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Abstract

This paper examines whether stock excess return predictability is different when the stock

market is relatively stable and more volatile. The paper introduces a two-state endogenous regime

switching model (ERS) for the stock return predictability test. To model regime switching, this

paper adopted a new approach proposed by Chang et al. (2017), allowing an endogenous feedback

effect channel through which the underlying time series affect the next period volatility regime.

Monte Carlo simulation results demonstrated that additional power gain and bias improvement

could be achieved in the ERS model, compared to the conventional Markov switching model.

Moreover, by jointly estimating the process of return and predictor series with structure given

to their innovation correlations, the ERS model could alleviate the distortion in the least squares

estimation caused by well-known data characteristics of return and predictor series: persistence

in predictors, and correlations between returns and predictors. The empirical test results using the

ERS model indicate that none of the tested predictors have significant predictive power when stock

returns are highly volatile. However, the dividend-price ratio and macro variables such as T-bill

rate and term spread had significant predictability, at least in the low volatility regime.

Keywords: Predictive regression, Regime switching model, Endogenous feedback effect, Persis-

tence, Correlated innovations, Time-varying volatility
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1 Introduction

Is stock excess return predictable? As noted by Phillips and Lee (2013), the efficient market hy-

pothesis argues that stock prices have a martingale property, making stock returns unpredictable.

However, return predictability is a controversial issue, since there is plenty of empirical evidence

claiming that prediction is possible. Campbell and Shiller (1988a) argued that the relationship

between fundamental value and asset price might allow the fundamental to price ratio to predict

stock returns. Much subsequent literature has considered price ratios, such as dividend-price ratio

and earning-price ratio, as predictors for stock returns. Using a newly-developed conditional test,

Lewellen (2004) showed that the dividend-price ratio and the earning-price ratio can be used to

predict stock returns. Cochrane (2008) clarified that the dividend-price ratio can be used to predict

stock returns, emphasizing the variation in dividend yield and the absence of dividend growth pre-

dictability. Campbell and Yogo (2006) showed that both price ratios have predictability though it is

weak for the dividend-price ratio. Moreover, Chen (1991) contended that consumption smoothing

motives make macro variables such as T-bill rate and term spread effective predictors for stock re-

turns. Macro variables can depict the prospects for the future of the economy, along with demand

to smooth consumption, affecting the asset market and asset returns. Campbell and Yogo (2006)

and Welch and Goyal (2008) showed that T-bill rate and term spread can significantly predict stock

return.

However, many literature reports that return predictability is not stable. According to Ang and

Bekaert (2007) and Lettau and Ludvigson (2005), the return predictability seems unstable to the

inclusion of the period from the mid-1900s. Welch and Goyal (2008) demonstrated that in-sample

fitting is consistently better than the out-of-sample forecasting performance. As noted by Paye

and Timmermann (2006), time-varying predictive relations might contribute to the discrepancy
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between the apparent strong in-sample predictability and the weak out-of-sample predictability.

Many papers highlighted the importance of time-varying return generating process and its pre-

dictability: Viceira (1997), Schaller and Norden (1997), Paye and Timmermann (2006), Lettau and

Van Nieuwerburgh (2008), Pettenuzzo and Timmermann (2011) and Hammerschmid and Lohre

(2017). Without proper consideration for time-varying relationship between return and forecasting

variable, full-sample inference on predictability might yield biased forecasts.

In this paper, return predictability was separately examined for different volatility regimes. It

is reasonable to expect that stock return predictability might be different when the stock market

is relatively stable and more volatile. The stock price might exhibit abnormal behavior in the

highly volatile period, making return predictability vary with its volatility regime. It became a

natural starting point for this paper to adopt a two-state regime switching model for the return

predictability test.

To model regime switching, a new approach using an autoregressive latent factor proposed by

Chang et al. (2017) was implemented. Unlike the conventional Markov switching model, which

assumes that the current state is determined only by the past states, this new approach also allows

underlying time series to be correlated with the next period latent factor, allowing return series to

have an endogenous feedback effect on the next period volatility regime. Such a channel, through

which underlying time series affect the next period volatility state, needs to be considered, espe-

cially in the return predictability context, due to the leverage effect. It is realistic that a current

shock on a return series would affect the next period volatility regime. Monte Carlo simulation

shows that additional information from the underlying time series allows a sharper inference of

state process, resulting in power gain and bias improvement compared to the conventional Markov

switching model.
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Additional to its natural anticipation for switching predictability along with volatility regimes,

a endogenous regime switching model (ERS) offers benefit in the estimation and hypothesis test-

ing, compared to the least square estimation. There are a few data characteristics of return and

predictor series that might distort standard estimation and hypothesis testing. It is well-known that

many predictors are highly persistent and that their innovations are correlated with those of re-

turns. If so, as Stambaugh (1999) noted, the limit distribution of test statistics might deviate from

the standard normal, resulting in over-rejection of true null when the ordinary least squares regres-

sion is conducted. Moreover, least square estimates would suffer severe finite sample bias when

innovations of returns and predictors are strongly correlated. By jointly estimating the process of

return and predictor series with structure given to their innovation correlations, the ERS model

could alleviate the over-rejection problem and finite sample bias.

In Section 4, an empirical test was conducted using the ERS model. Empirical test results indi-

cated that none of the tested variables offer significant predictability in the high volatility regime.

However, at least in the low volatility regime, the dividend-price ratio and macro variables such

as T-bill rate and term spread did offer significant predictability for stock returns. It is reason-

able that the predictability of three variables are restricted to the period when the stock market is

less volatile. When exogenous shock strikes the stock market, stock prices would change rapidly,

making the stock market enter the high volatility regime. Under such a circumstance, it would be

extremely hard to predict stock returns using any past information, due to unpredictable exoge-

nous shock. Unlike the aforementioned variables, the earning-price ratio did not offer significant

predictability, even in the low volatility regime. As noted by Fama and French (1988), this might

be the result of noisy earnings’ data.

According to the empirical test results in Section 4, stock excess return seems to have switch-
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ing volatilities. The stock excess return volatility of the high volatility regime was more than three

times that of the low volatility regime. Moreover, endogeneity parameters were also estimated to

have significantly large negative value. This goes well with the leverage effect; a negative shock

on the current return increases the next period volatility. Therefore, it is important to consider the

volatility regime and the endogenous feedback effect to properly model return series.

In Section 5, Monte Carlo simulation was conducted to examine what happens when either

volatility regimes or the endogenous feedback effect is ignored. Section 5.2. investigated the ef-

fect of ignoring volatility regimes. The traditional model, estimated using least squares, ignores

volatility regimes. According to simulation results, the size distortion and finite sample bias in β

was bigger when volatility regimes were ignored. In Section 5.3, the effect of ignoring the endoge-

nous feedback effect was illustrated by comparing the conventional Markov switching model and

the ERS model. It was shown that there is a loss of power when a conventional Markov switching

model is used without considering an endogenous feedback effect channel. In particular, an inter-

esting pattern of bias improvement was found by simulation results. The bias improvement of the

ERS model tends to be more substantial when the regime switching parameter has large switching

values.

The remainder of this paper is as follows. Section 2 illustrates the models used for empirical

analysis. Section 3 describes how to estimate the ERS model in detail. In Section 4, an empirical

analysis using real data is presented. Section 5 provides Monte Carlo evidence that the ERS model

outperforms the conventional Markov switching (CRS, i.e., the conventional regime switching)

model and the traditional model (OLS) regarding size, power, and bias. Section 6 presents the

conclusion.
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2 The Model

2.1 Endogenous Regime Switching Model (ERS)

The two-state regime switching model was adopted to capture switching stock return pre-

dictability with its volatility regimes. Therefore, a state characterizing rule was set as σu(st =

0) < σu(st = 1), allowing state 1 to be a high volatility regime and state 0 to be a low volatil-

ity regime. The predictive regression parameters, α and β, were also modeled to have switching

values given volatility regimes.

yt = α(st) + β(st)xt−1 + σu(st)ut (1)

When β is not equal to zero, the univariate predictor xt−1 has some predictive power on future

stock excess returns yt. Therefore, β(st) is a parameter of interest indicating whether the predictor

has any predictive power over stock excess returns. By doing so, this model provides a way to

compare the predictive power of a predictor in high (β) and low (β) volatility regimes.1 The

predictor was also assumed to have regime switching volatilities.2

xt = µ+ φxt−1 + σν(st)νt (2)

where ut and νt are normalized errors with a variance of one.

ut = πνt +
√

1− π2εt (3)
1The underline notation is for the parameter value in the low volatility regime while the overline notation is for the

parameter value in the high volatility regime.
2Among predictors considered in this paper, price ratios (dividend-price ratio, earning-price ratio and smoothed real

earnings-real price ratio) were assumed to have regime switching volatility while macro variables such as treasury bill
rate and term spread were assumed not. The grounds for such setting will be elaborated on Section 4.2.
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where νt and εt are independent with a normalized variance of one. Therefore, π denotes contem-

poraneous correlation between the innovation of yt and that of xt. As can be shown in (2) and (3),

this model give room for persistence in (xt) and innovation correlation π to be structured within

the model.

This paper implemented an innovative approach developed by Chang et al. (2017) to model

regime switching. According to their new approach, regimes are determined by whether the au-

toregressive latent factor (ft) exceeds the threshold level or not.

st = 1{ft ≥ τ} (4)

ft+1 = λft + ηt+1 (5)

where st = {0, 1} which is determined by latent factor ft and threshold level τ . The strength of

their new method comes from the correlation between the next period innovation of latent factor

ηt+1 and underlying time series innovations ut and νt. With an latent factor that is correlated with

previous underlying time series, regime could be determined endogenously in this new approach.


νt

εt

ηt+1

 =d N




0

0

0

 ,


1 0 ρ1

0 1 ρ2

ρ1 ρ2 1



 (6)

The current shock on return series may affect next period latent factor and volatility regime

since ut and ηt+1 are correlated by πρ1 +
√

1− π2ρ2. By allowing underlying time series to affect

next period latent factor and volatility regime determination, new approach relieves the assumption
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of a conventional Markov switching (CRS, i.e., conventional regime switching) model that state

is determined independently from the underlying time series. Such an endogenous feedback effect

of the underlying time series is an important extension the ERS model has made compared to the

CRS model.

2.2 Conventional Markov Switching Model (CRS)

The ERS model is a natural extension of the conventional Markov switching (CRS i.e., con-

ventional regime switching) model. Chang et al. (2017) showed their new approach to regime

switching reduces to the conventional Markov switching model when the autoregressive latent fac-

tor is exogenous and stationary. Therefore, the likelihood ratio test (LR test) could be conducted

to check whether the likelihood of the unrestricted model (ERS) is significantly higher than that

of the restricted model (CRS). The empirical results in Section 4 shows that the maximum log

likelihood significantly increases at the 5% level once the endogenous feedback effect is modeled.

The CRS model can be easily estimated if we impose restriction in equation (5) and (6) as

follows:

|λ| < 1
νt

εt

ηt+1

 =d N




0

0

0

 ,


1 0 0

0 1 0

0 0 1




Compared to the CRS model, the ERS model is more realistic particularly in the context of

return predictability. It is realistic to expect stock return innovation to affect next period volatility

regime through the latent factor. Negative ρ1 or ρ2 implies that a negative shock on stock returns

is likely to increase volatility in the next period. Such a phenomenon is well-known as a leverage
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effect. In the empirical analysis section, it is shown that ρ2 is estimated to have a significantly

negative value which is consistent with the leverage effect.

2.3 Traditional Predictive Regression Model (OLS)

The traditional way to test stock return predictability is using a simple regression model as follows:

yt = α+ βxt−1 + ut

xt = µ+ φxt−1 + νt

where ut and νt are i.i.d. innovations with variance σ2u and σ2ν , respectively. The traditional model

ignores the existence of volatility regimes. It does not consider the possibility that stock return

predictability might change with volatility regimes.

A typical way to analyze the traditional model is using a least squares estimate β̂ and its t-ratio.

However, some characteristics of series (yt) and (xt) might cause size distortion and finite sample

bias in β̂. Stambaugh (1999) argued that the OLS estimate of β is biased, and the null of no pre-

dictability (β = 0) is over-rejected when stock return innovation (ut) is strongly correlated with

that of predictor (νt) and the predictor is highly persistent. It is important to properly manage such

problems, because most predictor series are highly persistent and some of them have innovations

strongly correlated with that of stock returns. The ERS model jointly estimate two equations with

structure given to innovations ut and νt. As will be shown in Monte Carlo simulation results in

Section 5, the ERS model could alleviate size distortion and finite sample bias.
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3 Estimation

The endogenous regime switching model (ERS) can be estimated by the maximum likelihood

method. For the maximum likelihood estimation of the model, the log-likelihood function can be

written as

`(y1, · · · , yn, x1, · · · , xn) = log p(y1, x1) +
n∑
t=2

log p(yt, xt|Ft−1) (7)

where Ft = σ((xs)s≤t, (ys)s≤t) is a set of information given for t = 1, · · · , n. There is a set of

unknown parameters θ ∈ Θ. In this case, θ is a 15-by-1 vector containing α(st), β(st), σu(st), µ,

φ, σν(st), π, λ, τ , ρ1 and ρ2.

By allowing an endogenous feedback effect as in (6), the state process is not only influenced

by the previous states but also by the underlying time series. Therefore, state process (st) alone

is not a first-order Markov process; rather, (st, yt, xt) on {0, 1} × R × R is a first-order Markov

process. This makes conventional Markov switching filter not applicable, resulting in a need for a

modified Markov switching filter.

p(st, yt, xt|st−1, yt−1, xt−1) = p(yt, xt|st, st−1, yt−1, xt−1)× p(st|st−1, yt−1, xt−1)

where

p(yt, xt|st, st−1, yt−1, xt−1)

= N


α(st) + β(st)xt−1

µ+ φxt−1

 ,

 σu(st)
2 σu(st)σν(st)π

σu(st)σν(st)π σν(st)
2


 (8)

and

p(st|st−1, yt−1, xt−1) = (1− st)ωρ + st(1− ωρ) (9)
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where ωρ = ωρ(st−1, yt−1, xt−1) is transition probability of (st) to the low state conditional on

the previous state and the past values of the time series. Given ρ1 and ρ2 in (6), the state process,

not alone but jointly with the underlying time series, follows Markov process. Therefore, transition

probabilities do not stay constant but vary over time, affected by the underlying time series in the

previous period. This makes the ERS model more realistic compared to the conventional Markov

switching model which assumes constant transition probabilities.

When the endogeneity channel, through which the underlying time series affect the next period

latent factor, is modeled, a modified Markov switching filter should be developed as in Chang et al.

(2017). To develop a modified Markov switching filter applicable to this model, we let

Φρ(x) = Φ

(
x√

1− (ρ21 + ρ22)

)
(10)

For the covariance matrix in (6) to be a non-negative definite matrix, it must be the case that

ρ21 + ρ22 ≤ 1. When ρ21 + ρ22 = 1, Φρ(x) in (10) cannot be defined. For special cases in which

ρ21 + ρ22 = 1, please refer to Chang et al. (2017). From now on, this paper will focus only on the

case where ρ21 + ρ22 < 1 and latent factor is stationary(|λ| < 1). If so, transition probability to the

low volatility regime is as follows. The exact derivation of (11) will be given in Appendix A.1.

ωρ = ωρ(st−1, yt−1, xt−1)

=

(
(1− st−1)

∫ τ√1−λ2
−∞ +st−1

∫∞
τ
√
1−λ2

)
Φρ

(
τ − ρ2√

1− π2
ut−1 −

(
ρ1 −

π√
1− π2

ρ2

)
νt−1 −

λx√
1− λ2

)
ρ(x)dx

(1− st−1)Φ(τ
√

1− λ2) + st−1[1− Φ(τ
√

1− λ2)

(11)

On the other hand, when latent variable is independent with the underlying time series (ρ1 = ρ2 =

0), transition probabilities are not influenced by ut−1 nor νt−1. The transition probability to the
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low volatility regime is as follows:

ωρ = ωρ(st−1) =

(
(1− st−1)

∫ τ√1−λ2
−∞ +st−1

∫∞
τ
√
1−λ2

)
Φ

(
τ − λx√

1− λ2

)
ρ(x)dx

(1− st−1)Φ(τ
√

1− λ2) + st−1[1− Φ(τ
√

1− λ2)]

The state process (st) follows a first-order Markov process, independent of the time series. This

clearly indicates that the ERS model reduces to the conventional model when the underlying au-

toregressive latent factor is stationary and independent from the model innovations.

The modified Markov switching filter is composed of two steps: prediction and updating.

p(yt, xt|Ft−1) =
∑
st

p(yt, xt|st,Ft−1)p(st|Ft−1) (12)

where p(yt, xt|st,Ft−1) is given in (8). To calculate the log-likelihood function in (7), p(st|Ft−1)

is needed which can be obtained from the prediction step. For the prediction step,

p(st|Ft−1) =
∑
st−1

p(st|st−1,Ft−1)p(st−1|Ft−1) (13)

where p(st|st−1,Ft−1) is given in (9). This can be easily computed once the updating step is

conducted for the previous period. For the updating step,

p(st|Ft) = p(st|yt, xt,Ft−1)

=
p(yt, xt|st,Ft−1)p(st|Ft−1)

p(yt, xt|Ft−1)
=

p(yt, xt|st,Ft−1)p(st|Ft−1)∑
st
p(yt, xt|st,Ft−1)p(st|Ft−1)

(14)

where p(yt, xt|st,Ft−1) is given in (8) and p(st|Ft−1) is obtainable from the prediction step.

Therefore, iterative computation will allow us to continue the prediction and updating steps.

As Chang et al. (2017) have noted, latent factor ft can be extracted using a modified Markov
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switching filter through the prediction and updating steps. The latent factor can be extracted using

its conditional density as follows:

E(ft|Ft) =

∫
ftp(ft|Ft)dft

where the conditional density of the latent factor is

p(ft|Ft) =
p(yt, xt|ft,Ft−1)p(ft|Ft−1)

p(yt, xt|Ft−1)
(15)

Since p(yt, xt|ft,Ft−1) = p(yt, xt|st,Ft−1) is in (8), allowing us to calculate p(yt, xt|Ft−1), the

updated conditional density of the latent factor (15) is obtainable once p(ft|Ft−1) is obtained from

the prediction step. For the prediction step,

p(ft|Ft−1) =
∑
st−1

p(ft|st−1,Ft−1)p(st−1|Ft−1) (16)

where p(st−1|Ft−1) is obtained from the previous updating step. Therefore, the remaining task

is to find p(ft|st−1,Ft−1), the conditional density of the latent factor on previous state and past

information set.

When |λ| < 1 and ρ21 + ρ22 < 1, p(ft|st−1,Ft−1) is as follows. The relevant proof is in

Appendix A.2.
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p(ft|st−1 = 1,Ft−1) =
1− Φ(X)

1− Φ(τ
√

1− λ2)

×N
(

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1,

1− (1− λ2)(ρ21 + ρ22)

1− λ2

)
(17)

p(ft|st−1 = 0,Ft−1) =
Φ(X)

Φ(τ
√

1− λ2)

×N
(

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1,

1− (1− λ2)(ρ21 + ρ22)

1− λ2

)
(18)

where

X =

√
1− (1− λ2)(ρ21 + ρ22)

1− (ρ21 + ρ22)

τ − λ

(
ft −

ρ2√
1− π2

ut−1 −
(
ρ1 −

πρ2√
1− π2

)
νt−1

)
1− (1− λ2)(ρ21 + ρ22)



18



4 Empirical Analysis

This section tests whether each predictor has predictive power for stock excess returns. Three

models are used to test predictability of each predictor: The traditional model (OLS), the conven-

tional Markov switching (CRS, i.e., conventional regime switching) model and the endogenous

regime switching model (ERS). As potential predictors, price ratios such as the dividend-price

ratio and earning-price ratio and macro variables such as T-bill rate and term spread were consid-

ered.

4.1 Description of Data

The full sample period is from January 1926 to December 2016. For stock market returns,

monthly value-weighted return including distributions (VWRETD) from the Center for Research

in Security Prices (CRSP) was used. The monthly excess return was computed by subtracting

risk-free rates from stock market returns. The 3-month T-bill rate was used as a risk-free rate.

There are two macro variables considered as potential predictors for stock excess returns:

the 3-month T-bill rate and the term spread. As the 3-month T-bill rate, 3-Month Treasury Bill:

Secondary Market Rate from FRED was used from 1934. But for 1926-1934, U.S. Yields On Short-

Term United States Securities, Three-Six Month Treasury Notes and Certificates, Three Month

Treasury from NBER Macrohistory database was used. The term spread is a difference between

the long term yield and the T-bill rate. As a long term yield, Long-Term Government Bond Yield

from Ibbotson’s Stocks, Bonds, Bill and Inflation Yearbook was used. This dataset was obtained

from the 2016 updated version of one used in Welch and Goyal (2008), uploaded to the webpage

of Amit Goyal.3

3http://www.hec.unil.ch/agoyal/
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Figure 1: Time Series Plot
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Notes. A time series plot of the variables used in this analysis for the sample period 1926/01-2016/12. Figure 1-(a)

plots stock excess returns calculated using VWRETD from CRSP and a 3-Month T-bill rate. Figure 1-(b) plots macro

variables: 3-Month T-bill rate and term spread, which is the difference between long term yield on government bond

and the 3-Month T-bill rate. Figure 1-(c) plots price ratios: log dividend-price ratio and log earning-price ratio.

As indicators for the fundamental to price ratio, two price ratios were considered: the dividend-

price ratio and earning-price ratio. According to Campbell and Shiller (1988a), the dividend-price

ratio(or earning-price ratio) was calculated as a ratio of dividends(or earnings) over the past year

relative to current price. This data was offered by U.S. Stock Markets 1871-Present and CAPE

Ratio, uploaded in the online data of Robert Shiller.4 For the actual predictive regression, the

natural logarithm was taken on price ratios.

Chang et al. (2017) showed that the ERS model reduces to the CRS model when the autore-

gressive latent factor is exogenous(ρ1 = ρ2 = 0). Therefore, an LR test could be conducted to

check whether the log likelihood of unrestricted model (ERS) is significantly higher than that of
4http://www.econ.yale.edu/∼shiller/data.htm
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the restricted model (CRS). The following sections will show that the maximum log likelihood

significantly increases at the 5% level once the endogenous feedback effect is modeled.

4.2 Estimation Results

The estimation results for the predictability test are presented in this section. Four predictors

were tested, respectively not jointly. For each predictor, estimation results using three models,

OLS, CRS and ERS, are compared.

As can be seen from Figure 1, stock excess returns seem to have time-varying volatility. To

model the switching volatility of stock returns, a two-state regime switching model has been in-

troduced. The state characterizing rule for the model, σu(st = 0) < σu(st = 1), implies that

stock return volatility is higher in state 1 than in state 0. Among tested predictors for stock re-

turns, price ratios are highly likely to have a similar volatility pattern with stock returns since all

of them were divided by stock price. Therefore, it can be presumed that price ratios also have high

volatility in state 1, when stock return volatility is high. To reflect these presumptions, when price

ratios are used as an individual predictor for stock returns, a regime was also given for predictor

volatility; σν(st = 0) < σν(st = 1). On the other hand, macro variables are less likely to have

higher volatility whenever stock return is in the high volatility regime. Therefore, macro variable

volatilities were not assumed as regime switching parameters.

4.2.1 Results with Macro Variables

According to Chen (1991), macro variables such as T-bill rate or term spread can be used to

predict asset returns since they can provide prospects for the future economy, which affects the

asset market and thereby asset returns. There are many subsequent literatures which supported

predictability of macro variables for stock returns: Chen (1991), Fama and French (1989), Camp-
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bell and Yogo (2006) and Welch and Goyal (2008). Therefore, in this section, macro variables

such as T-bill rate and term spread are considered as potential predictors for stock excess returns.

Estimation results are shown in Table 1. Panel A reports estimation results when the T-bill

rate was used as a predictor for stock excess returns, while Panel B reports results when term

spread was used as a predictor. In each panel, estimation results from the traditional model which

is estimated using least squares are reported in the second column. The next two columns show

estimation results from the CRS model, while the last two columns present results from the ERS

model. For two-state regime switching models, estimates for the regime switching parameters are

presented side by side. The left (st = 0) shows estimates in a low volatility regime, while the right

(st = 1) shows those in a high volatility regime.

The estimated volatility of stock excess returns in the state 1 (σu) is almost three times bigger

than that in the state 0 (σu). When traditional model is used, none of macro variables seem to

have any predictive power for stock excess returns. However, two-state regime switching models

demonstrated predictability at least in the low volatility regime. It is noticeable that the predic-

tive power was significantly observed at least when stock market is less volatile using two-state

volatility regime switching models, though none of them seemed to have significant predictability

using OLS.

Significantly detected predictability in the low volatility regime is consistent with many pre-

vious papers which support predictability of macro variables. Fama and French (1989) and Chen

(1991) emphasized a consumption smoothing motive to explain why economic growth forecast-

ing variables could also play important role in predicting asset returns. A forecasting variable for

macroeconomy can also indirectly forecast asset returns because people will reduce their savings

when future economic growth is expected, increasing returns on asset. Chen (1991) empirically
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Table 1: Estimation Results with Macro Variables

Panel A. T-bill Rate Panel B. Term Spread

OLS CRS ERS OLS CRS ERS

st = 0 st = 1 st = 0 st = 1 st = 0 st = 1 st = 0 st = 1

α 0.0098 0.0141 -0.0061 0.0136 -0.0029 α 0.0035 0.0052 -0.0202 0.0048 -0.0150
(0.002)** (0.002)** (0.013) (0.002)** (0.013) (0.003) (0.002)* (0.023) (0.002)* (0.022)

β -0.0975 -0.1304 -0.6415 -0.1284 -0.8085 β 0.1772 0.2296 0.3605 0.2326 0.1744
(0.054) (0.041)** (0.520) (0.041)** (0.539) (0.126) (0.102)* (0.935) (0.099)* (0.879)

σu 0.0386 0.1173 0.0384 0.1191 σu 0.0388 0.1175 0.0385 0.1187
(0.001)** (0.009)** (0.001)** (0.009)** (0.001)** (0.009)** (0.001)** (0.009)**

µ 0.0002 0.0002 0.0002 µ 0.0007 0.0007 0.0007
(1.65e-4) (1.65e-4) (1.65e-4) (1.79e-4)** (1.79e-4)** (1.79e-4)**

φ 0.9934 0.9934 0.9935 φ 0.9610 0.9612 0.9612
(0.004) (0.004)** (0.004)** (0.008)** (0.008)** (0.008)**

σν 0.0036 0.0036 σν 0.0036 0.0036
(7.82e-5)** (7.82e-5)** (7.71e-5)** (7.71e-5)**

π -0.1328 -0.1348 π 0.0371 0.0335
(0.030)** (0.031)** (0.031) (0.031)

λ 0.9947 0.9923 λ 0.9951 0.9926
(0.004)** (0.006)** (0.004)** (0.005)**

τ 11.5103 9.7264 τ 12.1415 9.9296
(4.555)* (3.729)** (4.788)* (3.716)**

ρ1 0.2436 ρ1 -0.2069
(0.216) (0.294)

ρ2 -0.9602 ρ2 -0.8851
(0.058)** (0.193)**

log likelihood 6396.8352 6400.6760 log likelihood 6400.9465 6404.4672

p-value for LR test 0.0215 p-value for LR test 0.0296

Notes. Standard errors are in parenthesis. The test values that are significant at 95% and 99% level are presented respectively with * and **. The LR test was conducted with

the null of no endogeneity (ρ1 = ρ2 = 0).
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showed that T-bill and term spread are valid indicator for future economic growth, implying that

they might also have predictive power for stock returns. Campbell and Yogo (2006) and Welch and

Goyal (2008) also indicated that T-bill rate and term spread have predictability for stock excess

returns.

However, Table 1 indicates that such predictability is only restricted to the period when the

stock market is less volatile. When stock return is in high volatility regime, Table 1 suggests

that stock excess return is hardly predictable. This might be a result of exogenous shock striking

stock market which increases market volatility with rapidly changing asset prices. In such a case,

the exogenous shock would be a main driving force in the asset pricing, making stock returns

extremely hard to be predicted using any past information. Therefore, it might be hard to predict

stock excess returns in the high volatility regime using T-bill or term spread, unlike in the low

volatility regime.

Among the endogeneity parameters, ρ2 was estimated to have quite substantial value while

ρ1 was not. This implies that the innovation of stock excess returns, especially the part that is

uncorrelated to the predictor, affects the latent factor in the next period, determining the volatility

regime of the following period. Since ρ2 was significantly negative with a large magnitude, a

negative shock on stock excess return seems to make high volatility regime more probable in the

next period. This is consistent with the strong leverage effect observed in Chang et al. (2017). As

reported at the bottom of Table 1, the null of no endogeneity (ρ1 = ρ2 = 0) was rejected at a 5%

significance level for both cases. The LR test results imply that the endogenous feedback effect is

worth considering, significantly increasing the explanatory power of the model.
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4.2.2 Results with Fundamental to Price Ratio

The fundamental to price ratio has been considered as a potential predictor for stock returns

in many literatures: Campbell and Shiller (1988a), Lewellen (2004), Campbell and Yogo (2006),

Welch and Goyal (2008), Cochrane (2008), and Choi et al. (2016). According to Campbell and

Shiller (1988a), asset returns rise when assets are underpriced relative to their fundamental values.

The relationship between the fundamental value and price of an asset might allow fundamental to

price ratio to predict stock returns.

As indicators for fundamental to price ratio, two variables were considered: the dividend-price

ratio and the earning-price ratio. The estimation results are reported in Table 2. Panel A reports

estimation results when the dividend-price ratio was used as a predictor for stock excess returns,

while Panel B reports those when the earning-price ratio was used as a predictor. In both panels

of Table 2, it is noticeable that estimated volatility of stock excess return in the state 1 (σu) is

almost three times bigger than that in the state 0 (σu), as in Table 1. Therefore, stock excess return

certainly seems to have switching volatilities. The traditional model, simply using least squares

without considering regime switching property in stock return volatilities, implies that both price

ratios have significant predictability for stock returns. However, once predictability is modeled

separately for each volatility regime, predictability disappears in the high volatility regime; even

in the low volatility regime for some case.

When the dividend-price ratio was used as a predictor, Panel A shows that the predictability

is significantly observed only in the low volatility regime. It seems that dividends over past year

act as a good proxy for the fundamental value of stock, making the dividend-price ratio as a valid

predictor for stock returns, at least in the low volatility regime. However, once the market becomes

highly volatile, the predictability disappears. This might be due to the exogenous and unpredictable
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Table 2: Estimation Results with Fundamental to Price Ratios

Panel A. Dividend-Price Ratio Panel B. Earning-Price Ratio

OLS CRS ERS OLS CRS ERS
st = 0 st = 1 st = 0 st = 1 st = 0 st = 1 st = 0 st = 1

α 0.0318 0.0298 0.0384 0.0293 0.0900 α 0.0285 0.0201 0.0003 0.0200 -0.0192
(0.012)** (0.010)** (0.043) (0.010)** (0.043)* (0.011)** (0.009)* (0.042) (0.009)* (0.038)

β 0.0075 0.0061 0.0110 0.0061 0.0266 β 0.0081 0.0041 0.0013 0.0042 -0.0060
(0.004)* (0.003)* (0.013) (0.003)* (0.014) (0.004)* (0.003) (0.014) (0.003) (0.013)

σu 0.0366 0.1093 0.0366 0.1135 σu 0.0370 0.1147 0.0368 0.1154
(0.001)** (0.006)** (0.001)** (0.007)** (0.001)** (0.007)** (0.001)** (0.007)**

µ -0.0162 -0.0113 -0.0130 µ -0.0293 -0.0141 -0.0136
(0.010) (0.008) (0.008) (0.012)* (0.008) (0.008)

φ 0.9954 0.9976 0.9972 φ 0.9896 0.9958 0.9961
(0.003)** (0.002)** (0.002)** (0.004)** (0.003)** (0.003)**

σν 0.0306 0.0930 0.0304 0.0939 σν 0.0333 0.1415 0.0329 0.1397
(0.001)** (0.005)** (0.001)** (0.005)** (0.001)** (0.009)** (0.001)** (0.008)**

π -0.6408 -0.6398 π -0.5419 -0.5433
(0.019)** (0.019)** (0.023)** (0.022)**

λ 0.9774 0.9620 λ 0.9789 0.9771
(0.010)** (0.014)** (0.010)** (0.009)**

τ 4.8608 3.8651 τ 5.1318 5.0000
(1.150)** (0.815)** (1.292)** (1.109)**

ρ1 0.0654 ρ1 0.2072
(0.122) (0.167)

ρ2 -0.9697 ρ2 -0.7655
(0.111)** (0.114)**

log likelihood 4133.2318 4150.0105 log likelihood 3879.8833 3890.3029

p-value for LR test 5.17e-08 p-value for LR test 2.98e-05

Notes. Standard errors are in parenthesis. The test values that are significant at 95% and 99% level are presented respectively with * and **. The LR test was conducted with

the null of no endogeneity (ρ1 = ρ2 = 0).
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shocks on the stock market, as mentioned in the previous section. It is deducible that predicting

stock excess returns using the dividend-price ratio, as well as T-bill rate and term spread, is ex-

tremely difficult in the high volatility regime because stock prices might move in unpredictable

ways when the market is in the high volatility regime.

Panel B in Table 2 reports estimation results when the earning-price ratio was used as a

predictor for stock excess returns. Unlike the estimation results from the traditional model, the

predictability of earning-price ratio was not significantly detected in any of volatility regimes

when two-state volatility regime switching model was used. In addition to the earning-price ratio,

smoothed real earnings-real price ratio (i.e., Shiller P/E ratio) was tested to deal with a point made

by Campbell and Shiller (1988a). They pointed out that yearly earnings might not be a proper

measure for the fundamental value since they can be negative during a recession, while the fun-

damental value can never be negative. Therefore, smoothed real earnings-real price ratio, which

compares the moving average of real earnings over the past 10 years and current real price, was

also tested as a predictor. This results are reported in Appendix C. However, neither of them had

significant predictability for stock returns, regardless of volatility regimes.

It is interesting that neither the earning-price ratio nor the smoothed real earnings-real price

ratio (i.e., Shiller P/E ratio) have predictability for stock excess returns, even in the low volatility

regime. This might be the result of noisy earnings data. According to Fama and French (1988), the

dividend-price ratio predicts returns better than the earning-price ratio since the latter is a noisier

measure. They noted that higher variability of earnings makes the earning-price ratio a noisier

measure than the dividend-price ratio, if it is unrelated to variations in expected returns.

One of the most interesting point is that the earning-price ratio seems to have valid predictabil-

ity when OLS is used, while it loses its predictive power when volatility regime switching model is
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used. It is doubtful whether significantly observed predictability using least squares was real; oth-

erwise, it might have been an illusionary phenomenon caused by specific data characteristics that

might distort standard estimation, such as persistence in predictor, correlations between returns

and predictors and time-varying volatility in returns. For price ratios, π was significantly different

from zero and φ was closely estimated to one. Moreover, the estimated values for regime switch-

ing parameter σu(st) were highly different in each regime, implying that stock excess returns have

switching volatilities. Under these conditions, as many papers have indicated, size distortion might

occur, severely damaging the standard estimation using least squares. Therefore, the traditional

model using least squares might have overestimated the predictive power of the earning-price ra-

tio and Shiller P/E ratio. By reflecting switching volatilities of stock returns, such problems might

have been attenuated in the ERS model.

In Tables 2, ρ2 was estimated to have a significantly large negative value, while ρ1 was insignif-

icant. As in Table 1, these results imply that the innovation of stock excess returns, particularly

the part that is uncorrelated to the predictor series, affects the latent factor in the next period,

influencing the volatility regime of the following period. Moreover, the null of no endogeneity

(ρ1 = ρ2 = 0) was strongly rejected as reported in the bottom of Table 2. The LR test results indi-

cate that an endogenous feedback effect significantly increases the maximum log likelihood value,

allowing the leverage effect to be considered within the model. While the predictability inference

using the ERS model seems rarely different from that using the CRS model, the simulation results

in Section 5 show that the regime process can be more sharply inferred via the ERS model yielding

a gain in test power and bias.
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4.2.3 Comparing the Estimated Predictability of Each Predictor

In this part, test results for stock return predictability using the traditional model (OLS) and

the ERS model are compared. When test results are reported, β is scaled by the estimated volatil-

ity ratio between the predictor and stock excess return(σν/σu) as in Campbell and Yogo (2006).

Therefore, values of β as reported in Table 3 are β · (σν/σu) in an actual sense. This standard-

ization enables us to compare predictability of different predictors easily. If β is estimated to be

significant, we can say that an increase of one standard deviation of predictor(σν) would predict a

β · (σν/σu) standard deviation change in expected stock excess returns.

When the T-bill rate was used as a predictor for stock excess returns, we failed to reject the

null of no predictability using least squares. However, when the volatility regime was separately

modeled in the ERS model, the joint null of no predictability under both regimes (i.e., β = β = 0)

was rejected significantly. For the implication from the traditional model to be consistent with that

from the ERS model, the joint null should not have been rejected. Therefore, test results using

two models are not consistent with each other. When predictability in each volatility regime is

tested respectively, test results using the ERS model imply that T-bill rate significantly predict

stock excess returns, at least in the low volatility regime. The term spread also seems to be an

invalid predictor using least squares. However, it turned out that term spread also had significant

predictability for stock excess returns, at least in the low volatility regime. Though the joint null

was not rejected at the 5% level, the p-value was reduced by a great amount compared to the value

from OLS estimation. When the volatility regime is considered, macro variables seem to have

valid predictive power, at least in the low volatility regime.

When the dividend-price ratio was used as a predictor for stock excess returns, the null of no

predictability was rejected at 5% level using least squares. The joint null of no predictability using
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Table 3: Return Predictability Test Results

Predictor

OLS ERS

Jointly tested Tested under each regime

st = 0 st = 1

β p-value p-value for β p-value β p-value
H0 : β = β = 0

T-Bill Rate -0.0065 (0.068) (0.002)** -0.0122 (0.002)** -0.0248 (0.134)

Term Spread 0.0117 (0.160) (0.059) 0.0217 (0.019)* 0.0053 (0.843)

Dividend 0.0063 (0.037)* (0.018)* 0.0051 (0.030)* 0.022 (0.052)-Price Ratio

Earning 0.0089 (0.042)* (0.412) 0.0038 (0.214) -0.0073 (0.636)
-Price Ratio

Notes. β coefficients obtained from the traditional model are scaled by (σν)/(σu) while those obtained from the ERS

model are scaled by σ̂ν(st)/σ̂u(st) in each volatility regime. The test values that are significant at 95% and 99% level

are presented respectively with * and **.

the ERS model (i.e.,H0 : β = β = 0) was also rejected. However, the ERS model additionally

indicated that predictability was restricted only to the low volatility regime. More interestingly,

the earning-price ratio could not reject the joint null of β = β = 0 at 5% level, though the null

of β = 0 was rejected when using OLS. Even when predictability under each volatility regime

was tested respectively, both nulls (i.e.,H0 : β = 0 and H0 : β = 0) were failed to be rejected,

implying that the earning-price ratio might not be able to predict stock excess return under any

volatility regime.

By comparing estimation results from the traditional model and the ERS model, it was shown

that ignoring volatility regimes might give significantly different inferences on stock return pre-

dictability. When predictability exists only in the low volatility regime, it might be possible that

predictability does not appear visibly when volatility regimes are not separately considered, due to
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the influence of high volatility regimes. The switching predictability with volatility regime might

give explanation for the well-known instability in return predictability.

On the other hand, significantly detected predictive power under OLS might become insignif-

icant after volatility regimes are separately considered. This might be the result of over-rejection

problem caused by innovation correlation π that is significantly different from zero and highly

persistent predictor series. In Section 5, it will be shown that over-rejection problem could be

alleviated when volatility regimes are properly considered.
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5 Simulation

In this section, Monte Carlo simulation was conducted to examine the effect of stock excess

return volatility regimes, the persistence of predictor and innovation correlations between stock

returns and predictors on three models: The traditional model (OLS), the CRS model and the ERS

model.

The first simulation was conducted to check if regime-switching model is needed for β in-

ference even when predictive power does not exist in both volatility regimes. According to the

simulation results in Section 5.2, it is necessary as long as volatility is switching. If volatility

regimes are ignored as in OLS, a test would yield more problems in terms of test size and bias,

compared to the ERS model.

The second simulation assumed situation where predictability varies with the volatility regime.

The traditional model using OLS cannot provide any valid inferences when predictive power exists

only in the low volatility regime. If so, a two-state volatility regime switching model is necessary

to validly examine predictability under each volatility regime. In addition, the importance of the

endogenous feedback effect is emphasized in Section 5.3, indicating that the ERS model is superior

to the CRS model in terms of test power and finite sample bias. It seems that the ERS model can

infer state process more sharply compared to the CRS model, allowing underlying time series to

be reflected upon transition probability which yields power gain and bias improvement.

5.1 Simulation Model

yt = β(st)xt−1 + σu(st)ut

xt = φxt−1 + σν(st)νt
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ut = πνt +
√

1− π2εt

where β(st) = β(1 − st) + βst and σu(st) = σν(st) = 0.03(1 − st) + 0.10st. The volatility

parameters are to have realistic values that was estimated in Section 4. The predictor was assumed

to follow a near unit root process.

φ = 1− c

n

In our simulations, the sample size n was 250 and 500. For each n, we considered c=0,2,10.

ft+1 = λft + ηt+1

st = 1{ft ≥ τ}
νt

εt

ηt+1

 =d N




0

0

0

 ,


1 0 ρ1

0 1 ρ2

ρ1 ρ2 1




The autoregressive coefficient of the latent factor λ = 0.9 and threshold for regime τ = 0. Two

endogeneity parameters ρ1 and ρ2 were set as ρ1 = 0 and ρ2 = −0.9. All parameters were set

similar to estimates from the previous estimation results. As previous literatures have been pointed

out, persistence in predictor, correlations between returns and predictors might cause problems in

test size and finite sample bias. Therefore, key parameters in this simulation settings are φ and π.

5.2 Ignoring Volatility Regimes

In this section, predictability is assumed not to exist under any volatility regime (i.e., β =

β = 0). If this is so, one might argue that separately considering volatility regimes does nothing
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Figure 2: Finite Rejection Rate using OLS and ERS Model (jointly tested)
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Notes. Figure 2 presents finite rejection rates for the null of no predictability using the OLS and the ERS model with

5% significance level. The dashed blue line is for the OLS with the null of H0 : β = 0 and the solid red line is for the

ERS model with the null of H0 : β = β = 0.

more than harm the parsimoniousness of the model. However, it was shown by simulation results

that the ERS model, two-state volatility regime switching model with endogenous channel, could

alleviate many problems in hypothesis testing and estimation, compared to the traditional model.

When the predictor is highly persistent and stock return innovation is correlated with that of the

predictor, standard OLS might yield size distortion with significant finite sample bias in β. The

following part will show that the ERS model can reduce size distortion and finite sample bias by

separately modeling volatility regimes.

Figure 2 presents the finite rejection rate of the true null that there is no predictability. For the
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traditional model estimated using least squares, the null H0 : β = 0 was tested against the alter-

native of H1 : β 6= 0 with 5% significance level. For the ERS model, which considers volatility

regimes with an endogenous feedback effect, the joint null H0 : β = β = 0 was tested against the

alternative that H1 : β 6= 0 or β 6= 0 with 5% significance level. In Figure 2, simulation results are

presented as figures for each (n, c) with π varying from 0 to -0.95 gradually. The finite rejection

could be controlled by no more than 10% for all π values, especially when sample size is as large

as 500. When the predictor was not highly persistent (c = 10), least squares estimation did not

fail miserably, but still, the ERS model showed a smaller size distortion.

However, the test tended to be undersized when π was around zero. The predictability test

using the ERS model seems conservative in a sense that it rejects too little under the true null

when innovation correlation between stock returns and the predictor was not strong enough. Still,

it is noticeable that test size using the ERS model was quite accurate when π was far from zero,

which is important considering that the innovation correlation between stock excess returns and

price ratios were estimated to be around -0.6 in Section 4.

In Figure 3, a predictability test using the ERS model was conducted separately for each

volatility regime. To test the predictability in the low volatility regime, the null H0 : β = 0

was tested against the alternative H0 : β 6= 0. Likewise, the null H0 : β = 0 was tested against

the alternative H1 : β 6= 0 to test the predictive power in the high volatility regime. As in Figure

2, size distortion from the traditional model was mitigated after volatility regimes were considered

separately using the ERS model. The finite rejection rate of β and β was close to 5% when π was

around -0.6, which is a realistic value for price ratios.

Moreover, once volatility regimes are considered in the model, the bias in β can be reduced by

almost half compared to OLS. Stambaugh (1999) argued that the bias in β is proportional to the
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Figure 3: Finite Rejection Rate using OLS and ERS Model
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Notes. Figure 3 presents the finite rejection rate for null of no predictability using OLS and the ERS model with 5%

significance level. The dashed blue line is for OLS with the null of H0 : β = 0. The dash-single dotted yellow line is

for the ERS model in low volatility regime(i.e., finite rejection rate for the null of H0 : β = 0) and the solid red line is

for the ERS model in high volatility regime(i.e. finite rejection rate for the null of H0 : β = 0)

bias in φ and π. A slight modification of Stambaugh (1999) yields

E[β̂(st)− β(st)] =

(
σu(st)

σν(st)
π

)
E[φ̂− φ] (19)

The derivation of (19) is included in Appendix B. When the volatility regimes in stock excess re-

turns and predictors are properly modeled, the bias in the autoregressive coefficient of the predictor

(φ) can be reduced, making β(st) less biased.

Figure 4 shows that the finite sample bias in β is negligible when π is zero. However, it
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Figure 4: Finite Sample Bias using OLS and ERS Model
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Notes. Figure 4 presents finite sample bias in β using OLS and those in (β, β) using the ERS model. The dashed blue

line is bias in β using OLS. The dash-single dotted yellow line is bias in β while the solid red line is bias in β using the

ERS model.

increases as π increases in an absolute sense. For all n, c and π, the ERS model yields a smaller

bias in β for each state (β, β) compared to the traditional model estimated using least squares.

Bias is reduced almost by half under each volatility regime using the ERS model. Table 4 shows

that the downward bias in φ is smaller in the ERS model for all cases. A smaller bias in φ might

contribute to a smaller bias in β(st) in the ERS model.

To sum up Section 5.2, the ERS model can reduce size distortion and finite sample bias com-

pared to the traditional model when stock excess return and predictors have switching volatilities.

Even when predictive power does not differ with volatility regime, if the volatility regime switches
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over time, predictability should be modeled separately for each volatility regimes to relieve prob-

lems in hypothesis testing and estimation.
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Table 4: Finite Sample Bias in β and φ

Bias in β Bias in φ Bias in β Bias in φ

OLS ERS OLS ERS OLS ERS OLS ERS

n c φ π st = 0 st = 1 n c φ π st = 0 st = 1

250 0 1 0 0.0002 0.0004 0.0002 -0.0215 -0.0100 500 0 1 0 0.0003 0.0001 0.0001 -0.0110 -0.0045
-0.2 0.0044 0.0024 0.0021 -0.0220 -0.0100 -0.2 0.0025 0.0010 0.0009 -0.0111 -0.0044
-0.4 0.0091 0.0042 0.0044 -0.0218 -0.0100 -0.4 0.0046 0.0018 0.0018 -0.0108 -0.0043
-0.6 0.0133 0.0060 0.0064 -0.0217 -0.0099 -0.6 0.0068 0.0027 0.0026 -0.0109 -0.0043
-0.8 0.0175 0.0080 0.0080 -0.0217 -0.0099 -0.8 0.0089 0.0035 0.0035 -0.0109 -0.0044
-0.9 0.0197 0.0090 0.0090 -0.0218 -0.0101 -0.9 0.0099 0.0038 0.0039 -0.0108 -0.0042

-0.95 0.0207 0.0097 0.0095 -0.0218 -0.0101 -0.95 0.0105 0.0041 0.0042 -0.0109 -0.0043
2 0.992 0 0.0004 0.0003 0.0011 -0.0220 -0.0105 2 0.996 0 0.0003 0.0001 0.0002 -0.0108 -0.0044

-0.2 0.0046 0.0021 0.0027 -0.0219 -0.0104 -0.2 0.0024 0.0010 0.0010 -0.0108 -0.0044
-0.4 0.0092 0.0042 0.0052 -0.0221 -0.0106 -0.4 0.0046 0.0018 0.0019 -0.0107 -0.0044
-0.6 0.0137 0.0065 0.0071 -0.0224 -0.0107 -0.6 0.0066 0.0026 0.0027 -0.0107 -0.0043
-0.8 0.0178 0.0087 0.0092 -0.0220 -0.0107 -0.8 0.0088 0.0033 0.0034 -0.0107 -0.0042
-0.9 0.0198 0.0095 0.0098 -0.0220 -0.0105 -0.9 0.0097 0.0038 0.0039 -0.0105 -0.0042

-0.95 0.0212 0.0102 0.0103 -0.0225 -0.0108 -0.95 0.0101 0.0040 0.0041 -0.0105 -0.0042
10 0.96 0 0.0002 -0.0001 0.0007 -0.0188 -0.0094 10 0.98 0 0.0001 0.0002 0.0000 -0.0094 -0.0040

-0.2 0.0037 0.0018 0.0024 -0.0192 -0.0096 -0.2 0.0020 0.0011 0.0008 -0.0095 -0.0041
-0.4 0.0077 0.0038 0.0043 -0.0190 -0.0097 -0.4 0.0038 0.0017 0.0016 -0.0092 -0.0040
-0.6 0.0110 0.0051 0.0059 -0.0183 -0.0090 -0.6 0.0057 0.0026 0.0025 -0.0092 -0.0040
-0.8 0.0146 0.0075 0.0081 -0.0183 -0.0096 -0.8 0.0075 0.0032 0.0030 -0.0092 -0.0038
-0.9 0.0164 0.0085 0.0087 -0.0184 -0.0094 -0.9 0.0083 0.0036 0.0035 -0.0091 -0.0039

-0.95 0.0174 0.0091 0.0095 -0.0182 -0.0096 -0.95 0.0089 0.0038 0.0038 -0.0092 -0.0039

Notes. For each n, c and π, this table compares finite sample bias in β and φ from the traditional model and the ERS model.
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5.3 Ignoring the Endogenous Feedback Effect

In Section 5.3, predictability was assumed to exist only in the low volatility regime (i.e., β = 0).

If so, the traditional model, which ignores volatility regimes, cannot produce any valid inferences.

Among two-state regime switching models, the ERS model which considers the endogenous feed-

back effect of time series on the next period volatility regime, performs better than the CRS model

in terms of test power and bias.

In this section, the predictability parameter β(st) is β(1 − st) + 0 · st with β ranging from

zero to a non-zero value in fixed increments; from 0 to 0.05 with an increment of 0.1 when n=250

and from 0 to 0.025 with an increment of 0.005 when n=500. Since we focused on varying β, we

only considered π = {0,−0.6} in Section 5.3. Such π values are realistic values, according to

the estimation results in Section 4. Simulation results in this part will show that there is a gain in

simulated power in the low volatility regime when the endogenous feedback effect of time series

is considered.

Figure 5 compares simulated powers of the CRS model and the ERS model in the low volatility

regime. The test powers were all adjusted to have exact 5% size using the simulated critical values.

Figure 5-(a) plots power functions when n=250 while 5-(b) plots those when n=500. For each

panel, figures in the left column are for π = 0 while those in the right column are for π =

−0.6. Compared to π = −0.6, power gain was generally bigger when π = 0. This is reasonable

considering the correlation between ut and ηt+1 is πρ1 +
√

1− π2ρ2 and between νt and ηt+1

is ρ1. In this simulation, ρ1 was set to zero since it was estimated to have an insignificant value

in the estimation section. This implies that only the part of stock excess return innovation, that is

uncorrelated to the predictor, affects the next period volatility regime. With ρ1 = 0, innovation

of underlying time series yt affect volatility regime of the next period due to its correlation with
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Figure 5: Simulated Power Functions
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Notes. Figure 5 presents simulated powers of the CRS model and the ERS model in low volatility regime. The dashed

blue line is for the CRS model and the solid red line is for the ERS model. The test powers were all adjusted to have

exact 5% size using the simulated critical values. Figure 5-(a) shows simulated power for n=250 and Figure 5-(b) shows

simulated power for n=500.

ηt+1 by
√

1− π2ρ2. Therefore, compared to π = −0.6, π = 0 resulted in a stronger endogeneity

effect on the state process. This might be the reason why power gain obtained from allowing an

endogeneity effect is bigger when π = 0. All plots in Figure 5 indicate that the ERS model has

power gain compared to the CRS model, for all cases of n, π and c.

In addition to power gain, the ERS model can also reduce finite sample bias in β(st) compared

to the conventional model. As already mentioned in (19), there exists bias in the predictability

parameter when the innovation of stock excess return and predictor have contemporaneous corre-

lation. Figure 4 showed that the bias in the predictability parameter (β, β) can be reduced almost
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by half when volatility regimes are separately modeled as in the ERS model. In this section, with

fixed π at−0.6, which is a realistic value for price ratios, bias improvement of the ERS model will

be compared to that of the CRS model. Another realistic case, π = 0, was not considered because

there is no bias problem in β when innovation correlation is zero.

Figure 6 plots the finite sample bias in (β, β) from the ERS and CRS model, for c=0,2,10

and n=250,500. The finite sample bias in (β, β) is smaller with the ERS model for all c, n and

β. Additionally, an interesting pattern is observable in Figure 6. Since predictability was assumed

not to exist in the high volatility regime (i.e., β = 0), volatility regime-specific difference in

predictability grows as β increases. As β increases, the gap between β and β increases and the

bias improvement of the ERS model gets stronger. It has been consistently observed across all

plots in Figure 6 that bias improvement becomes more significant as β deviates from β = 0, while

the bias reduction of the ERS model is not noticeable when β = β = 0. It is interesting to note that

the bias improvement obtainable by allowing endogeneity in the state transition process becomes

more significant as regime-specific difference in switching parameters gets larger. It seems clear

that the benefit from underlying time series information reflected on the state process becomes

larger as the difference in parameter values under each regime becomes more dramatic. Therefore,

especially for the case when predictability varies with volatility regimes, the ERS model is superior

to the CRS model, reducing finite sample bias.

The results in Section 5.3, power gain and bias reduction, would have ensued from the fact

that the ERS model enables sharper inference on the state process, especially at the transition

period. The ERS model is an extended version of the CRS model, relieving the assumption of the

conventional Markov switching model that state is determined independently from the underlying

time series. By allowing current innovations of the underlying time series to be correlated with the
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Figure 6: Finite Sample Bias using CRS Model and ERS Model
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Notes. Figure 6 plots the finite sample bias in (β, β) using the ERS model (solid red line) and the CRS model (dashed blue line). For n=250, 500 and c=0,2,10, finite sample

bias was plotted as predictability in low volatility regime(β) grows. For panel (a) and (b), bias in β is reported in the left column and bias in β is reported in the right column.

The first row shows the case for c=0, the second row for c=2 and the last row for c=10.
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next period latent factor, as in (6), transition probability becomes a function not only of the pre-

vious state but also of previous innovations of the underlying time series as in (11). Such time

varying transition probability is the result of additional information from the underlying time se-

ries being reflected, allowing shaper inferences on the state process. This might have played a key

role in improving test power and finite sample bias.

To verify whether the ERS model actually enables better inference on the state process thanks

to additional information from the underlying time series, this part compares the state inferences

using the ERS and CRS model. Among many available cases, we only considered the case in which

n=500 and β(st) = 0.05(1− st) + 0 · st. Therefore, six cases were considered for c = 0, 2, 10 and

π = 0,−0.6.

Table 5: The Ratio of Correctly Inferred States

π=0 π = −0.6

ERS CRS ERS CRS

c=0 0.9306 0.8945 0.9334 0.8988
c=2 0.9275 0.8887 0.9286 0.8916

c=10 0.9262 0.8859 0.9265 0.8867

Notes. The table reports ratios for correctly inferred states using the ERS and CRS model. For each case, the average

was taken over 1000 iterations to calculate ratios of correctly inferred states.

Since the data generating process is fully known, we can determine which volatility regime

each period belongs to. Using this dataset, the ERS and CRS model could be used to estimate τ

and extract latent factor. With τ̂ and extracted latent factor, an inference could be made on whether

each period belongs to the high volatility regime. Table 5 compares the ratio of correctly inferred

states based on the inference from the ERS and CRS model. For all cases, the ERS model tends to

make correct inferences on the state process more frequently compared to the conventional model.

The average ratio using the ERS model was 0.9288 while that using the CRS model was 0.8910.
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Figure 7: Inference on State Process
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Notes. The shaded areas in Figure 7 are separated into two parts: the one with short blue bars denotes high volatility

regimes and the other with long red bars denotes the period when the ERS model correctly inferred which volatility

regime it belongs to while the CRS model failed to do so. To present enlarged plots with improved clarity, the results

only for the last 100 periods are presented in Figure 7. Results for the whole sample period(n=500) are in Appendix D.
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Such pattern is significant especially in the transition period. Among 1000 iterations for each

case, the results from one iteration were picked randomly.5 Figure 7 marked high volatility regimes

with short blue bars. The periods when the ERS model correctly inferred which volatility regime

it belongs to while the CRS model failed to do so were marked with long red bars in Figure 7.

To present enlarged plots with improved clarity, the results only for the last 100 periods were

presented in Figure 7. Results for the whole period (n=500) are in Appendix D which show no

different patterns from the enlarged version in Figure 7. It is significant that the ERS model out-

performs the conventional model especially when the volatility regime changes. This implies that

the ERS model can distinguish regimes more sharply during transition periods, using additional

information obtainable from the previous period underlying time series.

5Among 1000 iterations, one sample was randomly drawn using randomly generated number from uniform distribu-
tion. Given seed is 20170816. Other seed were tried too but all gave consistent implication that the ERS model performs
better than the CRS model especially in transition period.
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6 Conclusion

The stock return might behave differently when the stock market is relatively stable and highly

volatile, making return predictability vary with its volatility regimes. This paper introduces a two-

state endogenous regime switching model (ERS), which allows one to separately test stock return

predictability under low and high volatility regimes. According to empirical analysis using the

ERS model, it was clearly shown that none of the tested predictors can significantly predict stock

excess returns under the high volatility regime. Only in the low volatility regime did the dividend-

price ratio and macro variables such as T-bill rate and term spread show significant predictive

power for stock excess returns. The earning-price ratio turned out to be insignificant as predictor

even when the return is in the low volatility regime.

The ERS model was more realistic in the context of the return predictability test, compared

to the conventional Markov switching (CRS i.e., conventional regime switching) model. It was

expected that the stock return innovation would affect the next period volatility regime. A nega-

tively estimated endogeneity parameter ρ2 was consistent with the leverage effect, indicating that

a negative shock on current returns tends to increase the next period volatility. On the other hand,

ρ1 was insignificant no matter what predictor for stock return prediction was used. These results

implied the existence of the endogenous feedback effect of the underlying time series on regime

process; but it is not past value of predictor series what affect the next period volatility regime. It

is past value of return innovation especially the part that is uncorrelated with predictor series.

The ERS model could also alleviate the problems in the estimation and hypothesis testing.

Compared to the traditional model estimated using least squares, the ERS model could relieve

finite sample bias and the over-rejection problem. The endogenous feedback effect channel mod-

eling, as proposed by Chang et al. (2017), enabled a gain in test power and bias improvement
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compared to the conventional model. Through endogenous feedback effect channel, the additional

information from the underlying time series could be reflected in the latent factor and state pro-

cess, resulting in sharper inference of the state process particularly during the transition periods.

This might have contributed to benefits in hypothesis testing and estimation.

As can be seen from Section 4, the dividend-price ratio and macro variables have valid pre-

dictability only in the low volatility regime; and no predictability significantly observed in the

high volatility regime. Such switching predictability might be the plausible explanation for widely-

observed instability of return prediction in the related literatures. Though return predictability does

exist when the stock market is less volatile as the ERS model demonstrated, there remains a ques-

tion whether it can provide a practical help for real investors, due to the limitation that the state

prediction can hardly be perfect. Although the ERS model achieved the improved state inference

compared to the conventional model, it has around 93 percent accuracy (not a hundred percent).

The future research might examine how useful it is to implement the return predictability lim-

ited to the low volatility regime, using the prediction on future volatility regime on which return

predictability depends on.

To sum up, the contribution of the ERS model is to suggest a method to respectively test

return predictability for different volatility regimes with improved state inference. An endogenous

feedback effect channel allowed the additional information from the underlying time series to be

reflected in the transition probability, resulting in much sharper state inference and, thereby, better

estimation results. Nevertheless, it is the limitation of the ERS model that the problems caused by

prediction persistence and innovation correlation have only been attenuated, not solved. It would

be of great use if the data characteristics mentioned above could be comprehensively managed

within a volatility regime switching model, resulting in a complete solution for over-rejection and
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the bias problem without the model losing its ability to examine return predictability separately

for different volatility regimes.
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Appendix

Appendix A.1. Time-varying transition probability derivation

Note that

1. ft = ηt + ληt−1 + λ2ηt−2 + · · · =d N

(
0,

1

1− λ2

)
for | λ |< 1

√
1− λ2ft =d N(0, 1)

2.

ηt|Ft−1 =d N

((
ρ1 −

π√
1− π2

ρ2

)
νt−1 +

ρ2√
1− π2

ut−1, 1− (ρ21 + ρ22)

)

since


ηt

νt−1

ut−1

 =d N




0

0

0

 ,


1 ρ1 πρ1 +

√
1− π2ρ2

ρ1 1 π

πρ1 +
√

1− π2ρ2 π 1





Define zt as follows.

zt ≡
ηt −

[
ρ2√

1− π2
ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1

]
√

1− (ρ21 + ρ22)

=

ft − λft−1 −
[

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1

]
√

1− (ρ21 + ρ22)

If so,

zt|Ft−1 = zt|ft−1, yt−1, xt−1 =d N(0, 1)

For |λ| < 1 and ρ21 + ρ22 < 1, transition probability is as follows.
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p(st = 0|st−1 = 0,Ft−1) = p(ft < τ | ft−1 < τ,Ft−1)

= p(ft < τ |
√

1− λ2ft−1 <
√

1− λ2τ,Ft−1)

= p(ηt < τ − λft−1|
√

1− λ2ft−1 <
√

1− λ2τ,Ft−1)

= p

(
zt <

τ − E(ηt|Ft−1)√
V ar(ηt|Ft−1)

− λft−1√
V ar(ηt|Ft−1)

|
√

1− λ2ft−1 <
√

1− λ2τ,Ft−1

)

=

∫
τ
√
1−λ2

−∞

∫ τ −
[

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1

]
√

1− (ρ21 + ρ22)

−∞
p(x, y)dydx

Φ(τ
√

1− λ2)

where

p(x, y) =d N


0

0

 ,

 1 −c0

−c0 1 + c20




and

c0 =
−λ√

1− λ2
√

1− (ρ21 + ρ22)
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Likewise,

p(st = 0|st−1 = 1,Ft−1) =

∫
−τ
√
1−λ2

−∞

∫ τ −
[

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1

]
√

1− (ρ21 + ρ22)

−∞
p(x, y)dydx

1− Φ(τ
√

1− λ2)

where

p(x, y) =d N


0

0

 ,

 1 −c1

−c1 1 + c21




and

c1 =
λ√

1− λ2
√

1− (ρ21 + ρ22)

Appendix A.2. Conditional density of latent factor

Proof is as follows.

p(ft|st−1 = 1,Ft−1) = p(ft|ft−1 > τ, ut−1, νt−1)

=

∫∞
τ p(ft, ft−1, ut−1, νt−1)dft−1∫∞
τ p(ft−1, ut−1, νt−1)dft−1

=

∫∞
τ p(ft−1|ft, ut−1, νt−1)p(ft|ut−1, νt−1)p(ut−1, νt−1)dft−1∫∞

τ p(ft−1)p(ut−1, νt−1)dft−1

=

∫∞
τ p(ft−1|ft, ut−1, νt−1)p(ft|ut−1, νt−1)dft−1∫∞

τ p(ft−1)dft−1

The last equality holds since ft−1 is independent with ut−1 and νt−1. Note followings hold when

|λ| < 1 and ρ21 + ρ22 < 1.

1. ft = ηt + ληt−1 + λ2ηt−2 + · · · =d N

(
0,

1

1− λ2

)
for | λ |< 1

√
1− λ2ft =d N(0, 1)
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2. ft−1|ft, ut−1, νt−1

=d N

(
λ

1− (1− λ2)(ρ21 + ρ22)

(
ft −

ρ2√
1− π2

ut−1 −
(
ρ1 −

πρ2√
1− π2

)
νt−1

)
,

1− (ρ21 + ρ22)

1− (1− λ2)(ρ21 + ρ22)

)

since



ft−1

ft

ut−1

νt−1


=d N





0

0

0

0


,



1

1− λ2
λ

1− λ2
0 0

λ

1− λ2
1

1− λ2
πρ1 +

√
1− π2ρ2 ρ1

0 πρ1 +
√

1− π2ρ2 1 π

0 ρ1 π 1




3. ft|ut−1, νt−1 =d N

(
ρ2√

1− π2
ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1,

1− (1− λ2)(ρ21 + ρ22)

1− λ2

)

since


ft

ut−1

νt−1

 =d N




0

0

0

 ,


1

1− λ2
πρ1 +

√
1− π2ρ2 ρ1

πρ1 +
√

1− π2ρ2 1 π

ρ1 π 1





If so, it is easily deducible that

p(ft|st−1 = 1,Ft−1) =

∫∞
τ p(ft−1|ft, ut−1, νt−1)p(ft|ut−1, νt−1)dft−1∫∞

τ p(ft−1)dft−1

=
1− Φ(X)

1− Φ(τ
√

1− λ2)

×N
(

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1,

1− (1− λ2)(ρ21 + ρ22)

1− λ2

)
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Likewise,

p(ft|st−1 = 0,Ft−1) =

∫ τ
−∞ p(ft−1|ft, ut−1, νt−1)p(ft|ut−1, νt−1)dft−1∫ τ

−∞ p(ft−1)dft−1

=
Φ(X)

Φ(τ
√

1− λ2)

×N
(

ρ2√
1− π2

ut−1 +

(
ρ1 −

π√
1− π2

ρ2

)
νt−1,

1− (1− λ2)(ρ21 + ρ22)

1− λ2

)

where

X =

√
1− (1− λ2)(ρ21 + ρ22)

1− (ρ21 + ρ22)

τ − λ

(
ft −

ρ2√
1− π2

ut−1 −
(
ρ1 −

πρ2√
1− π2

)
νt−1

)
1− (1− λ2)(ρ21 + ρ22)



Appendix B. Bias in β(st): A Simple modification of Stambaugh bias

yt = α(st) + β(st)xt−1 + σu(st)ut

xt = µ+ φxt−1 + σν(st)νt

ut = πνt +
√

1− π2εt

where νt
εt

 =d N


0

0

 ,

1 0

0 1




and thereby ut
νt

 =d N


0

0

 ,

1 π

π 1



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Let b1(st) = [α(st) β(st)]
′ and b2 = [µ φ]′. ConstructX = [ones(1, n) x] for x = [x0 · · ·xn−1]′.

b̂1(st)− b1(st) = σu(st)(X
′X)−1X ′u

b̂2 − b2 = σν(st)(X
′X)−1X ′ν

Therefore,

b̂1(st)− b1(st) = σu(st)(X
′X)−1X ′u

= σu(st)(X
′X)−1X ′(πν +

√
1− π2ε)

=
σu(st)

σν(st)
π[σν(st)(X

′X)−1X ′ν] + σu(st)
√

1− π2(X ′X)−1X ′ε

=
σu(st)

σν(st)
π[b̂2 − b2] + σu(st)

√
1− π2(X ′X)−1X ′ε

Taking conditional expectation on ν and unconditional expectation for both sides gives

E[b̂1(st)− b1(st)] =

(
σu(st)

σν(st)
π

)
E[b̂2 − b2]

Therefore,

E[β̂(st)− β(st)] =

(
σu(st)

σν(st)
π

)
E[φ̂− φ]
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Appendix C. Shiller P/E Ratio

Estimation Results with Smoothed Real earnings-Real price Ratio

OLS CRS ERS
st = 0 st = 1 st = 0 st = 1

α 0.0400 0.0238 0.0803 0.0241 0.0750
(0.012)** (0.009)* (0.042) (0.009)** (0.041)

β 0.0120 0.0051 0.0258 0.0055 0.0227
(0.004)** (0.003) (0.015) (0.003) (0.015)

σu 0.0363 0.1083 0.0364 0.1144
(0.001)** (0.006)** (0.001)** (0.007)**

µ -0.0180 -0.0103 -0.0122
(0.010) (0.008) (0.008)

φ 0.9939 0.9979 0.9974
(0.003)** (0.003)** (0.003)**

σν 0.0302 0.0908 0.0300 0.0929
(0.001)** (0.005)** (0.001)** (0.005)**

π -0.6625 -0.6642
(0.018)** (0.018)**

λ 0.9738 0.9489
(0.011)** (0.019)**

τ 4.4432 3.4269
(1.006)** (0.673)**

ρ1 0.1165
(0.124)

ρ2 -0.8907
(0.102)**

log likelihood 4168.7333 4185.7345

p-value for LR test 4.13e-08

Notes. Standard errors are in parenthesis. The test values that are significant at 95% and 99% level are presented

respectively with * and **.
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Appendix D. Full version of Figure 7

100 200 300 400

c= 0, π= 0

100 200 300 400

c= 0, π= -0.6

100 200 300 400

c= 2, π= 0

100 200 300 400

c= 2, π= -0.6

100 200 300 400

t

c= 10, π= 0

100 200 300 400

t

c= 10, π= -0.6

Notes. The shaded areas in this figure are separated into two parts: the one with short blue bars denotes high volatility

regimes and the other with long red bars denotes the period when the ERS model correctly inferred which volatility

regime it belongs to while the CRS model failed to do so.
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