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8 
I. Introduction 

 
We consider a continuous time regression model with 
 

( ) ( )t t t tdY X dt X dWm s= + ,  (1) 

 
where ( )xm  and 2( )xs  are the instantaneous conditional mean and variance 
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functions, respectively, W  is a standard Brownian motion, and the covariate X  
is a general Harris recurrent diffusion process that allows X  to be either 
stationary or nonstationary. As for the conditional mean and variance functions, we 
define the functional coefficient specifications as ( ) ( )x x xm b=  and 2( )xs =

2( )x xg . We consider nonparametric estimations of the functional coefficients ( )xb  
and 2( )xg  for the conditional mean and variance functions of instantaneous 
increments in Y , respectively, based on discretely observed data 0( , )n

i i iX YD D =  with 
T nº D . Our asymptotic scheme is two dimensional and assumes that the sampling 
interval D  decreases, the time span of data T  increases, and the bandwidth h  
may depend on D  and T . 

The continuous time regression (1) have been widely used in the financial 
econometric literature. The first example is a continuous time predictive regression 
in finance, where dY  often refers to asset returns, with the dividend–price ratio, 
the earnings–price ratio, or interest rate typically chosen as the predictor. The 
predictive regression model often considers a linear specification of the conditional 
mean function as 0 1( )x xm b b= +  and focuses on the estimation and inference for 

1b  under certain problematic characteristics of financial data (see, e.g., Choi, 
Jacewitz, and Park, 2016; Kim and Park, 2017; Bu, Kim, and Wang, 2023; 
Ibragimov, Kim, and Skrobotov, 2023, and references therein). 

The continuous time regression (1) also includes diffusion models as a special 
case by letting Y X= . Diffusion models have been widely used in the literature to 
describe the dynamics of underlying economic variables, such as stock prices and 
bond yields. These studies have used two approaches for modeling the drift ( )m ×  
and diffusion 2( )s × . The first approach is a parametric one, which assumes a 
specific functional form for the drift and diffusion functions. Most models using this 
approach exhibit mean-reversion with a linear drift specification as ( )xm =

0 1xb b+  (see, e.g., Vasicek, 1977; Cox, Ingersoll, and Ross, 1985; Chan, Karolyi, 
Longstaff, and Sanders, 1992; Cai and Hong, 2003). To estimate the parameters in 
these models, maximum likelihood (see, e.g., Lo, 1988; Pearson and Sun, 1994) or 
the generalized method of moments (see, e.g., Duffie and Singleton, 1993; Jiang 
and Knight, 1997; Kim and Meddahi, 2020) can be employed. 

However, the specifications of drift and diffusion functions are often chosen for 
theoretical convenience. Many of the existing diffusion models are not derived from 
any economic theory; thus, they may not necessarily be consistent with the financial 
data generation process (Cai and Hong, 2003; Fan, 2005), thus necessitating more 
flexible modeling techniques to address the issue of misspecification. The second 
approach, a fully nonparametric one, can serve as an alternative as it avoids explicit 
functional form specifications. 

Some classical references for the fully nonparametric approach include Florens-
Zmirou (1993), Ait-Sahalia (1996), Jiang and Knight (1997), and Stanton (1997), 
where the underlying processes are assumed to have a stationary probability density 
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for the purposes of identification and estimation. However, this assumption might 
be too restrictive given the presence of nonstationary behaviors in many empirical 
applications. To address this issue, Bandi and Phillips (2003), Bandi and Phillips 
(2009), Ait-Sahalia and Park (2016), Kim, Park, and Wang (2021), and Bu, Kim, 
and Wang (2023) introduce a nonparametric method based on the notion of local 
time, where recurrence is the only requirement to guarantee the consistency of the 
drift and diffusion estimators. 

In modeling the drift and diffusion functions, functional coefficient models can 
be used as an alternative in addition to the two aforementioned approaches. Using 
these models to analyze time series data is not new. The general setting of this 
framework is introduced in Cai, Fan, and Yao (2000), in which the multivariate 
regression with functional coefficient is specified as 

 

1( | , ) ( )p
j j jE Y a x== = = åX x U u u , 

 
where Y Î¡ , pÎ¡X , and kÎ¡U , where U  denotes the smooth variables, 

( )ja ×  denotes the measurable functions from k¡  to ¡ , and 1( , ,x= Kx )T
px . 

In the literature, many time series models can be regarded as particular cases of this 
general form. For example, Chen and Tsay (1993), Tong (1990), Haggan and 
Ozaki (1981), Nicholls and Quinn (1982), Chib, Nardari, and Shephard (2002), 
Zhang and Wu (2012), Han and Lee (2018), and Han and Lee (2020) estimate the 
functional coefficients using either nonparametric or Bayesian estimation 
techniques. 

We also utilize this modeling technique but in the context of the continuous time 
regression model. By doing so, our paper contributes an alternative approach to 
modeling continuous time regressions and diffusion processes that differs from the 
parametric and fully nonparametric ones used in the literature. This new approach 
offers two important advantages over the existing fully parametric or nonparametric 
models. On the one hand, the proposed approach is nearly as flexible as the fully 
nonparametric approach, thus avoiding the misspecification issue of parametric 
models. On the other hand, the proposed approach enhances the interpretability of 
fitted models, thereby offering an advantage over the fully nonparametric approach. 
In estimating functional coefficients, we employ a nonparametric technique based 
on locally weighted regression. 

Asymptotic theories for the nonparametric estimators of a diffusion model have 
been established by several authors, including Ait-Sahalia and Park (2016), Bandi 
and Phillips (2003), Florens-Zmirou (1993), Fan and Zhang (2003), Jiang and 
Knight (1997), and Ait-Sahalia (1996). In this paper, the approach we used to 
investigate the asymptotic behaviors of nonparametric estimators for the functional 
coefficients of the conditional mean and variance functions is closely related to that 
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of Ait-Sahalia and Park (2016) and Bandi and Phillips (2009), where two-
dimensional asymptotics are considered. Specifically, this approach allows the time 
span T  to increase and the sampling interval D  to decrease simultaneously as 
opposed to more conventional asymptotics that only consider the sample size 

/n T= D . The two-dimensional asymptotics are particularly useful in examining 
nonstationary diffusion processes as they provide a unified framework that 
accommodates stationary and nonstationary processes. This analytical framework 
can also guide the selection of optimal bandwidths for the considered 
nonparametric estimators (Ait-Sahalia and Park, 2016). We adapt this framework to 
the functional coefficients of the conditional mean and variance functions and 
develop asymptotic theories for the functional coefficient estimators. 

The rest of this paper is organized as follows. Section 2 introduces the model, its 
properties, and the underlying assumptions. Section 3 defines the nonparametric 
estimators for the functional coefficients of the conditional mean and variance 
functions and develops their asymptotics. Section 4 illustrates the proposed 
nonparametric methodology through an application to U.S. daily three-month 
treasury bill data and compares the obtained estimates with those obtained by the 
CIR model and the fully nonparametric model. Section 5 concludes the paper. The 
Appendix provides all mathematical proofs. 

 
 

II. The Model and Preliminaries 
 
We assume that the covariate process X  of the continuous time regression (1) 

is a diffusion process following the stochastic differential equation 
 

( ) ( )t t t tdX a X dt b X dV= +   (2) 
 

where a  and 2b  represent the drift and diffusion functions, respectively, defined 
on the domain ( , )D x x= , and V  is a standard Brownian motion with 

[ ]t tE dV dW dtr=  for some [ 1,1]r Î - . The domain D  of X  is either ( , )-¥ ¥  
or (0, )¥ , which is usually the case for interest rates, the logarithm prices of 
financial assets, or exchange rates. 

 
Assumption 1. (a) 2( ) 0a x >  on D , (b) ( )a x  and 2( )b x  are twice continuously 
differentiable on D . 
 

Under Assumption 1, a unique weak solution to (2) exists in probability law (see, 
e.g., Theorem 5.15 in Chapter 5 in Karatzas and Shreve, 1991). Note that the same 
assumption also appears in Ait-Sahalia and Park (2016) and Bu, Kim, and Wang 
(2023). 
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The asymptotics developed in this paper heavily rely on the local time l  on 
[0, ]T  of the process X  at an interior point x  of D , which is defined by 

 

00

1
( , ) lim 1{| | }

2

T

sl T x X x ds
e

e
e®

= - <ò  

 
Intuitively, ( , )l T x  is a random quantity that signifies the amount of time spent 

by X  in a neighborhood of x  on the time interval [0, ]T . This quantity may 
also be interpreted as an occupation density of X  at each point x DÎ , thereby 
yielding the occupation time formula 

 

0
( ) ( ) ( , )

T

tf X dt f x l T x dx
¥

-¥
=ò ò   

 
for any nonnegative measurable function f  on ¡  (see, e.g, Bandi and Phillips, 
2003 and Ait-Sahalia and Park, 2016). 
 
Assumption 2. (a) 2

| | 1( , ) sup ( , ) ( ( , ) )h pul T x l T x hu O l T x= + =6 , and (b) ( , )l T x =
( )p TO m  for some nonrandom sequence ( )Tm . 
 
Assumption 2 (a) regulates the divergence rate of local time in the vicinity of a 

spatial point. This condition is not essential, and its primary purpose is to simplify 
our exposition by representing the orders of error terms merely as functions of 
( , )l T x . Assumption 2 (b) is obviously satisfied if T T=  is fixed. Otherwise, given 

that T ® ¥ , the asymptotic behavior of ( , )l T x  is determined by the recurrence 
property of the diffusion process X . 

The scale density s¢  of X  is defined as 
 

2

( )
( ) exp 2

( )

x

z

a u
s x du

b u
é ù¢ = -ê ú
ë û

ò , 

 
where the lower limit of the integral can be arbitrarily chosen to be any point 
z DÎ .1 Then, X  is a recurrent process if and only if the scale function 
( ) ( )x

zs x s y dy¢= ò  is unbounded at the boundaries of the domain of X , that is, 
( )s x = -¥  and ( )s x = ¥ . Otherwise, X  is said to be transient. For a recurrent 

process X , we define the speed density as  
 

____________________ 
1 The scale function s  is uniquely identified up to any increasing affine transformation, i.e., if 

( )s x  is a scale function, then so is ( )as x b+  for any constants 0a >  and ( , )bÎ -¥ ¥ . 
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2

1
( )

( )( )
m x

b s x
=

¢
, 

 
and X  becomes positively recurrent if ( )D m x dxò < ¥ . Otherwise, X  is a null 
recurrent process (see, e.g., Chapter 5 in Karatzas and Shreve, 1991 for the 
definitions of ( )s ×  and ( )m × ). When X  is a recurrent process, ( , ) pl T x ® ¥  as 
T ® ¥  at each x DÎ  given that it visits every point infinitely many times as 
T ® ¥  with a probability of 1 (see, e.g., Chapter VI in Revuz and Yor, 1999 for the 
properties of Brownian local times). Throughout this paper, we assume that X  is 
a recurrent diffusion that covers stationary and nonstationary diffusions depending 
upon ( )D m x dxò < ¥  or unbounded. 

 
Assumption 3. The kernel function K  satisfies (a) K  is nonnegative, bounded, 
twice continuously differentiable, and has support [ 1,1]- , and (b) ( ) 1K x dx¥

-¥ò =  
and ( ) 0xK x dx¥

-¥ò = . 
 

The conditions for the kernel functions in Assumption 3 are standard, except for 
the boundedness of support, thus allowing us to simplify the proofs of our theorems. 

In our asymptotics, we require D  to be sufficiently small relative to the extremal 
bounds of various functional transforms of X  over time interval [0, ]T . Similar to 
Ait-Sahalia and Park (2016), we define 

 

0
( ) max | ( )|tt T

T f f X=
6 6

 

 
for a measurable function :f D ®¡ . Moreover, we define 

 

2 21
2

a b= +A D D , and b=B D , 

 
where D  is the differential operator. If we define 2 / 2Af f af b f¢ ¢¢= = +A  and 

Bf f bf ¢= =B  for a twice continuously differentiable function f  and if f ¢  and 
f ¢¢  denote the first and second derivatives of f , respectively, then we may deduce 

from Itô’s formula that 
 

( ) ( ) ( ) ( )
t t

t s A u B u us s
f X f X f X du f X dV- = +ò ò  

 
for any 0 s t6 6 . 
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III. Nonparametric Estimation of the Functional 
Coefficients 

 
In this section, we propose the nonparametric estimation of the functional 

coefficients of the continuous time regression (1) when the covariate process X  is 
a recurrent diffusion that satisfies Assumptions 1 and 2. We assume that the 
continuous time regression satisfies the following functional coefficient 
specifications: 

 
Assumption 4. (a) 2( ) 0xs >  on D , (b) ( ) ( )x x xm b=  and 2 2( ) ( )x x xs g= , and 
(c) ( )xb  and 2( )xg  are twice continuously differentiable on D . 

 
Under Assumption 4, one may show that the discrete observation 0( , )n

i i iY XD D =  
satisfies the following approximations: 

 

( 1) ( 1) ( 1) ( 1)
( ) ( )

i

i i i i t ti
Y Y X X X dWb s

D

D - D - D - D - D
- » D + ò  

 
and 

 
2 2

( 1) ( 1) ( 1) ( 1)( 1)
( ) ( ) 2 ( ) ( )

i

i i i i t i t ti
Y Y X X Y Y X dWg s

D

D - D - D - D - D- D
- » D + -ò . 

 
Therefore, the functional coefficients ( )xb  and 2( )xg  may be estimated by a 
local regression with a kernel function 

 
( ,1)

(̂ )
( )

T

T

P K
x

Q K
b =  and 2 ( ,2)ˆ ( )

( )
T

T

P K
x

Q K
g =  

 
where 

 

( 1)
( 1) ( 1)

1

1
( , ) ( )

n
i j

T i i i
i

X x
P K j K X Y Y

h h
- D

- D D - D
=

-æ ö
= -ç ÷

è ø
å  

( 1) 2
( 1)

1

( )
n

i
T i

i

X x
Q K K X

h h
- D

- D
=

-æ öD
= ç ÷

è ø
å   

 
In what follows, we develop the asymptotic theory for (̂ )xb  and 2ˆ ( )xg . 
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3.1. The Functional Coefficient of the Conditional Mean Function 
 
To effectively explain our asymptotics, we decompose (̂ )xb  as 
 

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )P qx x x xbb b b e= + + , 

 
where 

 
( ,1)ˆ ( ) ( )
( )

T
p

T

N K
x x

Q K
b b= + , 

( ,1)ˆ ( )
( )

T
q

T

M K
x

Q K
b = , 

( ,1)ˆ ( )
( )

T

T

R K
x

Q Kbe =  

 
with 

 

( 1) 2
( 1) ( 1)

1

( ,1) [ ( ) ( )]
n

i
T i i

i

X x
N K K X X x

h h
b b- D

- D - D
=

-æ öD
= -ç ÷

è ø
å   

( 1)
( 1) ( 1)

1

1
( ,1) ( )

n ii
T i t ti

i

X x
M K K X X dW

h h
s

D- D
- D - D

=

-æ ö
= ç ÷

è ø
å ò  

( 1)
( 1) ( 1)( 1)

1

1
( ,1) [ ( ) ( )]

n ii
T i t ii

i

X x
R K K X X X dt

h h
m m

D- D
- D - D- D

=

-æ ö
= -ç ÷

è ø
å ò  

 
From the above expressions, one can say that ˆ ( ) ( )p x xb b-  and ˆ ( )q xb  are the 

bias and variance of the estimator, respectively, while ˆ ( )xbe  is the approximation 
error, which is negligible asymptotically as long as D  is sufficiently small relative 
to h . 

To establish the asymptotic properties of the estimator for ( )xb , we introduce 
conditions on h  and D  in the following assumption: 

 
Assumption 5. 0ph ®  and 0D ®  such that (a) 4 (1)ph o- D = , and (b) 1/2 ( )AT mD

(1)po= , 1/2 1/2( ) (( ( , )) )B pT o hl T xmD =  uniformly in T  as 0ph ®  and 0D ® . 
 

Due to our asymptotic scheme, 0D ®  should be sufficiently fast relative to 
0ph ®  and ( )AT m  and ( )BT m . In particular, our asymptotic results are relevant 

for the case where D  is sufficiently small relative to T . For Assumption 5 to hold, 
4( )po hD =  and / ( )pT o hD =  if X  is stationary and bounded so that ( )AT m  

and ( )BT m  are constants. In other words, the sampling interval D  is sufficiently 
small relative to the bandwidth h  and the span of data T . The condition appears 
to be mild enough to yield asymptotics that are generally relevant for a very wide 
range of empirical analyses that rely on samples collected from diffusion-type 
models. For daily observations of over 60 years, such as our empirical analysis in 
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Section 4, we have 1 / 252D =  and 1 1 / 60T- = . Our asymptotics also hold jointly 
in D  and T  as long as they satisfy Assumption 5 as 0D ®  with T  being 
fixed or T ® ¥ . We do not use sequential asymptotics, which require 0D ®  
and T ® ¥  sequentially. 

 
Lemma 1. Under Assumptions 1, 2, 3, 4, and 5, we have 

 
2

2 3/2 1/2
2

ˆ ( ) ( ) ( ) ( ) ( ) ( ( , ) )
2p p p

h
x x B x K o h O h l T xbb b i -= + + + , 

 
where  2

2( ) ( )K x K x dxi = ò   and  1( ) 4 ( ) ( ) 2 ( ) ( ) / ( )B x x x x x m x m xb b b b- ¢ ¢¢ ¢ ¢= + + , 
uniformly in T  as 0h ®  and 0D ® , and 

 
1/2 2 1/2ˆ[ ( , )] ( ) ( ) ( )q dx hl T x x x K Zb s i®  

 
as ( , ) pl T x ® ¥ , where 2 2( ) ( )K K x dxi = ò  and Z  is a standard normal random 
variate independent of ( , )l T x . In addition, 

 
2ˆ ( ) ( )px o hbe = . 

 
Lemma 1 provides the asymptotic behavior of the bias ˆ ( ) ( )p x xb b- , the 

variance ˆ ( )q xb , and the error ˆ ( )xbe . The bias and error terms are asymptotically 
negligible as 0ph ® , while the variance term becomes negligible as 

( , ) phl T x ® ¥ . 
 

Proposition 1. Let Assumptions 1, 2, 3, 4, and 5 hold, and let ( , ) pl T x ® ¥  and 
( , )rh cl T x=  for some constant 0c > . In this case, we have: 

(i) If ( , )rh cl T x=  with 1 / 5r = - , then 
 

2
1/2 2 1/2

2
ˆ[ ( , )] ( ) ( ) ( ) ( ) ( ) ( )

2 d

h
x hl T x x x K B x x K Zbb b i s i

é ù
- - ®ê ú

ë û
. 

 
(ii) If ( , )rh cl T x=  with 1 / 5r < - , then 
 

1/2 2 1/2ˆ[ ( , )] [ ( ) ( )] ( ) ( )dx hl T x x x x K Zb b s i- ® . 

 
Remark 1. (a) Note that b̂  is consistent if ( , ) pl T x ® ¥ , which is induced by 
T ® ¥  given that X  is recurrent. In particular, b̂  becomes inconsistent if T  
is fixed. 
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(b) The asymptotic bias term Bb  appears only when ( , )rh cl T x=  with 
1 / 5r = -  and becomes negligible if ( , )rh cl T x=  with 1 / 5r < - . 

(c) By Proposition 1 (ii), if ( , )rh cl T x=  with 1 / 5r < - , then 
 

1/2

2 1/2

[ ( , )] ˆ[ ( ) ( )]
( ) ( ) d

x hl T x
x x Z

x K
b b

s i
- ®  

 
and the limiting normal random variable Z  is independent of the local time 
( , )l T x . In other words, (̂ )xb  has a limit of normal mixture. From this result, we 

can construct confidence intervals for (̂ )xb . We define 1/2( , ) ( [ ( , )] ) /h T x hl T xq =
2 1/2( ( ) ( ) )x Ks i  and let 1z a-  denote the 1 a-  quantile of a (0,1)N  distribution. 

We then have 
 

1 1
1 /2 1 /2

ˆ ˆ( ( ) [ ( ) ( , ) , ( ) ( , ) ])x x h T z x h T za ab b q b q- -
- -Î - +P   

1 /2 1 /2
ˆ( ( , )[ ( ) ( )] [ , ]) 1h T x x z za aq b b a- -= - Î - ® -P  as ( , )l T x ® ¥   

 
Therefore, the 1 a-  asymptotic confidence interval for (̂ )xb  is given by 

 
1 1

1 /2 1 /2
ˆ ˆ[ ( ) ( , ) , ( ) ( , ) ]x h T z x h T za ab q b q- -

- -- +  

 
Note that q  involves the two unknown functions 2( )xs  and ( , )l T x , which can 
be estimated nonparametrically (see, e.g., Ait-Sahalia and Park, 2016; Bu, Kim, and 
Wang, 2023). 

(d) Given the asymptotics of (̂ )xb , we can also establish the asymptotic behavior 
of the drift function estimator ˆ( )xm = (̂ )x xb  as  

 
1/2

2 1/2

[ ( , )] ˆ[ ( ) ( )]
( ) ( ) d

hl T x
x x Z

x K
m m

s i
- ®  

 
As in Remark 1 (c), one can also construct the confidence interval for ˆ( )xm  as 

 
1 1

1 /2 1 /2
ˆ ˆ[ ( ) ( , ) , ( ) ( , ) ]x h T z x h T za am l m l- -

- -- + , 

 
where 1/2 2 1/2( , ) ([ ( , )] ) / ( ( ) ( ) )h T hl T x x Kl s i= . 

(e) For a given x , the asymptotic mean squared error (AMSE) of (̂ )xb  can be 
expressed as the sum of its squared asymptotic bias (ABias) and asymptotic variance 
(AVar) as 

 
2ˆ ˆ ˆAMSE[ ( )] ABias [ ( )] AVar[ ( )]x x xb b b= + , 
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where ˆABias[ ( )]xb  and ˆAVar[ ( )]xb  can be obtained by Lemma 1 as 
 

2

2
ˆABias[ ( )] ( ) ( )

2
h

x K B xbb i=  and 
1 2 2( ) ( )ˆAVar[ ( )]

( , )
x x K

x
hl T x
g ib

-

=  

 
The optimal bandwidth hb

*  that minimizes ˆAMSE[ ( )]xb  is derived by taking 
the first-order condition with respect to h  and is given as 

 
1/5 2

1/5 2 /5 2 /5 1/5
2 /5

2

( )
( ) ( ) ( , )

( )
K

h x x B x l T x
Kb b

i g
i

* - - -=   

 
In particular, the optimal bandwidth hb

*  is a function of local time, such as hb
* =

1/5( , )cl T x -  for some 0c > . Note that the divergence rate of the local time is 
determined by the degree of recurrence. If X  is stationary, then ( , )l T x  diverges 
at the rate of T , and hence, 1/5h cTb

* -=  as in the discrete time case. Null 
recurrent processes are less recurrent than stationary processes. For a Brownian 
motion, the local time diverges at the rate of 1/2T , and hence, 1/10h cTb

* -= . 
 

3.2. The Functional Coefficient of the Conditional Variance Function 
 
Similar to b̂ , we decompose 2ˆ ( )xg  as  
 

2
2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )p qx x x x

g
g g g e= + +   

 
where 

 

2 2 ( ,2)ˆ ( ) ( )
( )

T
p

T

N K
x x

Q K
g g= + , 2 2 ( ,2)ˆ ( )

( )
T

q
T

M K
x

Q K
g = , 2

( ,2) 2 ( )ˆ ( )
( )

T T

T

R K S K
x

Q Kg
e +

=  

 
with 

 

( 1) 2 2 2
( 1) ( 1)

1

( ,2) [ ( ) ( )]
n

i
T i i

i

X x
N K K X X x

h h
g g- D

- D - D
=

-æ öD
= -ç ÷

è ø
å   

( 1)
( 1) ( 1)( 1)

1

1
( ,2) ( ) ( )

n ii
T i t i t ti

i

X x
M K K X Y Y X dW

h h
s

D- D
- D - D- D

=

-æ ö
= -ç ÷

è ø
å ò  

( 1) 2 2
( 1) ( 1)( 1)

1

1
( ,2) [ ( ) ( )]

n ii
T i t ii

i

X x
R K K X X X dt
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Similar to the conditional mean function estimation, 2 2ˆ ( ) ( )p x xg g-  and 2ˆ ( )q xg  

are the bias and variance of the estimator, respectively, while 2
ˆ ( )x
g

e  is the 
approximation error, which is negligible asymptotically as long as D  is sufficiently 
small relative to h . 

To establish the asymptotic properties of the estimator for 2( )xg , we introduce 
specific conditions on h  and D  in the following assumption: 

 
Assumption 6. 0ph ®  and 0D ®  such that (a) 4 (1)ph o- D = , and (b) 

1/2 2( ) (1)A pT osD = , 1/2 2 1/2( ) (( ( , )) )B pT o hl T xsD =  uniformly in T  as 0ph ®  and 
0D ® , (c) 2( )AT mD , ( ) (1)A pT osD =  and 2( )BT mD , 2 1/2( ) (( ( , )) )B pT o hl T xsD =  

uniformly in T  as 0ph ®  and 0D ® , and (d) 2( ) ( )T a T s ¢D , 1/2 2( ) ( )T b T s ¢D
(1)po= . 

 
In this assumption, we only need 0D ®  to be sufficiently fast relative to h  

and the extremal processes of X  under various transforms given by the drift and 
diffusion functions. In particular, the long span assumption T ® ¥  is not 
required. 

 
Lemma 2. Under Assumptions 1, 2, 3, 4, and 6, we have 

 

2

2
2 2 2 3/2 1/2

2
ˆ ( ) ( ) ( ) ( ) ( ) ( ( , ) )

2p p p

h
x x K B x o h O h l T x

g
g g i -= + + + , 

 
where 2

1 2 2 2( ) 4 ( ) ( ) 2 ( ) ( ) / ( )B x x x x x m x m x
g

g g g- ¢ ¢¢ ¢ ¢= + + , uniformly in T  as 0h ®  
and 0D ® , and 

 
1/2

2 2 2 1/2( , ) ˆ ( ) 2 ( ) ( )q d

hl T x
x x x K Zg s ié ù ®ê úDë û

  

 
where Z  is a standard normal random variate independent of ( , )l T x . In addition, 

 

2
2ˆ ( ) ( )px o h

g
e =  

 
In Lemma 2, the asymptotics of the bias 2 2ˆ ( ) ( )p x xg g- , the asymptotic variance 

2ˆ ( )q xg , and the error 2
ˆ ( )x
g

e  are provided. The bias 2 2ˆ ( ) ( )p x xg g-  and the error 
2

ˆ ( )x
g

e  are asymptotically negligible as 0h ® , while the variance term 2ˆ ( )q xg  
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converges to zero if 0D ®  relative to 0ph ® . 
 

Proposition 2. Let Assumptions 1, 2, 3, 4, and 6 hold, and let [ ( , ) / ]rh c l T x= D  for 
some constant 0c > . We thus have: 

(i) If 1/5[ ( , ) / ]h c l T x -= D , then 
 

2

1/2 2
2 2 2 2 1/2

2

( , ) ˆ ( ) ( ) ( ) ( ) 2 ( ) ( )
2 d

hl T x h
x x x K B x x K Z

g
g g i s i
é ùé ù - - ®ê úê úDë û ë û

. 

 
(ii) If [ ( , ) / ]rh c l T x= D  with 1 / 5r < - , then 
 

1/2
2 2 2 2 1/2( , ) ˆ[ ( ) ( )] 2 ( ) ( )d

hl T x
x x x x K Zg g s ié ù - ®ê úDë û

. 

 
Remark 2. (a) The estimator 2ĝ  is consistent as long as 0ph ®  and 0D ®  are 
sufficiently fast. Unlike b̂ , the consistency of 2ĝ  does not require T ® ¥ , and 

2g  can be estimated consistently even when T  is fixed. 
(b) The asymptotic bias term 2B

g
 appears only when [ ( , ) / ]rh c l T x= D  with 

1 / 5r = -  and becomes negligible if [ ( , ) / ]rh c l T x= D  with 1 / 5r < - . 
(c) By Proposition 2 (ii), if ( , )rh cl T x=  with 1 / 5r < - , then 
 

1/2
2 2

2 2 1/2 1/2

[ ( , )] ˆ[ ( ) ( )]
2 ( ) ( )

d

x hl T x
x x Z

x K
g g

s i
- ®

D
 

 
and the limiting normal random variable Z  is independent of the local time 
( , )l T x . Similar to b̂ , 2ˆ ( )xg  has a limit of normal mixture, thereby allowing us to 

construct confidence intervals for 2ˆ ( )xg  based on its asymptotic distribution. We 
define 1/2 2 2 1/2 1/2( , , ) ( [ ( , )] ) / ( 2 ( ) ( ) )h T x hl T x x Kq s iD = D  and let 1z a-  denote the 
1 a-  quantile of a (0,1)N  distribution. We then have 

 
2 2 1 2 1

1 /2 1 /2
ˆ ˆ( ( ) [ ( ) ( , , ) , ( ) ( , , ) ])x x h T z x h T za ag g q g q- -

- -Î - D + DP   
2 2

1 /2 1 /2
ˆ( ( , , )[ ( ) ( )] [ , ]) 1h T x x z za aq g g a- -= D - Î - ® -P  as ( , ) /l T x D ® ¥ , 

 
and hence, the 1 a-  asymptotic confidence interval for 2ˆ ( )xg  is given by 

 
2 1 2 1

1 /2 1 /2
ˆ ˆ[ ( ) ( , , ) , ( ) ( , , ) ]x h T z x h T za ag q g q- -

- -- D + D . 

 
(d) Given the asymptotic distribution of 2ˆ ( )xg , we can also establish asymptotics 

for 2 2ˆˆ ( ) ( )x x xs g=  as 
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s s
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If we define 1/2 2 2 1/2 1/2( , , ) ([ ( , )] ) / ( 2 ( ) ( ) )h T hl T x x Kl s iD = D , then the confidence 
interval for 2ˆ ( )xs  is given by 

 
2 1 2 1

1 /2 1 /2
ˆ ˆ[ ( ) ( , , ) , ( ) ( , , ) ]x h T z x h T za as l s l- -

- -- D + D . 

 
(e) For a given x , the AMSE of 2ˆ ( )xg  can be expressed as the sum of its 

squared ABias and AVar as 
 

2 2 2 2ˆ ˆ ˆAMSE[ ( )] ABias [ ( )] AVar[ ( )]x x xg g g= + , 

 
where ABias 2ˆ[ ( )]xg  and AVar 2ˆ[ ( )]xg  can be obtained by Lemma 2 as 

 

2

2
2

2
ˆABias[ ( )] ( ) ( )

2
h

x K B x
g

g i=  and 
4 2

2 2 ( ) ( )ˆAVar[ ( )]
( , )
x K

x
hl T x

g ig D
=  

 
The optimal bandwidth 2h

g
*  that minimizes AMSE 2ˆ[ ( )]xg  is given by 

 

2 2

2/52 1/5 2
2 /5 1/5 1/55

2 /5
2

( ) ( )
2 ( ) ( , )

( )
K x

h B x l T x
K xg g

i s
i

* - -æ ö
= Dç ÷

è ø
 

 
Unlike hb

* , the optimal bandwidth 2h
g
*  depends not only local time but also on 

D , such as 1/5( / ( , ))h c l T xb
* = D  for some 0c > . Recall that T n= D  and the 

sample size n  can diverge as long as 0D ®  regardless of T  being fixed or not. 
For a stationary X , the optimal bandwidth becomes a function of sample size n  
as 2

1/5h cn
g
* -= . In general, the optimal bandwidth is not given by the sample size 

alone. 
 
 

IV. Empirical Analysis 
 

4.1. Data 
 
As an empirical application, we use our approach to model interest rate dynamics 

under a diffusion setting with Y X= . Specifically, we consider the U.S. three-
month treasury bill yield data collected from the Federal Reserve Bank of St. Louis. 
These data include daily secondary market rates spanning from January 1954 to 
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April 2018, amounting to a total of 16,052 observations. No specific adjustments 
have been made for weekends or holidays. 

 
[Figure 1] U.S. daily 3-month treasury bill rate from January 1954 to April 2018 
 

 
 
Figure 1 presents a time series plot of the data, while Figure 2 shows the 

estimated local time of the treasury bill process to offer an insight into its 
distribution. The estimated local time peaks around 0.05, and the treasury bill 
process makes most of its visit at levels between approximately 0.02 and 0.08 during 
the sample period. 

 
[Figure 2] The estimates of local time 
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4.2. Estimation Results 
 
Figure 3 illustrates the estimated functional coefficients for the drift and diffusion 

terms, which are computed using the estimators introduced in Sections 3.1 and 3.2. 
This figure also includes the 95% pointwise confidence intervals for these estimates 
derived from the asymptotics. The coefficients for the drift and diffusion functions 
are visibly nonconstant. Specifically, we observe an increase in the functional 
coefficient of the diffusion term corresponding to higher rate levels. Meanwhile, the 
confidence intervals, which serve as indicators of estimation quality, are narrower at 
relatively lower interest rates and widen at higher interest rates due to limited 
observations as expected from Figure 2. 

 
[Figure 3] Estimated functional coefficients of drift and diffusion terms with 95% 

confidence band 
 

 
 

 
We then compare our model with the conventional models proposed in the 

literature. Among many existing models, we consider the fully nonparametric CIR 
model proposed by Cox, Ingersoll, and Ross (1985), which has a linear drift and 
allows complete flexibility in the functional forms of the drift and diffusion 
functions, denoted as Model 2. We denote the functional coefficient model as 
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Model 1 given that its flexibility lies between these two approaches. Each of these 
models provides a distinct framework for capturing the evolution of a stochastic 
process over time. Analyzing their properties, estimating their parameters, and 
comparing their abilities to fit empirical data can offer some insights into the 
underlying dynamics of the process being modeled. 

 
Model CIR: ( )t t t tdX X dt X dWk m s= - +   
Model 1 (Functional-coefficient): ( ) ( )t t t t t tdX X X dt X X dWb g= +  
Model 2 (Fully-nonparametric): ( ) ( )t t t tdX X dt X dWm s= +  

 
Model CIR is estimated using the maximum likelihood method and is given by 
 

0.0544(0.0452 ) 0.0674t t t tdX X dt X dW= - +   

 
For Model 1, using the estimated functional coefficients (̂ )xb  and 2ˆ ( )xg , we 

derive the estimated drift and diffusion functions as (̂ )x xb  and 2ˆ ( )x xg , 
respectively. We then compute the 95% pointwise confidence bands for these 
estimated functions using the formula obtained from our asymptotics. 

For Model 2, we employ local constant estimation and use the asymptotics 
developed in Ait-Sahalia and Park (2016) to estimate ( )xm  and 2( )xs  and to 
compute the 95% pointwise confidence intervals for these estimators. 

Our theory is developed not only for a diffusion process but also for a general 
continuous time regression with functional coefficients. Therefore, the factors in the 
functional coefficients ( )b ×  and ( )g ×  of Model 1 need not be limited to tX ; 
they can be any observable diffusion process. However, in our empirical exercise, 
the functional coefficient model (Model 1) is set to be a diffusion process so that we 
can compare three different specifications, namely, Models CIR, 1, and 2. 

We employ the Gaussian kernel function in the nonparametric estimation of 
Models 1 and 2. Previous studies widely acknowledge that any reasonable kernel 
function yields almost optimal results (Stanton, 1997). However, for a given kernel 
function, the selection of an optimal bandwidth plays an important role in the 
performance of a nonparametric estimator (Fan and Zhang, 2003). In the previous 
section, we construct the optimal bandwidth for each of the proposed estimators, 
but the computation procedure involves an intensive estimation of not only 
functional coefficients but also their first- and second-order derivatives. Here, we 
utilize a simple rule of thumb for bandwidth selection proposed by Silverman (1986) 
as h* » 1/5ˆ1.06 ns - , where ŝ  is the standard deviation of the sample, and n  is 
the number of observations. This bandwidth minimizes the mean integrated 
squared error of the estimated density function. 

Figures 4 and 5 report the estimated drift and diffusion functions from three 
different models. Upon observing these figures, we find that the nonparametric 
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estimates of Models 1 and 2 closely resemble each other for the drift and diffusion 
functions. The drift term in the CIR model is specified as a linear mean-reverting 
function ( )xk m -  with 0k > , indicating that the process tX  tends toward m  
linearly. In Figure 4, the estimated CIR drift is represented by the red straight line 
with a negative slope. However, for Models 1 and 2, the nonparametric estimates of 
the drift do not exhibit linearity. Nevertheless, the estimated CIR drift falls within 
the 95% pointwise confidence bands for nonparametric estimators, indicating that 
we cannot definitively reject the linear specification of the CIR drift. 

 
[Figure 4] Comparison of estimated drift functions from three models 
 

 
 

 
This finding is not unexpected given that many diffusion models in the existing 

literature still assume linearity in the drift function, and previous empirical studies 
on the functional forms of drift have not decisively ascertained deviations from 
linearity as shown in Cai and Hong (2003). However, the reliability of the estimated 
drifts from Models 1 and 2 might be questioned due to the choice of optimal 
bandwidth. Here, we use a rule-of-thumb constant bandwidth instead of the 
formula for an optimal local bandwidth for each estimator derived in Section 3. 

Furthermore, ensuring the consistency of the drift estimator at a particular spatial 
level x  necessitates the process to visit that level an infinite number of times in the 
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limit. The confidence bands that are computed using the asymptotic distribution 
may also yield suboptimal results. An alternative solution for constructing 
confidence bands is to utilize the bootstrap method, which is outside scope of our 
paper. 

 
[Figure 5] Comparison of estimated diffusion functions from three models 
 

 
 

 
Regarding the nonparametric estimates of the diffusion function, Figure 5 

illustrates that they do not follow a linear form akin to the estimated CIR diffusion. 
Furthermore, the 95% confidence bands for the diffusion estimates do not 
encompass the estimated diffusion of the CIR model, which may offer grounds for 
rejecting the linear specification of the CIR diffusion function. However, this result 
might be unreliable due to the previously discussed limitations. 

 
 

V. Conclusion 
 
In this paper, we consider a continuous time regression model in which the 

conditional mean and variance functions involve functional coefficients. We 
propose the nonparametric estimators for these functional coefficients and provide 
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their asymptotic properties by allowing 0ph ® , 0D ® , and T ® ¥  to change 
simultaneously under specific conditions. We find that the limiting distributions of 
these estimators are Gaussian under some regularity conditions. To ensure the 
consistency of the estimated functional coefficient ( )b ×  of the conditional mean 
function, we need to satisfy 0ph ® , 0D ® , and T ® ¥ . However, for the 
functional coefficient 2( )g ×  of the conditional variance function being consistently 
estimated, we only need 0ph ®  and 0D ® , while T  can be fixed. 
Additionally, the derived asymptotic properties facilitate the determination of 
optimal bandwidths for the estimators of the functional coefficients. The optimal 
bandwidth for each estimator can be computed utilizing an estimate for local time 
along with the estimates for the respective functional coefficients and their first- and 
second-order derivatives. Further details on the computation of optimal bandwidths 
may be addressed in subsequent studies. 

We conduct an empirical analysis by employing the proposed nonparametric 
estimators to estimate the functional coefficients of the drift and diffusion terms 
using U.S. daily 3-month treasury bill data. When comparing the estimation results 
obtained from the CIR model and the fully nonparametric model, we observe strong 
similarities between our model and the fully nonparametric model. Additionally, 
based on the estimated drift and diffusion functions from the three models, we find 
no conclusive evidence to reject the linear specification of the CIR drift. However, 
we do have indications to reject the functional form of the CIR diffusion. These 
results have several limitations, such as the use of a rule of thumb for bandwidth, 
limited observations, and the construction of confidence bands using the 
asymptotics. 
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Appendix 
 

Proof of Lemma 1. By successively applying Lemmas 12 and 6 in Ait-Sahalia and 
Park (2016) with f K=  and 2g x= , we have 
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uniformly in T  as 0h ®  and 0D ® . Moreover, by Assumption 5, we obtain 

 
2( ) ( , )[1 (1)]T pQ K x l T x o= +   (A.1) 

 
uniformly in T  as 0h ®  and 0D ® . We also have 
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By Lemmas 12 and 9 in Ait-Sahalia and Park (2016), we have 
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2 3/2 1/2 2( ( , )) ( ( , ) ) ( ( , ))p p po h l T x O h l T x O h l T x-+ + + D  (A.2) 

 
uniformly in T  as 0h ®  and 0D ® . Then, it follows from (A.1) and (A.2) that 
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uniformly in T  as 0h ®  and 0D ®  under Assumption 5 (a). 

We now consider ( ,1)TM K . Let TM  be a continuous martingale defined as 
( ,1)T TM hM K=  so that 
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The quadratic variation [ ]M  of M  at time T  can be written as 

 

( 1)2 2 2
( 1) ( 1)

1

1
[ ] ( )

n ii
T i ti

i

X x
M K X X dt

h h
s

D- D
- D - D

=

-æ ö
= ç ÷

è ø
å ò  

( 1)2 2 2
( 1) ( 1)

1

( )
n

i
i i

i

X x
K X X

h h
s- D

- D - D
=

-æ öD
= ç ÷

è ø
å  

( 1)2 2 2 2
( 1) ( 1)( 1)

1

1
[ ( ) ( )]

n ii
i t ii

i

X x
K X X X dt

h h
s s

D- D
- D - D- D

=

-æ ö
+ -ç ÷

è ø
å ò  (A.3) 

 
The first term in (A.3) satisfies 

 

( 1)2 2 2
( 1) ( 1)

1

( )
n

i
i i

i

X x
K X X

h h
s- D

- D - D
=

-æ öD
ç ÷
è ø

å  



Mijung Choi ∙ Jihyun Kim ∙ Nuong Nguyen: Nonparametric Continuous Time Regressions 163

2 2 2 2

0

1
( ) ( ( , ))

T
t

t t p

X x
K X X dt O h l T x

h h
s --æ ö= + Dç ÷

è øò  

2 2 2 2( ) ( ) ( , )) ( ( , )) ( ( , ))p px x K l T x o l T x O h l T xs i -= + + D  

 
by applications of Lemmas 12 and 6 in Ait-Sahalia and Park (2016) with 2f K=  
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due to Lemma 11 in Ait-Sahalia and Park (2016). Therefore, 
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uniformly in T  as 0h ®  and 0D ® . Therefore, it follows from (A.4) and (A.5) 
that 
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and 
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uniformly in T  as 0h ®  and 0D ® . From (A.4), (A.6), and (A.7), we can 
deduce that   
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where Z  is a standard normal random variate independent of ( , )l T x . 
Furthermore, given that ( ,1)T TM hM K= , we have 

 
1/2

1/2 ( , )ˆ[ ( , )] ( ) ( ,1)
( )q T

T

l T x
hl T x x hM K

Q K
b =   

1/2( , )
( )

T

T

M
l T x

Q K
=  

1/2

2

( , )
( , )[1 (1)]

T

p

l T x M

x l T x o
=

+
 

2 1/2 1 2 1/2( , ) [1 (1)] ( ) ( )T p dx l T x M o x x K Zs i- - -= + ®  

 
or 

 
1/2 1/2 2 1/2ˆ[ ( , )] ( ) ( ) ( )q dhl T x x x x K Zb g i-®    (A.9) 

 
For ˆ ( )xbe , by applying Lemma 11 in Ait-Sahalia and Park (2016) under 

Assumptions 5 (a) and (b), we have 
 

2( ,1) ( ( , ))T pR K o h l T x=   

 
uniformly in T  as 0h ®  and 0D ® . Consequently, 
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 (A.10) 

 
The proof of Lemma 1 is thus complete.                                □ 
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Proof of Proposition 1. Proposition 1 can be easily deduced from Lemma 1, so the 
details are omitted.                                                 □ 
 
Proof of Lemma 2. We have 
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By Lemmas 12 and 9 in Ait-Sahalia and Park (2016), we have 
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2 3/2 1/2 2( ( , )) ( ( , ) ) ( ( , ))p p po h l T x O h l T x O h l T x-+ + + D  (B.1) 
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uniformly in T  as 0h ®  and 0D ® . Then, it follows from (B.1) and (A.1) 
that 
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We now move to the second part 2ˆ ( )q xg . We define M  as a continuous 

martingale such that 
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Then quadratic variation [ ]M  at T  is given by 

 

( 1)2 2 2 2
( 1) ( 1)( 1)

1

2
[ ] ( ) ( )

n ii
T i t i ti

i

X x
M K X Y Y X dt

h h
s

D- D
- D - D- D

=

-æ ö
= -ç ÷D è ø

å ò  (B.2) 

 
We decompose 
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and use Itô’s formula to deduce that 
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We then obtain from (B.2), (B.3), and (B.4) that 

 
[ ]T T T T T TM A B C D E= + + + +   (B.5) 
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where 
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For the first term TA , we successively apply Lemmas 12 and 6 in Ait-Sahalia 

and Park (2016) and obtain 
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uniformly in T  as 0h ®  and 0D ®  under Assumption 6. For TB  and TD , 
we apply Lemma 14 
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( ( , ))po l T x=   

 
under Assumptions 6 (a) and (c). 

Similarly, we have 
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In sum, 
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It is also straightforward to obtain 
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from Lemma 14 in Ait-Sahalia and Park (2016) under Assumptions 6 (a) and (b). 

For the last term TE , we note that 
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for all 1 i n6 6  and [( 1) , ]t i iÎ - D D . We also have 
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uniformly for all 1 i n6 6  and [( 1) , ]t i iÎ - D D  by the modulus of continuity for 
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a continuous martingale (see Lemma B.2 of Kim and Park, 2017). 
Combining (B.9), (B.10), (B.11), and (B.12), we have 
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We then use (B.4) to write 
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By successively applying Lemmas 12, 6, 15, and 14 in Ait-Sahalia and Park (2016) 
as in (B.6), (B.7), and (B.8), we may obtain 
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uniformly in T  as 0h ®  and 0D ® . Thus far, we already have all 
components of [ ]TM  from (B.6), (B.7), (B.8), and (B.14). Therefore, 
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uniformly in T  as 0h ®  and 0D ® . 

We now consider [ , ]TW M . We have 
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Due to Lemma 13 in Ait-Sahalia and Park (2016), under Assumption 6 (c), it 
follows that 
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We then deduce from (B.15) and (B.16) that 
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Together with (B.15), we can deduce that 
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where Z  is a standard normal random variate independent of ( , )l T x . Therefore, 

 
1/2 1/2 1/2

2 2 ( ,2)( , ) ( , ) 2 ( , ) 2ˆ ( ) ( ,2)
( ) ( )

T
q T

T T

M Khl T x hl T x l T x h
x M K

Q K Q K
gé ù é ù= =ê ú ê úD D Dë û ë û

  

1/2
2 1/2

2

2 ( , )
2 ( , ) [1 (1)]

( , )[1 (1)]
T

T p
p

l T x M
x l T x M o

x l T x o
- -= = +

+
 

1 2 2 1/22 ( ) ( )p x x K Zs i-®   (B.18) 

 
For the last part 2

ˆ ( )x
g

e , we consider ( ,2)TR K  and ( )TS K  in sequel. We have 
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2( ,2) ( ( , ))T pR K o h l T x=    (B.19) 

 
uniformly in T  as 0h ®  and 0D ®  due to Lemma 11 in Ait-Sahalia and 
Park (2016) under Assumptions 6 (a) and (b), and we obtain 
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(B.20), we obtain 
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The proof is therefore complete. 

□ 
Proof of Proposition 2. It is straightforward to deduce Proposition 2 from Lemma 2, 
so the details are omitted.                                          □ 
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함수적 계수를 가진 연속시간 회귀모형의 비모수적 추정법* 

최 미 정** ∙ 김 지 현*** ∙ Nuong Nguyen**** 

9 

 
 

본 연구에서는 연속시간 회귀모형의 조건부 기대값과 조건부 분산이 함

수적 계수를 가지는 모형을 고려하고 있다. 이때 함수적 계수와 설명변수

는 정상성 혹은 비정상성을 가질 수 있는 일반적인 확산과정(diffusion 

process)을 따른다. 본 연구에서 고려되고 있는 연속시간 회귀모형의 추

정을 위해 이산적으로 수집된 자료를 사용하여 커널 방법에 기반한 비모

수적 방법을 제시하고 있다. 일반적인 상황 하에서 제안된 추정량의 일치

성과 극한 분포를 도출하였고 해당 회귀모형과 추정방법을 활용하여 미

국의 단기 금리 모형의 추정에 활용하였다. 

 

핵심 주제어: 연속시간 회귀모형, 확산과정, 비정상 시계열, 함수적 계수, 비모수적 추정 
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