihood function of ARFIMA(p, d, q)
takes the form of

Ud. 4.8, 0 1Y,)=0r) " |CIID| exp( === &6 ). Y€ R, (0)
N 0
where the determinants |C| and | D] are the products of their diagonal ele-
ments respectively. A maximum likelihood can be obtained by evaluating the log
likelihood”

- T log(@m)+1-+log|

5 ze)} £=(ClID])"&. Q1)

1
T /
Many existing algorithms for estimating ARMA(p, ¢) process can be easily
combined into the estimation process and executed by slightly modifying the log
likelihood function of equation (21). For the estimation of ARFIMA(p, d. ¢)
models throughout the study. an exact maximum likelihood estimation method
for general ARFIMA(p, d, q) process is used. which incorporates the exact maxi-
mum likelihood estimation method of Ansley(1979) for ARMA(p. ¢) model. The
matrix @ in the variance-covariance matrix for ARMA structure is constructed
following the algorithm of Ansley(1979) and its lower triangular matrix D is used
appropriately for equation (19) and (21). The above likelihood for ARFIMA(0,
d, 0) process is exactly the same as that of Sowell(1992a). Due to the consecutive
data transformation, the maximum likelihood estimation suggested in this study
may be more time-consuming. However, the effort for writing computer program
can be minimized by partially rewriting the existing source code for ARMA(p. ¢)
estimation.” And the problems of Sowell noted earlier can be avoided because we
do not need to follow his algorithm any more.

The estimation method of Li and McLeod(1986) that approximates maximum
likelihood method transforms the data using equation(3). The log likelihood of Li
and McLeod can be considered as an approximation of equation (21). but ||
should be replaced by 1. The reason is that the first observation gets the full wei-
ght of 1 and thus all the diagonal elements of matrix are 1's. Technically, the
transformation is executable as long as d ) — 1. and even when the series do not

T
*The estimator @ = l_T T &; is employed for the derivation of log likelihood,
i=1
o
Logld, ¢, 6.0 1Y) = — —27:- log 2n — —7Llog ( —IT—Z & ) - TT
2 = 2
% 1In general, user-specific econometric packages are not flexible enough to rewrite the source code.
In this study the author used Gauss, a matrx-oriented compiled language and interpreter, and Gaussx.

an add-on program to Gauss.
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have a finite variance, and also can save more computation time compared with
the other exact maximum likelihood methods. The estimator is consistent and
asymptotically normal sharing the same large-sample distribution as that of exact
maximum likelihood estimator for —0.5(d (0.5. If we visualize the differences
of weights given to the observations by each of the binomial expansion and the
inverse of the Cholesky decomposition discussed above, the weight functions
show differences in magnitude according to the values of d, however, the pat-
terns are very similar. In that sense, a comparison of finite-sample performances
of Li and McLeod and the maximum likelihood estimation method discussed
above can be interesting. Clearly, the observations are getting ever decreasing
weights as the distance becomes longer, and after some periods they will surely
contribute only negligibly. This point makes clear that the transformation matrix
will be a band matrix with some band width. A preliminary study shows that the
band width of around 150 is acceptable for larger size data when —0.5(d (0.5.

2.3 Small Sample Properties

In large samples, the maximum likelihood estimator presented here and the
estimator of Li and McLeod are consistent and asymptotically normal. However,
it is difficult to figure out which estimator is more reliable in finite samples be-
fore we perform some experiments. The long-run dependence of data is not likely
to be fully captured in small samples. A Monte-Carlo simulation is employed to
investigate small sample properties by comparing relative performances of the
two estimators.

Fractionally integrated series are obtained as the following. First a length of
standard normal random variates are generated and then this white noise series is
transformed into fractionally-driven errors. The procedure is to premultiply the
lower triangular matrix C obtained from the Cholesky decomposition of the mat-
rix £2 in equation (13) to the white noise vector. This exact method is also used
in Diebold and Rudebusch(1991) and, originally in terms of autocorrelation mat-
rix, Hipel and McLeod(1978). Next the fractionally-driven errors are fed into
ARMA(p, q) process generating scheme. This procedure is repeated to replicate
multiple sets of ARFIMA(p, d, q) series. To generate nonstationary fractionally-
integrated series for d outside of —0.5(d (0.5, the parameter d was segmented
into partials such that the lower triangular matrices of the partials could be ap-
plied consecutively. For instance, if d =d, + d., then C and C are premultiplied
sequentially to the vector of white noise errors.

In this study, the log-likelihood function of equation (21) is maximized using
the Marquardt algorithms. [Marquardt(1963)] The true parameter values are used
as the starting values for iterations. As a parallel to the study of Sowell(1992a),
ARFIMA(0, d, 0) model is considered first. Remind that the exact maximum like-
lihood estimation method suggested here and that of Sowell is equivalent for
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ARFIMA(0, d, 0) model. Table 1 reports the results for this model. Wide range
of d from 0.8 to —0.9 are considered to see the properties in extreme condition,
where nonstationary and noninvertible cases are included on purpose. For each
d, 300 samples of length 100 are generated and then estimated. The bias and
RMSE (square root of mean-squared error) are calculated. The estimation meth-
od of Li and McLeod can be applied as long as d ) —1.0, as the binomial ex-
pansion is possible for d ) —1.0. In the range from 0.4 to —0.4, the magnitudes
of the bias and RMSE are reasonably small and exhibit a flat U-shape pattern.
Outside of the region, the magnitude increases gradually. Note that the magni-
tude becomes much larger as d approaches —1.0 than as d approaches 1.0. In
contrast the maximum likelihood method employing the inverse matrix of the
Cholesky decomposition is applicable as long as @ (0.5. However, for d > 0.5.
the Cholesky factorization does not hold as the covariance matrix is no longer
positive-definite. The bias becomes much larger as d approaches 0.5, the bound-
ary value where nonstationarity begins. The small RMSEs are due to the bound-
ary estimates close to 0.5. As d approaches —1.0, the magnitude of bias and
RMSE is slowly increasing. Obviously, these features, which are not evident in
Sowell(1992a), deserve an attention. Table 2 presents the results for ARFIMAC(I,
d, 0) model. The performances of the estimation method of Li and McLeod and
maximum likelihood method are very similar for either d = —0.3 or d =0.0 with
all values of AR parameter g. However, the bias of maximum likelihood esti-
mation becomes substantially larger than that of Li and McLeod for d=0.3.
First differencing or reparameterization would be helpful in situations like that.
Reparameterization of d can significantly improve the performances of esti-
mation close to the boundary. In table 1, the numbers in the parentheses are
obtained by moving the location of @ into the neighborhood of —0.2 during esti-
mation. For that purpose, a given d is segmented as d +d* and initial trans-
formation related to &, which is fixed, was applied first. Next, the likelihood esti-

mation is concentrated for d* To evaluate the likelihood function correctly, the
two determinants of lower triangular matrices related to d and d* are used re-

spectively. The bias and RMSE obtained in this way are slightly larger than
those of Li and McLeod. This can make more reliable the estimation for the ser-
ies in level as exemplified in the following section. Note that the reparameteriza-
tion for Li and McLeod is more simple.

We can conclude that, as long as the estimates are concerned, any of the two
estimation methods can not dominate the other in the whole range of parameter
d with the samples of length 100. Without reparameterization, the Li and
McLeod appears to work well in the positive and mild negative range for d. In
contrast, maximum likelihood estimation works well in the negative and very
small positive range for d. However, the problem that the Li and McLeod
employs approximate likelihood due to truncation still bothers when information
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criteria for model selection are considered.” Thus, in the following section, the
exact maximum likelihood method for general ARFIMA(p, d, q) suggested in
this paper will be applied in order to reveal the time series nature of the real
GNP of Korea.

[Table 1] Estimated Parameter Bias and Square Root of the Mean-Squared Er-
ror for the ARFIMA(0, d, 0) Model* (T = 100, 300 replications)

Li and McLeod maximum likelihood
d bias RMSE bias RMSE

0.8 —0.038 0.091 n.a.(—0.041) n.a.(0.092)
0.7 —0.031 0.088 n.a.(—0.033) n.a.(0.090)
0.6 —0.025 0.086 n.a.(—0.027) n.a.(0.089)
0.5 —0.020 0.084 n.a.(-0.023) n.a.(0.089)
04 —0.015 0.083 —0.046 (—0.018) 0.080 (0.086)
0.3 —0.010 0.082 —0.026 (—0.016) 0.078 (0.087)
0.2 0.006 0.082 —0.013 (—0.014) 0.078 (0.088)
0.1 —0.004 0.082 —0.006 0.080
0.0 —0.003 0.082 —0.003 0.081

-0.1 —0.004 0.082 —0.005 0.083

-0.2 —0.008 0.082 —0.009 0.084

-0.3 —0.010 0.084 —0.009 0.087

—-04 0.010 0.089 —0.006 0.089

-0.5 —0.007 0.086 -0.005 0.088

—0.6 0.015 0.091 0.006 0.089

-0.7 0.081 0.131 0.011 0.091

—-0.8 0.094 0.141 0.015 0.092

-0.9 0.083 0.134 0.014 0.091

« Technically the estimation method of Li & McLeod(1986) employing the bi-
nomial expansion can be applied as long as d ) —1 and the maximum likelihood
method as long as d (0.5. The numbers in the parentheses were obtained by arti-
ficially moving the location of parameter @ to the neighborhood of —0.2. In the
process data were transformed by segmenting d, several times if required.

1 For ARFIMA(p, d, ) models, the method of Li and McLeod, which employs approximate like-
lihood instead of exact one, tends to produce larger maximum likelihood values than those of exact
maximum likelihood estimation. This implies that the method of Li and McLeod may be less reliable
for model selection as we do not know how the quantity of information criteria, which is the sum of
log likelihood and penalty value for increasing the number of parameters, will be affected in finite
samples.
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[Table 2] Estimated Parameter Bias and Square Root of the Mean-Squared Er-
ror for the ARIMAC(, 4, 0) Model" (T = 100, 300 replications)

Li and McLeod maximum likelihood
d ¢ d ¢ d ¢
bias |RMSE| bias |RMSE! bias |RMSE| bias |RMSE

-03 |=07 | -=0012| 0093 0.020 | 0.083 | —0.010 ! 0.09% 0.019| 0.082
—-02 | —0.025| 0.127 0.021 | 0.144 | —0.022 | 0.133 0017 0.145
03 | —0.091 | 0.248 0.066 | 0254 | —0.057| 0210 0.029 | 0.221
0.8 0.012| 0.186 | —0.039 | 0.158 | —0.031 | 0.183 | —0.055| 0.158

00 |-0.7 | -0012 0.093 0.019| 0.083 | —0.014 | 0.094 0.019 | 0.083
=02 | —0019 | 0.128 0.018 0.145 | —0.025 | 0.150 0022y 0.157
03 | -0.078} 0.242 0.057| 0251 | —0.083} 0.241 0.059 | 0.246
0.8 0.011| 0.190 | —0.034 | 0.160 0.003| 0.174 | —0.028 | 0.147

03 |-07 [-0.022] 0095 0.021 | 0084 | —0.047 | 0.090 0.031 | 0.086
—-02 | —0.031 ] 0.132 0.024] 0.148 | —0.059 | 0.124 0.048 ) 0.145
03 | —0095| 0246 0.068 | 0253 | —0.126 | 0.227 0.101 | 0.232
038 0.007| 0.186 | —0.035| 0.156 | —0.043 | 0.130 0.000 1 0.099

« For each set of data, initial 600 realizations were discarded to remove possible
start-up effect.

Frequently a time series is well estimated in different forms of representations.
The real GNP series of Korea can be well represented by either difference-sta-
tionary ARIMA(p, 1, g¢) model or trend-stationary ARMA(p, ¢) one. In the cir-
cumstances more investigation beyond mere estimation of ARFIMA(p, 4. ¢
model to the series is demanded. Accordingly, in the next section attempts are
made to narrow down the competing representations. In the process the fact that
ARFIMA(p, d, q) model can nest the other two types of models as the two res-
trictions serves as the basis for further analysis.

. MODELING THE TREND BEHAVIOR OF REAL GNP
3.1 Competing Models and Estimates
The log of the quarterly real GNP of Korea in figure 1 shows a strong

upward trend for the periods from 1970:1 to 1991:1 when the economy sustained
a rapid growth.”” A visual inspection of the plotting indicates that there might

5 The autocorrelation plot of the series exhibits a slowly decaying hyperbolic pattern.
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have been structural breaks in the series. However, it is not an easy task to han-
dle the structural breaks. Frequently the break points and nature of interventions
are unknown and appear obscure. That is why the detection of structural breaks
and statistical tests in the presence of structural breaks are another research topic
in econometrics field. However, sometimes, known events can be used effectively
in modeling without much difficulty. In this study. a priori known events of oil
price shock and unprecedented political instability are modeled in the framework
of conventional intervention analysis in time domain model. [see Wei(1990) pp.
184-204]

Historically, the world economy experienced two major oil price shocks in the
1970s. Those are the oil price increase in 1973-1974 and 1979-1980. Especially,
the world oil price rose steeply from the end of 1979:1 and reached the highest
level at 1981:1. After the peak, the price continuously declined until mid-1985.
The scarce oil would have decreased the marginal productivity of capital and la-
bor. The supply shock, which entailed upward shifts in aggregate supply curve,
could have effects on both of inflation and output. The relative size of the effects
on the two variables can be different in general depending on the condition of an
economy reflected in the shapes of aggregate demand and aggregate supply. A
preliminary estimation did not support the inclusion of an intervention variable
to capture the effect of the first oil shock on output. The period of 1979:11-1981:1
exhibiting the downturn of the real GNP seems to correspond to the second oil
shock period. Another factor that must have contributed to the phenomenon is
the political instability in Korea from the end of 1979 to the middle of 1980. The
chilling effect of political crisis on output is not likely to be separable from the
effect of the oil shock, as the two periods almost overlap.

For explicit modelling of intervention effect, the following two intervention
variables are introduced into competing trend models;

0, t{T
I, = { (22)
1, t=>T
and
0, t<{T
L= {t—37, T<t<{T, (23)
0, t=2T

where T, and T, represents 1979:11 and 1981:1I respectively. I, the step function,
is expected to capture the change in level, the crash. L, is to capture the down-
ward trend line over the period of the second oil shock and political crisis as
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envisaged in figure 1. Modeling the trend behavior of real GNP needs the follow-
ing types of models.

y=ctutwltol+g¢ ' (L)L), (24)
(=L =ptell+wl+¢"(L)L)e. (25)
(O-Ly=ptolit+oli+¢ " (L)LXI—L)",, (26)
y=ctut+wlt+wl+g (L)oLN1-L)",, Q27

where ¢ is an intercept term, and each of « in (24) and (25) represents trend coef-
ficient and drift coefficient. I}, a pulse function, and I represents the first differ-
ences of the two intervention variables I, and I. respectively. Equation (24)
expressed in level describes a stationary ARMA(p, g) movement around a det-
erministic time trend. On the other hand, Equation (25) of stochastic trend model
with a unit root depicts a stationary ARMA(p, ¢g) process when the mean is
adjusted after the series is first differenced. These two competing models can be
nested into fractional model of either equation (26) or (27) as restricted cases.
Basically, equation (26) in first difference implies equation (27) in level, vice ver-
sa. Clearly, by subtracting the parameter d in equation (27) from another par-
ameter d in equation (26), we get negative one. The restriction of d=0.0 for
equation (26) implies equation (25) and the restriction of d = —~1.0 in equation
(26) implies equation (24). Equivalently, if there is a unit root in MA part of
equation (26), which is the result of over-differencing, then the equation (26)
implies equation (24).

Information criteria, AIC and SBC, are often valuable as a selection rule for
unknown order (p, g). In the context of ARFIMA(p. d, ¢) model. the question is
whether these criteria can be used for distinguishing ARFIMA(p, d, q) process
from ARIMA(p, 1, @) one. A preliminary experiment shows that AIC and SBC
quantities obtained, by maximum likelihood estimation, from the artificially creat
ed series in first difference for those competing models overwhelmingly favored
ARFIMA representation irrespective of true model.” The result implies that the
rule of AIC and SBC can not be relied upon as model selection criteria when dif-
ferent types of models such as equations (24) and (25) are compared with
ARFIMA models. Sowell(1992b) does not seem to pay atiention to the property

% For instance, when ARMAC(1, 1) and ARFIMA(I, 4. 0) models are fitted to 1,000 replications of
estimated ARMA(1. 1) model in first difference, AIC and SBC select ARFIMAC(L, d, 0) about 75 per-
cent of time. Similar resuits were found in many cases when true model is ARMA model and that 1s
tested against ARFIMA model with the same order. As those crileria do not appear to be well-bal-
anced for model selection in this study, it is reasonable o use them only for order selection.
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during the model selection process, and his results leave something to be reinves-
tigated.”

Table 3 reports the resuits obtained by estimating equation (25) and (26) in
first-difference form to the real GNP series. Note that we use information criteria
only for deciding proper order of (p, g). For ARFIMA model, AIC selects
ARFIMA(0, d, 2) and SBC selects ARFIMA(QO, d, 0). For ARMA model,
ARMA(2, 1) and ARMA(2, 2) appear to have a unit MA root respectively,
which means models in level are appropriate. Accordingly, AIC selects ARMAC(I,
1) and SBC selects ARMAC(I, 0). Table 4 report the results for applying equation
(24) and (27) in level form to the data. For ARFIMA model, AIC selects
ARFIMA(2, d, 0) and SBC selects ARFIMA(0, &, 0). For ARMA model, AIC
and SBC unanimously select ARMA(2, 0), which also implies ARMA(2, 1) mod-
¢l in first difference with a umt MA root. The models with higher AR or MA
order were also investigated, but was not successful as appropriate representa-
tions. For ARFIMA models one model expressed in equation (26) has its coun-
terpart expressed in equation (27). In that sense selected ARFIMA models based
on AIC shows a discrepancy. When d is very close to 0.5 or smaller than —0.5,
the likelihood may become less reliable, even though the estimation is possible,
and thus the quantities of information criteria may become adversely affected.
Therefore, we consider all the chosen models by one criteria or another and try
to investigate their nature.

Table 5 presents the parameter estimates of thirteen models including the
models selected in the above, where estimates of additional models are also re-
ported for analysis. The estimates of parameter d for ARFIMA(p, d, g) model in
level are estimated by reparameterizing d. Those estimates of 4 are in the range
0.0¢d (0.5, and the symmetric relations with the estimates of d for ARFIMA(p,
d, @) model in first difference are reasonably well-established. All the estimates of
¢, p @, and w, exhibits only minor changes for different representations and
have significant t-values. The implied trend line is shown in Figure 1. The poss-
bility of different slopes of upward trend before and after the second oil shock
can be ruled out, as the difference of slope coefficients is negligible. As long as
the estimates are concerned, the real GNP series seems to be compatible with
various types of models with different properties and implications.

In the next chapter, the competing models are narrowed down by applying

"From the table 1, he has selected two competing models; ARFIMAQ3, d, 2) based on AIC and
ARIMA(Q0, 1, 2) base on SBC. My suggestion is that four models, instead of the two, need to be con-
sidered. Those are ARFIMAQ3, 4, 2) and ARIMA(3, 1, 2) selected as competing models by AIC, and
ARIMA(0, 1, 2) and ARFIMA(L, 4, 0) by SBC.

8 Additional mutiplicative dummy that would detect the change in slope was introduced and esti-
mated. The estimated coefficient of the dummy variable was very small and also was not significantly
different from zero.
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[Table 3] AIC, SBC of Competing Models in First Difference of the Log of Qu-
arterly Real GNP (s.a.) (9 ARFIMA models and 9 ARMA models are
considered.)

Order of Information Order of AR parameters (p)

MA parameters (q) criteria 0 1 2
ARFIMA models ¢

0 AlC —529.467 —527.793 —529.570
SBC —519.743 —515.639 - 514.985
1 AIC —527.571 —528.411 —528.550
SBC —515.417 —513.826 —511.535
2 AIC —529.696 —528.034 —526.551
SBC =515.111 —=511.019 =507.104

ARMA models*®

0 AlIC —3510.395 —525.296 —523.296
SBC —503.102 —515.573 —511.142
1 AIC —525.029 —525.455 —529.218
SBC —515.036 —513.301 —514.633
2 AIC —523.049 —523.011 —528.569
SBC —510.895 —508.426 —511.553

« For ARFIMA model, AIC selects ARFIMA(0, 4. 2) and SBC selects ARFIM-
A0, d, 0).

5 ARMA(2, 1) and ARMA(2, 2) appear to have a unit MA root respectively.
which means models in level are appropriate. Accordingly, AIC selects ARMACI,
1) and SBC selects ARMAC(1, 0).

the likelihood ratio test and also their behaviors in the frequency domain are
investigated.

3.2 Tests for Model Selection and Implication

As the stochastic trend model of equation (25) and the deterministic trend
model of equation (24) can be nested into the ARFIMA(p, d, ) model in first
difference of equation (26), the two former models can be considered as restricted
models and the latter model as general model. In this situation, the restrictions
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[Table 4} AIC, SBC of Competing Models in Level of the Log of Quarterly Real
GNP (s.a.) (9 ARFIMA models and 9 ARMA models are considered.)

Order of Information Order of AR parameters (p)

MA parameters (g) criteria 0 1 2
ARFIMA models *

0 AIC —535.860 —536.641 —537.560
SBC —523.648 —~521.985 —520.461
1 AIC —533.898 —535.560 —537.552
SBC —519.343 —518.461 —518.011
2 AIC —537.549 ~537.129 —535.876
SBC —520.450 —517.588 —513.892

ARFIMA models®

0 AIC —512.457 ~535.980 —539.548
SBC —502.686 ~523.767 —524.892
1 AlC —525.063 ~537.244 —539.362
SBC —512.849 ~522.589 —522.264
2 AIC —537.936 —538.056 —537.409
SBC —523.280 —520.958 —517.867

« For ARFIMA model, AIC selects ARFIMA(2. d, 0) and SBC selects ARFIM-
A(0, d, 0). However, note that the likelihood may not be reliable for comparison
purpose when d is close to or over 0.5.

* For ARMA model, AIC and SBC unanimously selects ARMA(2, 0).

can be tested by employing the likelihood ratio test. The restriction of 0.0 on the
parameter d in equation (26) implies stochastic trend model and the restriction of
—1.0 means deterministic trend model.

First the validity of ARMA(2, 0) model in level, which has been unanimously
selected by the two information criteria, is investigated. Note that the ARMA(2,
1) model in first difference with a unit MA root is equivalent to the model. Now,
we can test whether this model can be considered as a restricted model of
ARFIMA(Q, d, 0) in first difference. Figure 2 shows the empirical density of the
likelihood ratio statistic of ARMA(2, 1) in first difference against ARFIMA(2, d,
0) in first difference for the null hypothesis of d= —1.0 (support for the de-
terministic trend model). The empirical density is obtained by 1,000 replication of
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[Table 5] Parameter Estimates for ARFIMA Models and ARMA Models of
Interest; Log of Quarterly Real GNP~

d ¢ r @ @2 ¢ > 6 8>
Sirst difference
ARFIMA(2. 4, 0)| —0.795 0.010 | —0.092 | 0012 0188 | 0.268
(—1.669) (41.814) (7267 = 7.1200] (0.431) | (1.618)
ARFIMA(l, 4, 1)| —0.424 0.010 | —0.094 | —0.012 | —0.778 -0.623
(—3.348) (34.304) [( —6.609)|1 —6.634)|(—3.019) (—1.795)
ARFIMA(0, &, 0)| —0.538 0.010 | —0.094 | --0.012
(—5.466) (40.919) [( = 7.516)3 —7.099)
ARFIMA(0, 4. 2)| —0.731 0010 | =093 | —0.012 —0.166 | —0272
(—4.442) (44.824) (= 78271 —7.314) (—0.967)[( —2.093)
ARMA(2, 1) 0.010 | —0.092 [ =02} 0429 | 0290 | 1.000
(37.587) | —6.037)|( —6.065}| (3276) | (2.234) | (n.a.)
ARMA(I, 0) 0.010 | —0.096 | 0013 | —0.452
(12.494) [(—4.089)|( —4.628)){ —4.328)
ARMAC(I, 1) 0.010 | —0.093 { —0.011 | 0478 0.934
(43.749) |(—8. 71| —7.361)| (3.837) (15.234)
ARMA(0, 1) 0010 | —0.097 | -0.012 0.496
(16.718) |(—3.264H( —5.641) (5.018)
Level
ARFIMA(Q. d, 0)] 0.106 | 3747 | 0.010 | —0.092 | —0.012{ 0272 | 0.270
(0.165) |(341.192)| (44.408) (- 7.635)|( —7.284)} (0.460) | (1.709)
ARFIMA(0, 4, 0)] 0448 | 3752 | 0010 | —0094 | —0.012
(4.751) {(466.096)| (43.521) | —7.684)|( = 7.206)
ARFIMA(0. 4.2)| 0223 | 3749 | 0010 | —0092| ~0.012 —0.204 | —0.291
(1.441) |(445.068)|(47.884) |(—8.21 )}t —7.505) (—1.219((=2.237)
ARMA(2, 0) 3749 | 0.010 | —0.092 | -0.012| 0.366 | 0.263
(634.030)| (46.402) |(—7.8435)[( —7.458)| (3.282) | (2.345)
ARMA(0, 2) 3.749 1 0010 | —0.092 | —0012 ~0.389 | —0.383
(876.776)| (61.792) (~10,6131J1 ~8.543) (—3.644)|( —3.642)

« t-statistics are in parentheses. The series was seasonally adjusted by Census
X-11 method. The above thirteen models are considered for a comparison. Some
of the models in first difference are the counterparts of the models in level, vice
versa, however they were estimated independently. For estimating ARFIMA(p.
d, @) model in level for d )0 more precisely, data was transformed in the esti-
mation process such that the parameter ¢ can be estimated in the neighborhood

of —0.2.
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[Figure 1] The Plotting of the Logarithm of Quarterly Real Gross National

Product of Korea from 19701 to 19911 (s.a.) (The deterministic
trend line in the figure was estimated with ARMA(2, 0) model in
level. The trend changes very slightly with the models considered
in this study.)
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[ Figure 2] Empirical Density of the Likelihood Ratio of ARMA(2, 1) in

First Difference against ARFIMA(2, d, 0) in First Difference (for
the null hypothesis H, d = —1.0) (The empirical density was
obtained by 1,000 replications of the ARMA(2, 1) model esti-
mated for the first difference of the log of real GNP. The smooth
line is the chi-squared density with one degree of freedom.)
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the ARMA(2, 1) model of size 84 estimated for the first difference of the log of
real GNP and subsequent construction of likelihood ratio values after the estima-
tions of both models to the replicated data. The empirical density does not seem
to follow the chi-squared density with one degree of freedom. The empirical criti-
cal values at the size of test 0.05 and 0.10 are 3.707 and 2.232 respectively. As
the likelihood ratio statistic value is 0.352, we can not reject the null hypothesis
of —1.0 at both levels of significance. For a chi-squared distribution with one de-
gree of freedom 0.352 implies a p-value of 0.553. Figure 3 presents the empirical
density of the maximum likelihood estimate of &, obtained by estimating
ARFIMA(2, d, 0) model in first difference to the simulated ARMA(2, 1) series.
The density with sample mean ~—0.915 imitates a normal distribution, even
though there are some outliers. The empirical critical values at the size of test
0.05 and 0.10 are —0.368 and —0.481 each. The estimated d of —0.795, which is
listed in the first model of table 5, is way to the left of these tail quantities. For a
normal distribution —0.795 implies a p-value of 0.333. All the same, we can not
reject the null hypothesis of d = —1.0. The result means that the trend stationary
representation of ARMAC(2, 0) in level for the real GNP series is compatible with
the fractional model of ARFIMA(2, 4, 0).

Next we examine one competing stochastic trend model of ARMA(I, 0) sel-
ected based on SBC. As another stochastic trend model of ARMA(I, 1) is selec-
ted based on AIC, ARFIMAC(L, d. 1) model instead of ARFIMAC(L, d, 0) model,
which can nest both models, is considered as general model. The likelihood ratio
statistic value is 7.166. The estimated small sample density for the likelihood stat-
istic for the null hypothesis of & =0.0 (support for stochastic trend model) is giv-
en in Figure 4. The density does not seem to follow the chi-squared distribution
with two degrees of freedom. The empirical critical values at the size of test 0.05
and 0.10 are 8.735 and 6.693 respectively. We can not reject the null hypothesis
of d=0.0 at 5 percent level, but can reject the null at 10 percent level. For a
chi-squared distribution with two degrees of freedom 7.166 implies a p-value of
0.028. Figure 5 exhibits the empirical density of the maximum likelihood estimate
of d, obtained by estimating ARFIMA(I, d, 1) model in first difference to the
simulated ARMAC(1, 0) series. The density seems to approximate a normal den-
sity. For a normal distribution —0.424 implies a p-value of 0.9996. The empirical
critical values at the left-tail area of 0.05 and 0.10 are —0.495 and —0.404 each.
As the estimated d is —0.424, the null hypothesis of d =0.0 can not be rejected
at 5 percent level, however the null can be rejected at 10 percent level. As the
tests with the size of 10 percent may not be large for a balanced testing, the re-
sults are less favorable to the stochastic model of ARMACL, 0).

Now we check the stochastic trend model of ARMA(L, 1) selected by AIC.
For the model, the estimated MA coefficient of 0.934, as shown in Table 5, can-
cels out large portion of the effect of first differencing. Accordingly, the model is
somewhat close to ARMAC(1, 0) model in level. This kind of ambiguity seems to
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be reflected in the tests. The empirical density given in Figure 6 appears to deviate
severely from the chi-squared distribution with one degree of freedom. The likeli-
hood ratio statistic value of 4.956 falls in the middle of two empirical critical val-
ues, 6.081 at the size of test 0.05 and 4.595 at the size of test 0.10. Also the em-
pirical density of 4 plotted in Figure 7 is clearly different from normal distri-
bution. Note that the estimated @ is —0.424 as before. The empirical critical val-
ues at the size of test 0.05 and 0.10 are —0.438 and —0.492 respectively. Thus,
empirically, the null hypothesis of d =0.0 is rejected at 5 percent level. It would
be safe to conclude that the stochastic model of ARMAC(I, 1) does not represent
the real GNP series -better than the ARFIMA(1, d, 1) model does. The bimodal
nature of the density implies that many times the simulated series behaves like the
ARMAC(l, 0) process in level, equivalently the ARMAC(I, 1) process in first difference
with a unit MA root. The spectral shape of the stochastic model of ARMAC(I, 1)
shows a similar low frequency behavior found in estimated ARMA(2, 1) model in
first difference with a unit MA root as presented in Table 5.

As noted earlier, for ARFIMA(p, d, g) model a variety of spectral shapes
near the origin can be produced according to the values of d. Thus we investi-
gate how well each of the thirteen estimated models in table 5 can capture the
low frequency behavior of data in frequency domain. First, under each estimated
model, the real GNP series is adjusted such that its mean becomes zero. In the
process, the estimated coefficients of constant, time trend, and intervention vari-
ables under each model are used to provide the most favorable condition to the
adjusted series. With the series one periodogram can be constructed for each
model. Also, the spectral density can be obtained, which is implied either by
estimated ARFIMA(p, d, ¢g) portion or by estimated ARMA(p, ¢) portion ac-
cording to the model. All the periodograms are obtained by employing the FFT
(fast Fourier transform) algorithm. In calculating the estimated density, the esti-
mated variance under each model is used.

Figure 8 is the plotting of the periodogram over the estimated spectral density
for ARFIMA(0, d, 2) model in first difference. All the other periodograms of
ARFIMA models considered exhibit a common pattern. Approaching the origin
the periodograms are gradually decreasing (o zero. The spectral densities seem to
well capture the common characteristic of the low frequency behavior of the pe-
riodograms. Among them, ARFIMA(0, d, 2) model that also catches the middle
frequency behavior reasonably well appears to perform slightly better than the
other.

Figure 9 is for ARMA(L, 0) model in first difference. Surprisingly, there
seems to be no change in the periodogram compared to that of the above ARFI-
MA(0, d, 2) model in first difference. We note that the spectral densities of
ARMA(1, 0) model, which is presented in Figure 9, and ARMA(0, 1) model do
not capture the zero frequency behavior of the periodograms. The periodograms
are gradually decreasing to zero approaching the origin. However, the spectral
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densities do not die out approaching the origin. According to Granger and Joy-
eux(1980), for fractional series, it is possible to select a model of the usual
ARMA(p, @) type, with integer &, which will closely approximate the spectrum
of fractional series at all frequencies except those near zero. In that sense, those
two stochastic models are highly likely to be the mere approximations of frac-
tional series. Additionally, the estimated ARMA(2, 1) model in first difference
with a unit MA root is equivalent to ARFIMA(2, d, 0) model in first difference
with d = —1.0. Thus the estimated spectral density of ARMA(2, 1) is very close
to that of ARFIMA(2, d, 0) model. As mentioned earlier, the estimated spectral
density of ARMAC(I, 1) model in first difference is severely affected by its MA
root, which i1s somewhat close to the unif circle, and imitates that of typical
ARFIMA model approaching the origin.

Finally, Figure 10 and Figure 11 are for ARFIMA(2, 4, 0) and ARMA(2, 0)
models in level respectively. Clearly, the periodograms exhibit patterns of gradu-
ally exploding tendency approaching low frequencies. Following the tendency of
periodograms, the spectral density functions of all ARFIMA(2, 4, 0), ARFIMA
0, d, 0), ARFIMA(, 4, 2), and ARMA(Q, 0) models in level are all continu-
ously moving upward in low frequencies, which implies that all these models can
describe, at least, the low frequency nature of the real GNP series. Exceptionally,
the estimated spectral density of ARMA(0, 2) model in level is not satisfactory as
the estimated spectral density is not ever increasing approaching zero frequency.

The above analysis reveals that the real GNP series can be interpreted as ei-
ther stationary fractional series or stationary series around deterministic trend.
Surprisingly, the stochastic trend model considered in this study does not seem to
perform well in capturing low frequency behavior of the real GNP series. The
implication is that shocks given to the series are not likely to have permanent ef-
fect which is postulated in unit root hypothesis. On the contrary, the effect of a
shock can persist for a long period of time, but eventually the effect will die out.
However, the permanent effect of the second oil shock and political crisis on out-
put are captured in all models with highly significant t-values on the two inter-
vention variables. Although it is difficult to tell whether the real GNP series 15 a
long-memory series or short-memory ones, the mean-reversion property, both of
long-memory and short-memory series have in common, tells that temporarily
the series can deviate from the deterministic trend, possibly moving equilibrium,
due to economic shocks, but it will eventually return to the trend. In terms of
economic policy, the result implies that the short-run economic policy, mainly of
stabilization policy, can be pursued more or less independently from long-term
economic policy, mostly of growth policy.
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[Figure 3] Empirical Density of the Maximum Likelihood Estimate of d
(where the true parameter value is d = —1.0) (The empirical den-
sity was obtained by 1,000 replications of the ARMA(2, 1) model
estimated for the first difference of the log of real GNP.)
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[Figure 4] Empirical Density of the Likelihood Ratio of ARMAC(L, 0) in
First Difference against ARFIMA(I, d. 1) in First Difference (for
the null hypothesis H; d = 0.0) (The empirical density obtained
by 1,000 replications of the ARMAC(1, 0) model estimated for the
first difference of the log of real GNP. The smooth line is the
chi-squared density with two degrees of freedom.)
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[ Figure 5] Empirical Density of the Maximum Likelihood Estimate of d
(where the true parameter value 1s d = 0.0) (The empirical den-
sity was obtained by 1,000 replications of the ARMA(I, 0) model
estimated for the first difference of the log of real GNP.)
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[Figure 6] Empirical Density of the Likelihood Ratio of ARMAC(L,1) in
First Difference against ARFIMAC(1, d, 1) in First Difference (for
the null hypothesis H: d = 0.0) (The empirical density was
obtained by 1,000 replications of the ARMAC(L,1) model esti-
mated for the first difference of the log of real GNP. The smooth
line is the chi-squared density with one degree of freedom.)
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[Figure 7] Empirical Density of the Maximum Likelihood Estimate of d
(where the true parameter value is & = 0.0) (The empirical den-
sity was obtained by 1,000 replications of the ARMAC(1, 1) model
estimated for the difference of the log of real GNP.)
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[ Figure 8] Spectral Density of the Estimated ARFIMA(0, d, 2) Model Plot-

ted over the Periodogram for the First Difference of the Log of
Quarterly Real GNP
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[Figure 9] Spectral Density of the Estimated ARMAC(, 0) Model Plotted
over the Periodogram for the First Difference of the Log of Qu-
arterly Real GNP
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[ Figure 10] Spectral Density of the Estimated ARFIMA(2, d, 0) Model Pl-
otted over the Periodogram for the Level of the Log of Quar-
terly Real GNP
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[ Figure 11] Spectral Density of the Estimated ARMA(2, 0) Model Plotted
over the Periodogram for the Level of the Log of Quarterly
Real GNP
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V.SUMMARY AND CONCLUSION

This paper has presented an exact maximum likelihood estimation method for
ARFIMA(p, d, q) model that is more convenient and has fewer problems than
the method of Sowell(1982a). The transformation method employing the inverse
of Cholesky factorization can be easily adapted to conventional algorithms for
estimating ARMA(p, @) model. For the estimation of ARFIMA(p, d, ¢) models
in this study, exact maximum likelihood estimation algorithm of Ansley(1979) for
ARMA(p, g) model has been incorporated. A Monte Carlo simulation has sh-
own that maximum likelihood estimation method has unsatisfactory small sample
properties when d is getting close to the boundary of 0.5, which can be some-
what improved by reparameterizing d. As long as the bias and RMSE are con-
cerned, the evidence is that any one of maximum likelihood estimation method
and the method of Li and McLeod, which has alleged defect of truncation prob-
lem, do not outperform the other in all parameter range for d with samples of
size 100.

ARFIMA(p, d, q@) model can nest both of the competing stochastic trend
model and deterministic trend model. Its ability to capture a wide range of
long-run dependence in the data can provide a tool for more general model selec-
tion. The log of quarterly real GNP series of Korea, which exhibits a strong
upward trend, is analyzed for better representations. With the assumption of
known events, the second oil price shock and political crisis, two intervention va-
riables are used. The three types of models, fractional model, stochastic trend
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model, and deterministic trend model, estimate the series reasonably well. How-
ever, the lkelihood ratio test and subsequent frequency domain analysis have
shown that the stochastic trend model is less adequate when compared with frac-
tional model and deterministic trend model. The other two models appear to cap-
ture the low frequency behavior of the real GNP series equally well. The mean-
reversion property implied by the two models can have many important implica-
tions in theory and policy.

Even though the above results seem lo be robust to some choice of break
points, the intrinsic questions surrounding structural breaks such as number of
breaks, choice of break points, and response patterns are not fully answered in
this paper. A more challenging work on structural breaks in connection with fr-
actional time series modelling might be rewarding. Additional observations would
make it clearer which of the two models, fractional model or deterministic model,
better estimates the real GNP series. The testing procedure for restriction and
model selection followed in this study can be applied to other macro-variables
immediately. Also the estimation method suggested in this study can be employed
for the test of fractional cointegration.
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