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1 Introduction

The unit root test was originally developed to test for the unity of the largest root in an

autoregressive time series model. However, the existence of a unit root also entails other

important consequences on more general stochastic characteristics of a time series. If a

unit root is present, shocks have permanent effects and they are accumulated to build

up a long run stochastic trend, which makes the autoregressive process nonstationary and

non-mean-reverting. On the other hand, an autoregressive process becomes stationary and

mean-reverting if it has the largest root less than unity in modulus, since shocks have

only transitory effects and their effects eventually vanish in the long run. Accordingly, the

unit root test may also be regarded generally as a test for nonstationarity and no mean

reversion of a time series. In fact, the unit root test has commonly been used to test for

nonstationarity and no mean reversion in a much broader class of time series models than

autoregressive models.

The unit root test has been routinely applied also to financial time series that are thought

to be collected discretely at relatively high frequencies from diffusion type continuous time

processes. See, e.g., Chan et al. (1992), Aı̈t-Sahalia (1996a,b) and Jones (2003). However,

the meaning of the presence or absence of a unit root in discrete samples from a general

diffusion model has never been clearly understood. The previous studies only consider an

unrealistically simple case, where the underlying diffusion models are driven by Brownian

motion and stationary Ornstein-Uhlenbeck processes respectively for the null and alterna-

tive hypotheses, as in Shiller and Perron (1985), Perron (1989, 1991) and Chambers (2004,

2008), among others. In particular, they do not allow for state-dependent volatility, which

is widely regarded as one of the most conspicuous characteristics of financial time series. It

is completely unknown whether the unit root test has any discriminatory power in distin-

guishing general stationary and nonstationary, or mean-reverting and non-mean-reverting,

diffusion models. The effects of time span and sampling frequency on the size and power of

the unit root test are also largely undiscovered for general diffusion models.

In this paper, we investigate the long run behaviors of general diffusion models includ-

ing their unit root, mean reversion and nonstationarity properties. Our investigation is

comprehensive and thorough. We consider the entire class of recurrent diffusions covering

all positive and null recurrent diffusions, which includes in particular stationary diffusions

having no proper moments as well as general nonstationary diffusions.1 For the sample from

1To obtain more explicit asymptotic results, we only consider pure diffusions without jumps. We believe
that the presence of jumps is not important in our study. The unit root property is determined entirely by
the asymptotic properties of the underlying model, which can be tested effectively by samples collected at
the daily or lower frequencies as long as the time span is long enough. It is well known that jumps are not
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such a general class of diffusions, we show that the Dickey-Fuller unit root test has a well

defined limit distribution if and only if the underlying diffusion does not have mean rever-

sion, and it diverges to minus infinity in probability if and only if the underlying diffusion

has mean reversion. The unit root test therefore has perfect discriminatory power, if used

to discriminate non-mean-reverting diffusions against mean-reverting diffusions. On the

other hand, the test cannot be used to test for nonstationarity of the underlying diffusion.

Although all stationary diffusions, including those without finite mean, are mean-reverting,

not all nonstationary diffusions are non-mean-reverting. Nonstationary diffusions may also

be mean-reverting if they have drift terms dominating diffusion terms.

The existence of mean-reverting nonstationary diffusions has some important and far-

reaching implications. First, it implies that nonstationary financial time series may not be

necessarily non-mean-reverting. This opens up a possibility, for instance, that stock prices,

which are widely believed to be nonstationary, are still mean-reverting. See, e.g., Fama and

French (1988), Poterba and Summers (1988) and Kim et al. (1991). Second, in any cointe-

grating relationship, we may allow for the disequilibrium error process to be nonstationary

as long as it is mean-reverting. As a result, we may extend the notion of cointegration in

financial time series studied in, e.g., Baillie and Bollerslev (1989, 1994) and Diebold et al.

(1994). The extended notion of cointegration also has some important consequences in

actual financial investments. In fact, one popular short-term speculation strategy known

as pairs trading utilizes co-movements in the prices of two or more stocks, where we may

define co-movements more generally using the extended notion of cointegration.2 For more

details on pairs trading, the reader is referred to Bossaerts (1988), Bossaerts and Green

(1989) and Gatev et al. (2006).

A diffusion is non-mean-reverting if and only if it is nonstationary, when there is no

interaction between its drift and diffusion terms. On the other hand, its stationarity and

nonstationarity are both preserved under transformations such as the scale transformation

and Lamperti transformation, which annihilate the interaction of drift and diffusion terms.

Consequently, if applied to the transformed data using one of these transformations, we

may use the unit root test to test for nonstationarity of the underlying diffusion. Clearly,

the presence of a unit root in the transformed data implies no mean reversion, and there-

fore, nonstationarity in the transformed underlying diffusion, since it has no drift-diffusion

frequently observed at the daily or lower frequencies in most financial time series. Moreover, as shown by,
e.g., Jeong and Park (2016), the jump diffusions that are reducible to martingales by their scale functions
yield essentially the same asymptotics as pure diffusions, and therefore, the main asymptotic results in this
paper are expected to be also applicable for a large class of, though not all, jump diffusion models.

2For a different approach in modeling longrun co-movements of multiple time series, the reader is referred
to Müller and Watson (2017).
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interactions. This, however, holds if and only if there is nonstationarity in the original

underlying diffusion. Therefore, the unit root test can also be used to test for nonstation-

arity consistently, if we know the scale or Lamperti transformation. Of course, the required

transformation has to be estimated in practical implementation of the test. We show in

the paper that the unit root test based on the Lamperti transformation, if it is estimated

appropriately, is generally consistent at high frequency as a test of nonstationarity.

As a test of no mean reversion or nonstationarity in our general setup, the limit distribu-

tion of the Dickey-Fuller test becomes heavily model-dependent and relies on the underlying

diffusion model in a complicated manner. Therefore, the usual Dickey-Fuller critical values

cannot be used. The limit distribution of the test is generally represented as a functional of

a skew Bessel process, and reduces to the Dickey-Fuller distribution only if the underlying

diffusion becomes a Brownian motion in the limit. In the paper, we develop a subsample

bootstrap test based on the nonparametric estimation of the underlying diffusion model,

and show that it is valid for, and consistent against, general diffusion models. Our sim-

ulation shows that our test has reasonably good size and power in finite samples. As an

illustration, we use the test to examine the presence of mean reversion and nonstationarity

in some major financial time series. Most nonstationary time series are non-mean-reverting.

However, the examples of nonstationary mean-reverting time series are not rare either. The

exchange rates between Australian Dollars and New Zealand Dollars yield some evidence

of mean-reverting nonstationarity. Moreover, in the spreads between the prices of Gold

and Silver, and those between the equity indexes of developed markets in the World and

Europe, we see strong evidence of mean-reverting nonstationarity. This shows the practical

usefulness of our new notion of cointegration.

The rest of the paper is organized as follows. Section 2 presents the background and

preliminaries that are necessary to understand subsequent development of asymptotic theory

developed in the paper. The diffusion model and various notions to investigate its long

run behaviors, and some important regularity and integrability conditions are introduced.

Section 3 considers the Dickey-Fuller unit root test and develops its asymptotics. The

asymptotics are two-dimensional, relying on the sampling interval δ as well as the sample

span T . Section 4 reveals how the notions of unit root, mean reversion and nonstationarity

are interrelated. It introduces the precise notion of mean reversion, and shows that the unit

root test is indeed a consistent test of no mean reversion, which reduces to a consistent test

of nonstationarity only when it is applied to the appropriately transformed samples. Section

5 introduces a subsample bootstrap test and develops its asymptotic theory, and provides

a set of simulation results and illustrative empirical applications. Section 6 concludes the

paper, and all mathematical proofs are in Appendix.
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Finally, a word on notation. We write “PT ∼ QT ” to denote PT /QT → 1. Similarly,

“PT ∼p QT ” means PT /QT →p 1, and PT ∼d QT implies that PT and QT have the same

asymptotic distributions. Moreover, we let “PT ≺ QT ”, “PT ≺p QT ” and “PT -p QT ”

signify PT = o(QT ), PT = op(QT ) and PT = Op(QT ), respectively. These notations, as well

as other standard notations used in asymptotics, will be used frequently throughout the

paper without further references.

2 Background and Preliminaries

In this section, we present the diffusion model with some of its basic properties determining

long run behaviors, and introduce some important regularity and integrability conditions.

2.1 Diffusion Model

We consider the diffusion process X given by the time-homogeneous stochastic differential

equation

dXt = µ(Xt)dt+ σ(Xt)dWt, (1)

where µ and σ are, respectively, the drift and diffusion functions, and W is the standard

Brownian motion. We denote by D = (x, x) the domain of the diffusion process X, where

we set x = −∞ or 0 with x = ∞. This causes no loss in generality, since we may simply

consider X − x or −X to allow for a more general case. In what follows, we denote by

xB = x or x the boundary of D. Throughout the paper, we assume

Assumption 2.1. We assume that (a) σ2(x) > 0 for all x ∈ D, and (b) µ(x)/σ2(x) and

1/σ2(x) are locally integrable at every x ∈ D.

Assumption 2.1 provides a simple sufficient set of conditions to ensure that a weak solution

to the stochastic differential equation (1) exists uniquely up to an explosion time. See, e.g.,

Theorem 5.5.15 in Karatzas and Shreve (1991).

The scale function of the diffusion process X in (1) is defined as

s(x) =

∫ x

w
exp

(
−
∫ y

w

2µ(z)

σ2(z)
dz

)
dy, (2)

where the lower limits of the integrals can be arbitrarily chosen to be any point w ∈ D.

Defined as such, the scale function s is uniquely identified up to any increasing affine

transformation, i.e., if s is a scale function, then so is as + b for any constants a > 0 and
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−∞ < b <∞. We also define the speed density

m(x) =
1

(σ2s′)(x)
(3)

on D, where s′ is the derivative of s, often called the scale density, which is assumed to

exist. The speed measure is defined to be the measure on D given by the speed density with

respect to the Lebesgue measure. Note, under Assumption 2.1, that both the scale function

and speed density are well defined, and that the scale function is strictly increasing, on D.

Our asymptotic theory depends crucially on the recurrence property of the diffusion

process X. To define the recurrence property, we let ρy be the hitting time of a point y

in D that is given by ρy = inf{t ≥ 0|Xt = y}. We say that the diffusion X is recurrent if

P{ρy < ∞|X0 = x} = 1 for all x, y ∈ D. The recurrent diffusion X is said to be positive

recurrent if E[ρy < ∞|X0 = x] < ∞ for all x, y ∈ D, and null recurrent if E[ρy < ∞|X0 =

x] = ∞ for all x, y ∈ D. Under Assumption 2.1, the diffusion X is recurrent if and only if

the scale function s in (2) is unbounded at both boundaries x and x, i.e.,

s(x) = −∞ and s(x) =∞.

Throughout the paper, we assume that this condition holds and X is recurrent. The recur-

rent diffusion X becomes positive recurrent or null recurrent, depending upon

m(D) <∞ or m(D) =∞,

where m is the speed measure defined in (3).3 A diffusion which is not recurrent is said to

be transient.

Positive recurrent diffusions are stationary. More precisely, they have time invariant

distributions, and if they are started from the time invariant distributions they become

stationary. The time invariant density of the positive recurrent diffusion X is given by

π(x) =
m(x)

m(D)
.

Null recurrent and transient diffusions are nonstationary. They do not have time invariant

distributions, and their marginal distributions change over time. Out of these two different

types of nonstationary processes, we mainly consider null recurrent diffusions in the paper.

3Throughout the paper, we follow the notational convention in the Markov process literature and use the
same notation for both a measure and its density with respect to the Lebesgue measure. As an example, for
a given measure or a density m and a function f on D ⊂ R, we write m(D) and m(f) interchangeably with∫
Dm(x)dx and

∫
Dm(x)f(x)dx respectively.
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Brownian motion is the prime example of null recurrent diffusions. Typically, transient

processes have upward or downward trends, in which case we may eliminate their trends

using appropriate detrending methods so that they behave like recurrent processes. Like

unit root processes in discrete time, null recurrent processes have stochastic trends and

the standard law of large numbers and central limit theory in continuous time are not

applicable. See, e.g., Jeong and Park (2013) and Kim and Park (2017) for more details on

the statistical properties of null recurrent diffusions.

Let Xs = s(X) be the scale transformation of X, which may be defined as dXs
t =

m
−1/2
s (Xs

t )dWt with speed measure ms given by

ms =
1

(s′σ)2 ◦ s−1
.

Both recurrence and stationarity are preserved under scale transformation. First, X is

recurrent on D if and only if Xs is recurrent on R. Trivially, the scale function of Xs is

identity, since it is already in natural scale, and therefore, Xs is recurrent if and only if its

domain is given by the entire real line R. However, the domain of Xs becomes R if and

only if X is recurrent, i.e., s(x) = −∞ and s(x) =∞. Second, X is stationary on D if and

only if Xs is stationary on R, since ms(R) = m(D).

Example 2.1. For an illustration, we consider the generalized Höpfner and Kutoyants

(GHK) diffusion defined as

dXt =
aXt

(c+X2
t )1−b

dt+ (c+X2
t )b/2dWt (4)

on R for a, b ∈ R and c > 0. The GHK model encompasses several diffusion models that

are used earlier for illustrative purposes. If, for instance, a = 0 or b = 0, the GHK diffusion

reduces to the diffusion considered by Chen et al. (2010) or Höpfner and Kutoyants (2003),

respectively. Moreover, the speed density and speed measure of the GHK model are given

respectively by

s′(x) = (x2 + c)−a and m(x) = (x2 + c)a−b.

The GHK process becomes recurrent if a ≤ 1/2. Moreover, it becomes positive recurrent if

a− b < −1/2.

Recall that ms is defined to be the speed measure of Xs. Concurrently, we define

fs = f ◦ s−1 for any function f (other than m) on D. Under this notational convention, we

have ms(fs) = m(f), which follows immediately from a change of variables. This convention

will be made throughout the paper. Moreover, for locally integrable f on R, we define [f ]
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as

[f ](λ) =

∫
|x|<λ

f(x)dx.

This notation will also be used without further reference in what follows.

2.2 Regular Variation and Integrability Condition

We say that f : (0,∞) → R is regularly varying at infinity with index κ, and write as

f ∈ RVκ, if f(λx)/f(λ) → xκ as λ → ∞ for all x > 0 with some κ ∈ (−∞,∞). In

particular, if κ = 0 and f ∈ RV0, then f is said to be slowly varying at infinity.4 See

Bingham et al. (1993) for more discussions on regularly varying functions, as well as their

alternative concepts and definitions. For our asymptotics, it is necessary to deal with

functions defined on R and consider both boundaries xB = ±∞. The required extension is

straightforward and may easily be done as shown in Kim and Park (2017). In particular, for

f ∈ RVκ on R for some κ ∈ (−∞,∞), we have f(λx)/f(λ)→ f(x) as λ→∞ or λ→ −∞
for all x 6= 0, where f , called the limit homogeneous function, is given by

f(x) = |x|κ
(
a1{x > 0}+ b1{x < 0}

)
for some constants a and b such that |a| + |b| 6= 0. On the other hand, f : D → R
is said to be rapidly varying at boundary xB with index ∞ or −∞ if κ = κ = ∞ or

−∞ with κ and κ defined as κ = supκ{x−κf(x) ∼ fκ(x) at xB for some nondecreasing fκ}
and κ = infκ{x−κf(x) ∼ fκ(x) at xB for some nonincreasing fκ}. We write f ∈ RV∞ or

f ∈ RV−∞ at xB for the rapidly varying f of index ∞ and −∞ at xB, respectively.

Throughout the paper, we assume

Assumption 2.2. We assume that (a) s′ is regularly or rapidly varying with index κ 6= −1,

(b) σ2 is regularly varying and (c) m is either integrable or regularly varying.

Note that s′ ∈ RV−1 if and only if s ∈ RV0. In this case, X may either be recurrent

or transient, since a slowly varying function may converge or diverge. We exclude this

boundary case in our asymptotic analysis. We may easily see that this case arises if and

only if xµ(x)/σ2(x) → 1/2 as x → xB at xB = ±∞ by the Karamata representation of

regularly varying functions (see Bingham et al. (1993)).5 Furthermore, in this case, s−1

becomes rapidly varying.

To effectively present our asymptotics, we introduce

4Throughout the paper, we use the generic notation ` to denote any slowly varying function. The precise
definition of ` varies from a line to a line.

5Note that Assumption 2.2 (a) is implied by −2xµ(x)/σ2(x)→ κ ∈ [−∞,∞]\{−1} due to the Karamata
representation of regularly varying functions.
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Definition 2.1. Let f be a nonintegrable (or m-nonintegrable) regularly varying function

on D. We say that f is strongly nonintegrable (or m-strongly nonintegrable) if f` is not

integrable (or not m-integrable) for any slowly varying function `. On the other hand,

we say that f is nearly integrable (m-nearly integrable) if there exists some slowly varying

function ` such that f` is integrable (or m-integrable).

Following Definition 2.1, we say that a null recurrent diffusion X is strongly nonstationary if

its speed density m is strongly nonintegrable, and nearly stationary if its speed density m is

nearly integrable. We assume that ms and s−1 have +∞ as their dominating boundary, i.e.,

for f = ms, s
−1 we have f(−x)/f(x) = O(1) as x→∞. This assumption is not restrictive

and made just for the convenience of exposition.

In the development of our asymptotics, we consider the following three conditions. They

characterize our asymptotics in terms of s′ and m, which are functions of infinitesimal

parameters µ and σ2 of X. Here and elsewhere in the paper, we denote by ι the identity

function on D, i.e., ι(x) = x for all x ∈ D.

(ST) : m is either integrable or nearly integrable,

(DD) : 1/s′ is either integrable or nearly integrable, and

(SI) : ι2 is either m-integrable or m-nearly integrable.

If ST, DD and SI hold with m being integrable, 1/s′ being integrable or ι2 being m-

integrable, respectively, we will say that they hold in strong form. Clearly, ST is a condition

related to the stationarity of X, and it holds if and only if X is stationary or nearly

stationary. It is easy to see that ST holds if and only if either m is integrable or m ∈ RVκ
with κ ≤ −1 at xB = ±∞ and κ ≥ −1 at xB = 0. On the other hand, SI requires the

m-square integrability or near integrability of the identity function.6

The implications of DD are more involved. Roughly, DD provides a condition that the

drift term of XdX dominates its diffusion term asymptotically. In fact, if we set

XtdXt = dNt + dMt

with dNt = Xtµ(Xt)dt and dMt = Xtσ(Xt)dWt, then it follows that

Lemma 2.1. Let Assumptions 2.1 and 2.2 hold. Then DD holds if and only if MT = op(NT )

as T →∞.

6If D = R, SI is stronger than ST, and ST holds in strong form under SI. This, however, is not true if
D = (0,∞).
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Figure 1: Asymptotic Characteristics of GHK Diffusions

a

b

a = 1/2

ST

b = a+ 1/2

a

b

a = −1/2 a = 1/2

DD
a

b

a = 1/2

SI

b = a+ 3/2

Note that 1/s′ = mσ2. Therefore, DD holds if and only if σ2 is m-integrable or m-nearly

integrable, i.e., either mσ2 is integrable or mσ2 ∈ RVκ with κ ≤ −1 at xB = ±∞. Due to

the recurrence condition, σ2 is always m-integrable at xB = 0.

Lemma 2.2. Let Assumption 2.1 hold. For any differentiable function ν on D, we have

m

(
µν +

1

2
σ2ν ′

)
= 0

if and only if (ν/s′)(x) = 0 at x = xB.

If DD holds, it follows from Lemma 2.2 with ν = 1 that m(µ) = 0. In case DD holds in

strong form, we may also deduce from Lemma 2.2 with ν = ι that m(ιµ) = −(1/2)m(σ2).

Example 2.2. The asymptotic characteristics of the GHK diffusion introduced in Example

2.1 are provided in Figure 1. DD and ST hold if and only if a ≤ −1/2 and a − b ≤ −1/2

respectively, and SI is satisfied if a− b ≤ −3/2.

3 Asymptotic Theory of Unit Root Test

In the section, we develop the asymptotics for the Dickey-Fuller test for unit root, which

is based on the discrete samples (Xiδ), i = 1, . . . , n, collected from the diffusion X = (Xt)

over the sample span T = nδ. In what follows, we will simply write xi = Xiδ, i = 1, . . . , n,

with x0 = X0.
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3.1 Primary Asymptotics of Unit Root Test

To test for a unit root in (xi), we may use the first-order autoregression without any

augmented lags, since X is a Markov process. In particular, we consider the regression

∆xi = α+ βxi−1 + ui, (5)

where ∆ is the usual difference operator, and test the null hypothesis β = 0 against the

alternative hypothesis β < 0 using the least squares regression. The least square estimator

and the t-statistic for β in (5), denoted respectively as β̂ and t(β̂), are given by

β̂ =

n∑
i=1

(xi−1 − xn)∆xi

n∑
i=1

(xi−1 − xn)2
and t(β̂) =

β̂

v̂

(
n∑
i=1

(xi−1 − xn)2

)−1/2 ,

where xn is the sample mean of (xi) and v̂2 is the usual estimator for the variance of

regression errors (ui).

In the usual discrete time setup, the Dickey-Fuller test based on the t-statistic t(β̂) from

regression (5) is widely used to test for the null hypothesis of a unit root, i.e., β = 0, against

the alternative hypothesis of stationarity, i.e., β < 0. Under the null hypothesis of a unit

root, it has nonstandard, yet well-defined, limit distribution, as long as some mild regularity

conditions are satisfied for the innovations (ui). The limit distribution, which we call the

Dickey-Fuller distribution, is usually represented as a functional of Brownian motion. On

the other hand, under the alternative hypothesis of stationarity, it diverges to negative

infinity in probability. Consequently, it provides a test for unit root nonstationarity that is

consistent against a wide class of stationary time series. Therefore, we may say, loosely yet

generally, that a unit root time series is nonstationary, and that a stationary time series

does not have a unit root.

The Dickey-Fuller test has also routinely been applied to samples that are thought to

be collected discretely from diffusion type continuous time processes. However, little is

known about its asymptotic behavior for discrete samples obtained from general continuous

time processes. In particular, except for simple models such as Brownian motion and

Ornstein-Uhlenbeck process, it has been completely unknown whether the test can be used

to effectively discriminate nonstationary diffusions from stationary diffusions. To facilitate

our discussions on the asymptotic behavior of the Dickey-Fuller test, we will simply say in

what follows that a diffusion has a unit root if and only if t(β̂) is stochastically bounded
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and the test is expected to suggest the non-rejection of the unit root hypothesis at least

with some positive probability.

In our asymptotics, we require that the sampling interval δ be sufficiently small relative

to the extremal bounds of various functional transforms of X over time interval [0, T ].

Following Aı̈t-Sahalia and Park (2016), we define

T (f) = max
0≤t≤T

|f(Xt)|

for some function f : D → R. For the identity function, we have T (ι) = max0≤t≤T |Xt|
and T (ι) becomes the asymptotic order of extremal process of X. It is obvious that we

have [T (ι)]k = T (ιk) for any nonnegative k. More generally, for any regularly varying f ,

we may obtain the exact rate of T (f) from the asymptotic behavior of extremal processes.

For instance, the extremal processes of Ornstein-Uhlenbeck process and Feller’s square root

process are respectively of orders Op(
√

log T ) and Op(log T ), and the extremal process of

the general driftless diffusion process is of order Op(T ). Thus if f is regularly varying

and cT is the order of the extremal process, then we have T (f) = f(cT ). The order of the

extremal process is known for a wide class of diffusions. For instance, under some regularity

conditions on µ and σ2, it is well known that the extremal processes of positive recurrent

diffusions are of order Op(s
−1(T )), to which the reader is referred to, e.g., Davis (1982).

Moreover, asymptotic orders for the extremal processes of general null recurrent diffusions

are obtained by Stone (1963), Jeong and Park (2013) and Kim and Park (2017).

Assumption 3.1. We assume that ι, µ and σ are all majorized by ω : D → R satisfying

δT (ω4)T log(T/δ)→p 0.

Assumption 3.1 makes it necessary to have δ → 0. If we fix T , δ → 0 is indeed the necessary

and sufficient condition for Assumption 3.1. Clearly, we may also allow T →∞ as long as

δ → 0 sufficiently fast. In this case, our asymptotic results will be more relevant for the

case where δ is sufficiently small relative to T . Our asymptotics in the paper are derived

under the condition δ → 0 and T → ∞ jointly. For Assumption 3.1 to hold, it suffices

to have δ = O(T−1−ε) for any ε > 0, if X is bounded so that T (ω4) is a constant. The

condition appears to be mild enough to yield asymptotics generally relevant for a very wide

range of empirical analysis relying on samples collected from diffusion models. For daily

observations over ten years, as an example, we have δ = 1/252 and T−1 = 1/10. Our

subsequent asymptotics hold jointly in δ and T as long as they satisfy Assumption 3.1 as

δ → 0 and T → ∞. In particular, we do not use sequential asymptotics, requiring δ → 0

and T →∞ sequentially.
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The primary asymptotics for β̂ and t(β̂) are given by the following lemma. Here and

elsewhere in the paper, we let X = (Xt), Xt = t−1
∫ t
0 Xsds, be the sample mean process of

X.

Lemma 3.1. Let Assumption 3.1 hold. The we have

β̂ ∼p
δ
∫ T
0 (Xt −XT )dXt∫ T
0 (Xt −XT )2dt

and t(β̂) ∼p

√
T
∫ T
0 (Xt −XT )dXt

[X]
1/2
T

(∫ T
0 (Xt −XT )2dt

)1/2
for all δ sufficiently small relative to T .

The limit theory in Lemma 3.1 holds for all small enough δ relative to T as long as δ and

T satisfy Assumption 3.1. Therefore, we expect that they provide good approximations

for finite sample distributions, whenever δ is relatively small compared with T . Note that

we do not assume T = ∞ to obtain the asymptotics in Lemma 3.1. The asymptotics we

have in Lemma 3.1 will be referred to in the paper as the primary asymptotics. The joint

asymptotics for δ → 0 and T →∞, which are presented below, may be obtained simply by

taking T -limits to our primary asymptotics.

Our primary asymptotics in Lemma 3.1 make it clear that we have β̂ →p 0 whenever

δ → 0 fast enough relative to T . If, in particular, T is fixed, we have β̂ →p 0 for any

diffusion X as long as δ → 0. For discrete samples from any diffusion, we will therefore

always observe a root getting close to unity as we collect samples frequently enough and δ

becomes sufficiently small. However, even in this case, the unit root test will not necessarily

support the presence of a unit root. If we let δ → 0 with fixed T , t(β̂) remains to be

random and the unit root test will yield a completely random conclusion, regardless of

the asymptotic properties of the underlying diffusion. The unit root test will be totally

uninformative in this case. This was first observed in Shiller and Perron (1985), and further

analyzed subsequently by Perron (1989, 1991), for the test of a unit root in samples from

Brownian motion against those from Ornstein-Uhlenbeck process.

3.2 Asymptotics of Unit Root Test

Now we let T →∞ and establish large T asymptotics for the unit root test. To effectively

present our asymptotics, we define (λT ) to be the normalizing sequence given by

T = λT [ms](λT ) or λ2Tms(λT ) (6)
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depending upon whether or not ST holds. Subsequently, we let

aT =

{
λT [msσ

2
s ](λT )

λ2T (msσ
2
s)(λT )

if
DD holds

DD does not hold

bT =

{
λT [msι

2
s](λT )

λ2T (msι
2
s)(λT )

if
SI holds

SI does not hold

from (λT ), and let

P =

{
L(τ, 0)∫ τ
0 msσ2s(Bt)dt

if
DD holds

DD does not hold

Q =



1−
(
m(ι)

)2
/
(
m(ι2)m(D)

)
L(τ, 0)∫ τ
0 msι2s(Bt)dt∫ τ
0 msι2s(Bt)dt− (

∫ τ
0 msιs(Bt)dt)

2

if

SI holds and ST holds

SI holds and ST does not hold

SI does not hold and ST holds

SI does not hold and ST does not hold

where τ is a stopping time defined as

τ = inf
{
t
∣∣∣L(t, 0) > 1

}
or inf

{
t

∣∣∣∣∫
R
L(t, x)ms(dx) > 1

}
, (7)

depending upon whether or not ST holds, from the local time L of Brownian motion B,

and f denotes the limit homogeneous function of regularly varying f on R. Note that

L(τ, 0) = 1 a.s. under ST. Numerical sequences (aT ) and (bT ) and random variables P and

Q introduced here will be used repeatedly in what follows.

Lemma 3.2. Let Assumptions 2.1 and 2.2 hold. If either ST or DD holds, we have

1

aT
[X]T →d P,

1

aT

∫ T

0
(Xt −XT )dXt →d −

P

2

and
1

bT

∫ T

0
(Xt −XT )2dt→d Q

as T →∞, and TaT /bT →∞ as T →∞.

If neither ST nor DD holds, we would have quite different asymptotics. Let Y = s(X)

be the scale transformation of X and define Y T by Y T
t = λ−1T YTt with the normalizing

sequence (λT ) in (6), we have Y T →d Y
◦ as T → ∞ in the space C[0, 1] of continuous
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functions with uniform topology, where using Brownian motion B and its local time L we

may represent the limit process Y ◦ as

Y ◦t = B ◦At with At = inf

{
s

∣∣∣∣∫
R
L(s, x)ms(dx) > t

}
. (8)

To obtain the asymptotics for a general diffusion X, we write it as X = s−1(Y ). Note that

if X does not satisfy DD, then s−1 ∈ RVp with p = 1/(q + 1) > 1/2 since s′ ∈ RVq with

q < 1. Therefore, if we define XT as XT
t = XTt/s

−1(λT ) = s−1(YTt)/s
−1(λT ), we may well

expect that

XT =
s−1(λTY

T )

s−1(λT )
→d s−1(Y

◦) = X◦,

in C[0, 1] as T →∞.

Lemma 3.3. Let Assumptions 2.1 and 2.2 hold. If neither ST nor DD holds, we have(
s−1(λT )

)−2
[X]T →d [X◦]1 and

1

(s−1(λT ))2

∫ T

0
(Xt −XT )dXt →d

∫ 1

0
(X◦t −X

◦
1)dX

◦
t

1

T (s−1(λT ))2

∫ T

0
(Xt −XT )2dt→d

∫ 1

0
(X◦t −X

◦
1)

2dt

with X
◦
1 =

∫ 1
0 X

◦
t dt, as T →∞.

The asymptotics for unit root test follow immediately from Lemmas 3.1, 3.2 and 3.3.

Theorem 3.4. Let Assumptions 2.1, 2.2 and 3.1 hold. If neither ST nor DD holds, we

have

nβ̂ →d

∫ 1
0 (X◦t −X

◦
1)dX

◦
t∫ 1

0 (X◦t −X
◦
1)

2dt
and t(β̂)→d

∫ 1
0 (X◦t −X

◦
1)dX

◦
t

[X◦]
1/2
1

(∫ 1
0 (X◦t −X

◦
1)

2dt
)1/2

as δ → 0 and T →∞. On the other hand, if either ST or DD holds, we have

bT
TaT

nβ̂ →d −
P

2Q
and

√
bT
TaT

t(β̂)→d −

√
P

4Q

as δ → 0 and T →∞, and TaT /bT →∞ as T →∞.

Theorem 3.4 shows that the tests based on nβ̂ and t(β̂) have full asymptotic discrimi-

natory powers for the null and alternative hypotheses, H0: neither ST nor DD holds, and
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H1: either ST or DD holds. Under H0, neither ST nor DD holds, and nβ̂ and t(β̂) have

nondegenerate limit distributions. On the other hand, under H1, either ST or DD holds,

nβ̂ ∼d (TaT /bT )(−P/2Q) →p −∞ and t(β̂) ∼d (TaT /bT )1/2(−P/4Q)1/2 →p −∞, since

P,Q > 0 with probability one and TaT /bT → ∞. Note that our limit theory in Theorem

3.4 is completely general and holds for a truly broad class of recurrent diffusions. In par-

ticular, we do not impose any assumptions on serial dependence or existence of moments.

We only rely on some basic regularity conditions in Assumptions 2.1 and 2.2.

It is clear from Theorem 3.4 that the unit root test cannot be used to test for non-

stationarity. Null recurrent diffusion may not have a unit root if it satisfies DD and has

a dominating drift. As an illustrative example, we consider the GHK model in (4) with

a = −7/5 and b = −1. With the given set of parameter values, X has a dominating drift

though it is nonstationary, i.e., DD holds though ST is not satisfied. Therefore, the unit

root test is expected to reject the unit root null hypothesis.

We should also note that the unit root test does not have any nontrivial power in

discriminating diffusions with and without drift. A recurrent diffusion with linear drift is

positive recurrent. Therefore, as long as it is recurrent, any diffusion is stationary and

satisfies ST if it has a linear drift. This, in turn, implies that the unit root test rejects the

unit root hypothesis for any recurrent diffusion with linear drift. However, in general, the

unit root test does not have any discriminatory power for or against the presence of drift

in diffusion. In fact, it is easy to see that ST is satisfied by a driftless diffusion, for which

we have m = 1/σ2, if x/σ2(x) = O(1) as x → xB at xB = ±∞. In this case, stationarity

or near stationarity of X is induced by volatility, not by drift, and we may refer to it as

volatility induced stationarity or near stationarity following Conley et al. (1997).

The asymptotics in Theorem 3.4 include the conventional unit root asymptotics as spe-

cial cases. The conventional unit root asymptotics assume that X◦ is given by a Brownian

motion under H0, in which case our limit distribution reduces to the standard Dickey-Fuller

distribution. To see how our asymptotics reduce the conventional asymptotics under H1, we

let ST, DD and SI all hold in strong form. In this case, we have λT ∼ Tm(D), aT ∼ Tπ(σ2)

and bT ∼ Tπ(ι2), and P = 1 and Q = 1−
(
π(ι)

)2
/π(ι2). Therefore, it follows that

1

T
nβ̂ →p −

1

2

π(σ2)

π(ι2)−
(
π(ι)

)2 ,
√

1

T
t(β̂)→p −

√
1

4

π(σ2)

π(ι2)−
(
π(ι)

)2 (9)

as δ → 0 and T →∞.

Example 3.1. We consider X with a linear drift function µ(x) = a(b − x) specified by
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some parameters a and b and a general diffusion function σ. Let

−2xa(b− x)

σ2(x)
→ κ

as x→ xB, and assume κ ∈ (1,∞] and [−∞, 1) respectively at xB = ±∞ and 0. Then we

may readily deduce from the Karamata representation theorem that ST, DD and SI are all

satisfied (see Bingham et al. (1993)). It follows from Lemma 2.2 that π(µ) = 0 and π(σ2) =

−2π(ιµ), from which we have π(ι) = b and π(σ2) = −2[abπ(ι)−aπ(ι2)] = 2a[π(ι2)−(π(ι))2].

Therefore, (9) reduces to

1

T
nβ̂ →p −a,

√
1

T
t(β̂)→p −

√
a

2
,

which generalizes the asymptotics of unit root test in Shiller and Perron (1985) and Perron

(1989, 1991) obtained for Ornstein-Uhlenbeck process.

As shown, both statistics nβ̂ and t(β̂) can be used to test for our null and alternative

hypotheses introduced above. However, for the rest of the paper, we will exclusively focus

on the test based on the t-statistic defined as t(β̂), since it is used much more commonly in

practice.

4 Unit Root, Mean Reversion and Nonstationarity

To fully understand what it means to have a unit root in financial time series, we need the

notion of mean reversion, as well as stationarity. In this section, we introduce the notion of

mean reversion, and how it is related to the unit root and nonstationarity.

4.1 Unit Root and Mean Reversion

We define

Definition 4.1. We say that X has mean reversion if and only if

1

cT

∫ T

0
(Xt −XT )dXt →d Z

as T → ∞, for some normalizing sequence (cT ) and a random variable Z with support on

a subset of (−∞, 0).

For X with mean reversion as defined in Definition 4.1, we say that it has strong mean

reversion if Z has a point support, and weak mean reversion otherwise.
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The motivation for our definition of mean reversion is clear. We define

MRT =

∫ T

0
(Xt −XT )dXt ≈

m∑
i=1

(Xti−1 −XT )(Xti −Xti−1)

for 0 = t0 < · · · < tm = T with max1≤i≤m |ti − ti−1| ≈ 0. Roughly, negative MRT implies

that (Xti−1 −XT ) has a negative sample correlation with (Xti −Xti−1), i.e., the deviation

from sample mean in the current period is negatively correlated with the increment made

in transition to the next period. This occurs if and only if X has tendency to increase

whenever it is observed below its sample mean, and vice versa. In describing the mean-

reverting behavior of diffusion, we may use the recursive mean and define (Xt −Xt) as the

deviation from mean, in place of (Xt−XT ) relying on the sample mean XT over the entire

time span. Though we do not show it explicitly in the paper, all our subsequent theories

are also applicable for this alternative definition of mean reversion only with some obvious

minor changes.

Due to Lemmas 3.2 and 3.3, it follows straightforwardly from Definition 4.1 that

Corollary 4.1. Let Assumptions 2.1 and 2.2 hold. Then X has mean reversion if and only

if either ST or DD holds.

In fact, we may readily deduce from Lemma 3.2 that

Corollary 4.2. Let Assumptions 2.1 and 2.2 hold. Then ST or DD holds if and only if∫ T

0
(Xt −XT )dXt ∼p −

1

2

∫ T

0
σ2(Xt)dt

as T →∞.

It can be seen from Corollary 4.2 why X has mean reversion if and only if either ST or

DD holds. Note that we have (Xt −XT )dXt = (1/2)
(
d(Xt −XT )2 − d[X]t

)
, due to Ito’s

formula, and d[X]t = σ2(Xt)dt. Corollary 4.2 shows that (XT −XT )2 and (X0 −XT )2 are

asymptotically negligible if and only if either ST or DD holds. In case both ST and DD

hold in strong form, we have

1

T

∫ T

0
(Xt −XT )dXt →d −

1

2
π(σ2)

as T → ∞, and therefore, X has strong mean reversion. In all other cases, X has weak

mean reversion.

Given Theorem 3.4, Corollary 4.1 implies that the unit root test is consistent as a test

for the absence of mean reversion against the presence of mean reversion. In particular, it
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Figure 2: Asymptotic Critical Values of Unit Root Test for GHK Diffusions
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Notes: The data were generated according to the GHK model (4). The left plot presents 5% quantiles of
t-statistics for (p, q) ∈ [−1, 1]× [−1, 1], and its corresponding Contour plot is on the right.

has asymptotically perfect power against all time series having non-mean-reverting diffusion

limits. We may therefore use the unit root test to test for the absence of mean reversion

against the presence of mean reversion. The test statistic diverges to minus infinity in the

presence of mean reversion. Unfortunately, however, its limit null distribution is heavily

model-dependent. In general, the null limit distribution of the unit root test is different from

the Dickey-Fuller distribution, and therefore, the standard critical values are not applicable.

Therefore, we will consider subsample inference for the test of the absence of mean reversion.

Example 4.1. For the GHK diffusion in Example 2.1, we have s′ ∈ RVp and m ∈ RVq

with p = −2a and q = 2a − 2b. We conduct simulations for the GHK diffusion for various

combinations of (p, q) ∈ [−1, 1]× [−1, 1] to examine the model dependency of the unit root

test. For each experiment, we simulate 10,000 realizations with δ = 1/252 and T = 40 which

correspond to 40 years of daily observations. Figure 2 presents the 5% quantiles of the unit

root test. It shows that the critical value of the unit root test is highly model dependent.

In particular, if both p and q are close to, but not less than, -1, then 5% quantiles of the

unit root test for the GHK diffusion are significantly smaller than the critical value from the

Dickey-Fuller distribution. For example, if p = −0.9 and q = −0.9, then the 5% quantile of

the test for the GHK diffusion is about −3.7, whereas the corresponding critical value from

the Dickey-Fuller distribution is approximately −2.9.
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Table 1: Divergence Rate of Unit Root Test

ST and SI ST and NSI NST

DD T 1/2`(T ) T (p−q−2)/2(p+1)`(T ) T (p−1)/2(p+q+2)`(T )

NDD T 1/(p+1)`(T ) T (−q−1)/2(p+1)`(T ) 1

Notes: Presented is the divergence rate
√
TaT /bT of the unit root test for X having s′ ∈ RVp and m ∈ RVq

with p 6= −1. Here NST, NDD and NSI imply that ST, DD and SI do not hold, respectively.

Under the presence of mean reversion, the unit root test diverges up to −∞ as T →∞
at the rate of

√
TaT /bT . If s′ ∈ RVp and m ∈ RVq, then (i) ST holds if and only if q ≤ −1

at xB = ±∞ and q ≥ −1 at xB = 0, (ii) DD holds if and only if p ≥ 1 at xB = ±∞,7 and

(iii) SI holds if and only if q ≤ −3 at xB = ±∞ and q ≤ −3 at xB = 0. Moreover, if p 6= −1,

then s−1 becomes regularly varying. In this case, it follows from Karamata’s theorem that

for some slowly varying function `

aT ∼

{
λT `(λT )

λ
2/(p+1)
T `(λT )

if DD holds

otherwise,
bT ∼

{
λT `(λT )

λ
(p+q+4)/(p+1)
T `(λT )

if SI holds

otherwise,

where λT ∼ T`(T ) or T (p+1)/(p+q+2)`(T ) depending upon whether or not ST holds, and

therefore, we can easily obtain the rates of divergence as shown in Table 1. It is easy to see

that TaT /bT ≺ T for a nonstationary diffusion satisfying DD.

All stationary and nearly stationary diffusions are mean-reverting, regardless of the ex-

istence of mean and other moments. However, stationarity or near stationarity is necessary

for mean reversion. Strongly nonstationary diffusions may also be mean-reverting, if their

drift terms dominate diffusion terms. This is shown clearly in Corollary 4.1. The existence

of mean-reverting nonstationary diffusions, especially strongly nonstationary diffusions, has

some important and far-reaching implications on financial time series. It implies that stock

prices clearly seen to be strongly nonstationary may still be mean-reverting. Moreover, it

allows us to extend the notion of cointegration, and to meaningfully define long run rela-

tionships among multiple financial time series with nonstationary error terms, as long as

they are mean-reverting. Such an extended notion of cointegration may be practically very

useful, for instance, in asset managements relying on pairs trading.

Example 4.2. In Figure 3, we provide the simulated sample paths of four different diffu-

sions with δ = 1/252 and T = 40, which correspond to 40 years of daily observations. The

sample path of a stationary Ornstein-Uhlenbeck process is in Part (a). It is a stationary

7As discussed in Section 2.2, DD always holds at xB = 0.
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Figure 3: Sample Paths of Diffusions with Distinctive Asymptotics

(a) dXt = 2(1−Xt)dt+ dWt (b) dXt = (1 +X2
t )2/5dWt

(c) dXt = (1 +X2
t )1/5dWt (d) dXt = −(7/5)Xt(1+X2

t )−2dt+(1+X2
t )−1/2dWt

process with strong mean reversion, satisfying both ST and DD. Parts (b) and (c) present

the sample paths of driftless diffusions. The driftless diffusion in Part (b) satisfies ST but

not DD, and becomes a stationary process with weak mean reversion. On the other hand,

the driftless diffusion in Part (c) satisfies neither ST nor DD, which implies that it is a

nonstationary process with no mean reversion. Finally, Part (d) presents the sample path

of the GHK diffusion with parameter values a = −1.4 and b = −1. It satisfies DD but not

ST, and provides an example of a nonstationary process with mean reversion.

4.2 Unit Root and Nonstationarity

As discussed, the unit root test tests the absence of mean reversion, not nonstationarity.

There are, however, important special cases, where the former becomes identical to the

latter.

Corollary 4.3. Let Assumptions 2.1 and 2.2 hold. Then (a) if σ2 is a constant function

on D, DD holds if and only if ST holds, and (b) if s′ is a constant function on D, DD does

not hold.

The result in Corollary 4.3 is well expected from our definitions of ST and DD. If X has a
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constant diffusion function, we have m = 1/s′ up to a constant, and therefore, ST becomes

identical to DD. On the other hand, if X has no drift term, DD cannot hold. Consequently,

in any of these two cases, ST becomes the only relevant condition for mean reversion.

For a regularly varying function ω with limit homogeneous function ω, ω is a constant

function on R if and only if ω is slowly varying and ω(−λ)/ω(λ) → 1 as λ → ∞. These

conditions are easy to check for σ2. For s′, we have

Lemma 4.4. s′ is a constant function on D = (−∞,∞), if and only if∫
|x|≤λ

µ(x)

σ2(x)
dx→ 0 and

xµ(x)

σ2(x)
→ 0

as λ→∞ and x→ xB = ±∞, respectively.

Clearly, s′ being a constant function means that X has no drift and is in natural scale

asymptotically. If both σ2 and s′ are constant functions, X reduces to a Brownian motion

asymptotically. For instance, the diffusion defined as

dXt =
Xt

1 +X2
t

dt+
(
1 + log(1 + |Xt|)

)
dWt

becomes a Brownian motion in the limit. For such a diffusion, our limit distribution of the

unit root test reduces to the Dickey-Fuller distribution.

Corollary 4.3 makes it clear that if either σ2 or s′ is constant, the unit root test may be

used to test for nonstationarity. Any of these two conditions, of course, does not hold for

general diffusions. However, there are two transformations, which make one of these two

conditions hold for all diffusions: the scale transformation and the Lamperti transformation.

As discussed, the scale transformation s(X) of X yields a martingale diffusion with no drift

function. The Lamperti transformation is given by

r(x) =

∫ x

w
(1/σ)(y)dy (10)

for some w ∈ D, and we may easily see that r(X) with r in (10) becomes a unit diffusion

having unit diffusion function. Moreover, they preserve ST strongly, as shown below.

Lemma 4.5. Let Assumptions 2.1 and 2.2 hold. Then (a) X satisfies ST in strong or

weak form if and only if s(X) satisfies ST in strong or weak form, and (b) X satisfies

ST in strong or weak form if and only if r(X) satisfies ST in strong or weak form if σ is

continuously differentiable.
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An immediate consequence of Lemma 4.5 is that the unit root test can be used to test

for nonstationarity if it is applied to X transformed by the scale transformation s or the

Lamperti transformation r.8 Of course, such a test is feasible only when s or r can be

estimated precisely enough so that the estimated transformation does not affect the test in

any essential way. The estimation of s involves the estimation of both the drift and diffusion

functions, while the estimation of r only needs an estimate for the diffusion function. It is

well known that the drift function is much harder to precisely estimate than the diffusion

function. Consistent estimation of the drift term requires the sample span to increase up to

infinity. In contrast, the diffusion term estimator is consistent if either the sampling interval

shrinks to zero or the sample span diverges. The interest reader is referred to, e.g., Bandi

and Phillips (2003) and Aı̈t-Sahalia and Park (2016) for the details.

In the paper, we use the Lamperti transformation r rather than the scale transformation

s. The effect of using an estimated s on the unit root test becomes asymptotically negligible

only if S ≺ T , where S and T are the spans of samples used to test for a unit root and

to estimate s, respectively. However, the required condition implies that we may only use

a subsample of span S for the unit root test with a given sample of span T . This will

necessarily entail nontrivial power loss in the unit root test. In contrast, the unit root test

based on an estimated r is subject to no such power loss, since we may use samples of the

same span to estimate r and to test for a unit root. All that is required is to estimate r using

a sample collected at a frequency higher than the frequency the sample used subsequently

to test for a unit root is obtained at. This will be shown more precisely below.

We define

Y = r(X).

and Ŷ = r̂(X) correspondingly with an estimate r̂ of r. Furthermore, we let r̂ be given by∫ x
w (1/σ̂)(y)dy, where σ̂2 is an estimator of σ2 obtained nonparametrically from a discrete

sample of time span T and sampling interval ε. As before, we use a discrete sample of time

span T and sampling interval δ to test for a unit root. We denote by DT the set of values

(Xt) takes for 0 ≤ t ≤ T , and suppose that

sup
x∈DT

∣∣σ̂2(x)− σ2(x)
∣∣ = Op(ε

aλ−bT KT ) (11)

for some 0 < a, b < 1/2 and a random sequence (KT ) given by a function of the maximal

8Stationarity and nonstationarity of diffusion-type models can also be tested using the approach in either
Bandi and Corradi (2014) or Kanaya (2011). Though more general, their tests rely crucially on the choice
of test functions and require quite complicated procedures to implement. Moreover, our test proposed here
appears to be generally much more powerful in discriminating stationary and nonstationary diffusions.
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process of |X| at time T . The standard nonparametric estimators of σ2 considered in Bandi

and Phillips (2003) and Aı̈t-Sahalia and Park (2016) satisfy (11), as shown by, e.g., Bu et al.

(2017).

Assumption 4.1. We assume that (a) Y is a diffusion satisfying Assumptions 2.1 and 2.2

introduced for X, and (b) ι, r and 1/σ3 are all majorized by ω : D → R satisfying

εaKTT (ω3)T/λbT →p 0, εaKTT (ω2)T 1/2/(δ1/2λbT )→p 0

as ε→ 0, δ → 0 and T →∞.

The conditions in Assumption 4.1 do not appear to be stringent. Part (a) is expected to

hold widely for X with continuously differentiable σ. Part (b) is satisfied if we choose ε

sufficiently small, relative to δ and T . If X is bounded, it holds as long as εaT/λbT → 0 and

εaT 1/2/(δ1/2λbT )→ 0.

Proposition 4.6. Let Assumption 4.1 hold. Then the unit root test using a discrete sample

from Ŷ is asymptotically equivalent to the test using a discrete sample from Y .

Proposition 4.6 implies that using an estimated r has no asymptotic effect on the unit root

test. Therefore, in particular, the unit root test for Y can be used to test for nonstationarity

of X.

As well expected, we may use any other transformation asymptotically equivalent to r.

If X is a nonstationary process satisfying Assumptions 2.1 and 2.2, then 1/σ is nonintegrable

at the boundary of m being nonintegrable. Therefore, it follows immediately that

r(θTX
T
t ) ∼p

1

κ+ 1
(ι/σ)(θTX

T
t ),

where θT = s−1(λT ) and κ > −1 is the regularly varying index of 1/σ (see Bingham

et al. (1993)). Consequently, we may use ι/σ in place of r, as long as (ι/σ)(X) satisfies

Assumptions 2.1 and 2.2.

5 Tests of No Mean Reversion and Nonstationarity

To test for the null hypotheses of no mean reversion and nonstationarity, we consider a

subsample test and evaluate its finite sample performance through Monte Carlo simulation.

Some empirical illustrations will follow.
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5.1 Subsample Test and Monte Carlo Simulation

For the test of no mean reversion and nonstationarity, we may use a subsample test. The

conventional bootstrap test seems impossible, since there is no obvious way to impose no

mean reversion or nonstationarity even in a very simple class of diffusion models. In the

paper, we use a subsample bootstrap method based on a diffusion model fitted using a

full sample. For several reasons, we do not use the usual model-free subsample approach.

In general, a subsample approach should be implemented with much caution to make it

valid in our framework, which allows for general form of nonstationarity. The standard

subsample approach does not work, because a nonstationary diffusion has a stochastic trend

and subsamples collected in the usual manner have initial values stochastically increasing

at a rate of full sample. Therefore, subsamples may not have even a common distribution.

Though there are ways to avoid this problem, they would necessarily involve some additional

tuning parameters, which is not very desirable.

Our subsample bootstrap method relies on consistent estimates of the drift and diffusion

functions, µT and σT , using samples of time span T and sampling interval δ. We let X̂ be

generated as

dX̂t = µT (X̂t)dt+ σT (X̂t)dWt

from the diffusion defined by µT and σT .9 We let S be the time span of subsamples, and

assume

sup
x∈DS

|µT (x)− µ(x)| = Op(λ
−b
T KS) and sup

x∈DS

∣∣σ2T (x)− σ2(x)
∣∣ = Op(δ

aλ−bT KS) (12)

for 0 < a, b < 1/2, where all notations are defined similarly as in (11). The conditions in

(12) hold for the standard nonparametric estimators of µ and σ2 considered in Bandi and

Phillips (2003) and Aı̈t-Sahalia and Park (2016). This is shown in, e.g., Bu et al. (2017).

Assumption 5.1. We assume that ι, µ, σ, 1/σ2, s′, 1/s′,m/s′, and s′/m are all majorized

by ω : D → R satisfying (a) δaS(ω2)→p 0 and (b) λ−bT KSS(ω7)S →p 0.

Lemma 5.1. Let Assumptions 2.1 and 5.1 hold. Then

sup
0≤t≤S

|X̂t −Xt| = Op(ζ(S, T )),

9For simplicity, we assume that X̂ is generated continuously in time. It is, of course, impossible to
generate X̂ in continuous time. However, we may use the Euler or Milstein method to generate X̂ at an
arbitrarily high frequency, so that the discretization effect in generating X̂ is negligible compared to other
errors. Moreover, we assume that X̂ is defined on D. In fact, for our simulations and empirical illustrations,
we use the spline method to extend the domain of µT and σ2

T to the entire D.
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where

ζ(S, T ) =
√
λ−bT KSS(ω9)S log

(
λ2Sλ

b
T

/
(KSS(ω7)S)

)
.

We note that the random sequence ζ(S, T ) in Lemma 5.1 is decreasing in T and increasing

in S. Consequently, we have ζ(S, T )→p 0 as long as T →∞ sufficiently faster than S →∞.

In what follows, we let the numerical sequences (aS) and (bS) be defined similarly as in

Section 3.2.

Assumption 5.2. We assume that ζ(S, T )S(ω)S/aS →p 0 and ζ(S, T )S(ω)S/bS →p 0.

Lemma 5.2. Let Assumptions 2.1, 5.1 and 5.2 hold. Then

1

aS

∫ S

0
σ̂2(X̂t)dt =

1

aS

∫ S

0
σ2(Xt)dt+ op(1),

1

aS

∫ S

0
(X̂t − X̂S)dX̂t =

1

aS

∫ S

0
(Xt −XS)dXt + op(1),

1

bS

∫ S

0
(X̂t − X̂S)2dt =

1

bS

∫ S

0
(Xt −XS)2dt+ op(1),

jointly, as S, T →∞.

The validity of our subsample bootstrap may now be easily established.

Theorem 5.3. Let Assumptions 2.1, 2.2, 3.1, 5.1 and 5.2 hold. Then the unit root test

based on a subsample of time span S generated from a diffusion defined by µT and σT has

the same asymptotics as the test based on the original sample as δ → 0 and S, T →∞.

To implement our subsample bootstrap method, we need to determine the subsample

horizon S. For the simulations and empirical illustrations in the paper, we choose S that

minimizes the running standard deviation of sample quantiles similarly as in Romano and

Wolf (2001). More precisely, we set S as described below.

Step 1: For each Ts ∈ [(1/2)T 1/4, 2T 1/4], we simulate B = 5, 000 subsamples (X̂b
iδ)

ns
i=0 for

b = 1, ..., B from the estimated diffusion X̂ with X̂0 = X0 and nsδ = Ts, and obtain the

empirical distribution of tb(Ts) for each Ts.
10

Step 2: For each Ts, we compute the α% quantile, Q(Ts), of the empirical distribution of(
tb(Ts)

)
obtained in Step 1.

Step 3: We find S = Ts that minimizes the running standard deviation of sample quantile

Q(Ts) over Ts ± k/D for k = 0, 1, . . . ,K with K = 4 and D = 12× 4.2.

10Since the interval [(1/2)T 1/4, 2T 1/4] is continuous, we discretize the interval and consider Ts ∈
[(1/2)T 1/4, 2T 1/4] given by Ts = (1/2)T 1/4 + k/D for k = 0, 1, . . ., where D is defined in Step 3.
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Figure 4: Asymptotic Properties of Simulated GHK Models
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b = a+ 1/2
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Notes: The areas labeled as ST and DD (NST and NDD) present the set of parameter values (a, b) of
the GHK model (not) satisfying the conditions for mean reversion. For (a, b) = (0, 0), the GHK model
reduces to Brownian motion, which is nonstationary and non-mean-reverting. Three vectors originated from
(a, b) = (0, 0) indicate the directions we look for and obtain our simulation models under the alternative
hypothesis of mean reversion and stationarity.

Our procedure is a natural extension of that in Romano and Wolf (2001) for subsamplings

in continuous time models. In our procedure, we search for the subsample span, instead of

the subsample size, which minimizes the running standard deviation of a sample quantile of

the test statistic. Our choice of K = 4 and D = 12× 4.2 imply that the running standard

deviation is computed from sample quantiles obtained for subsample sizes of plus and minus

four weeks around any given subsample span in weekly increments.

5.2 Simulations

For our simulations, we use the GHK model in (4). As discussed, the mean reversion and

nonstationarity properties of the model are fully characterized by (a, b). In particular, ST

holds if and only if b ≥ a + 1/2, DD holds if and only if a ≤ −1/2, and SI holds if and

only if b ≥ a + 3/2. This is described in Figure 1. To effectively compare the size and

power performances of the test, we consider three different specifications: (A) a = 0, (B)

b = 0, and (C) a = b as illustrated in Figure 4. Recall that, under (A) and (B), the GHK

model reduces respectively to the models considered by Chen et al. (2010) and Höpfner



28

Figure 5: Power Functions for Simulated GHK Models
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(a) Specification (A): a = 0 and 0 ≤ b ≤ 1.5

−3 −2.5 −2 −1.5 −1 −0.5 0
0

0.25

0.5

0.75

1

(b) Specification (B): −3 ≤ a ≤ 0 and b = 0
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(c) Specification (C): −30 ≤ a, b ≤ 0 and a = b

Notes: Presented are the power functions of the GHK model for each of our specifications (A), (B) and (C),
respectively, in case of T = 40.

and Kutoyants (2003). On the other hand, under (C), the GHK model has speed measure

given by the Lebesgue measure as for Brownian motion, and it is always nonstationary. The

divergence rate of the unit root test is given by T (2b−1)/2`(T ) and T`(T ) respectively for

1/2 ≤ b < 3/2 and b ≥ 3/2 under (A), T−(1+2a)/(1−2a)`(T ) and T 1/2`(T ) respectively for

−3/2 < a ≤ −1/2 and a ≤ −3/2 under (B), and T−(1+2a)/(4−4a) under (C).

Here we only report our simulation results for the unit root test without the Lamperti

transformation, i.e., the test of no mean reversion. As discussed, the test of nonstation-
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Table 2: Parameter Values for Simulated GHK Models

Model I II III IV

A (0, 1/3) (0, 1/2) (0, 0.892) (0, 0.967)
B (−1/3, 0) (−1/2, 0) (−1.25, 0) (−1.89, 0)
C (−1/3,−1/3) (−1/2,−1/2) (−4.53,−4.53) (−11.0,−11.0)

Notes: Presented are the parameter values (a, b) of the GHK models used in our simulations, which are
referred to as Models I, II, III and IV for each of the specifications (A), (B) and (C), respectively.

arity requires the Lamperti transformation based on the estimated diffusion function in a

preliminary step. However, we find in our simulations that the required preliminary trans-

formation virtually has no effect on the finite sample performance of the unit root test. The

finite sample performance of the test of nonstationarity is therefore essentially the same as

the test of no mean reversion for the diffusion models with a constant diffusion, as given by

our specification (B).

To find the parameter values of the GHK model suitable for our simulations, we let

T = 40 and compute the power functions of the 5% unit root test under our specifications

(A), (B) and (C). They are presented in Figure 5. To obtain them, we simulate 10,000 sample

paths at δ = 1/252. The critical values of the test are set so that the GHK models with

parameter values at the boundaries of the null and alternative hypotheses have 5% rejection

probability. We consider four models in our simulations for each of our specifications (A),

(B) and (C), which are referred to as Models I-IV. Models I and II are defined as the

GHK model with parameter values in the non-mean-reverting region and at the boundaries

of the mean-reverting region, respectively. On the other hand, Models III and IV are

given by the GHK models with parameter values chosen to have 30% and 90% rejection

probabilities, respectively, when Model II has 5% rejection probability, in case that T = 40.

The simulations for our subsample test are based on 5,000 sample paths generated for

T = 20, 40, 60 at δ = 1/252. Our simulation models are summarized in Table 2.

In our simulations, we consider two versions of our subsample test: infeasible and feasible

versions. To compute the critical values, the former uses subsamples generated from the

true diffusion model, whereas the latter relies on subsamples obtained from the estimated

diffusion model as discussed earlier. To estimate the underlying diffusion model required

for the feasible subsample test, we use the standard nonparametric estimators of µ and σ2

considered in Bandi and Phillips (2003) and Aı̈t-Sahalia and Park (2016). As discussed,

we use the spline method to extend the domain of our estimates µT and σ2T of µ and σ2

to facilitate generating subsamples. For both versions of the test, the initial values of the
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Table 3: Rejection Probabilities

Feasible Test Infeasible Test
T Model I II III IV I II III IV

20
A 0.0344 0.0476 0.1494 0.2244 0.0548 0.0726 0.1920 0.2814
B 0.0326 0.0516 0.2260 0.5192 0.0650 0.0838 0.2658 0.5306
C 0.0236 0.0236 0.1502 0.4000 0.0582 0.0620 0.1758 0.3990

40
A 0.0540 0.0814 0.4950 0.8690 0.0620 0.0916 0.5038 0.8806
B 0.0568 0.0918 0.4684 0.8260 0.0766 0.1078 0.4720 0.8108
C 0.0360 0.0362 0.2882 0.6292 0.0636 0.0668 0.3064 0.6164

60
A 0.0530 0.0916 0.7798 0.9560 0.0566 0.1002 0.7708 0.9734
B 0.0662 0.1148 0.6212 0.9176 0.0768 0.1266 0.6118 0.9032
C 0.0364 0.0382 0.3914 0.7650 0.0558 0.0634 0.4240 0.7464

simulated subsamples are set to be the same as those of the original sample.

Our simulation results are summarized in Table 3. Overall finite sample performance

of the feasible test is not much worse than that of the infeasible test. The rejection prob-

abilities for the feasible and infeasible tests are largely comparable, and we do not see any

obvious systematic pattern in their relative magnitudes. It seems that using the estimated

model, instead of the true model, has no significant deleterious effect on the finite sample

performance of our subsample test. Of course, we may only use the feasible test in practical

application. Recall that Model I is non-mean-reverting, whereas Models II-IV are all mean-

reverting. Under Model I, the test appears to slightly under-reject the null hypothesis when

T is small. However, the problem disappears, or at least clearly improves, as T increases.

As expected, the rejection probabilities of the test for Model II, the boundary case, are

not noticeably larger than the actual size of the test. Nevertheless, they seem to steadily

increase as T gets large. The finite sample powers of the test become larger for Models III

and IV in all three specifications (A), (B) and (C). For large T , in particular, the test has

reasonable powers against Models III and IV in most cases.

5.3 Empirical Illustrations

For the purpose of illustration, we apply our subsample test to a selected set of financial

time series including daily observations of exchange rates, interest rates, commodity prices

and stock indexes. The test is implemented exactly as in our simulations. Considered are

two tests, one for the test of no mean reversion and the other for the test of nonstationarity,

which are referred respectively to as MR and ST tests. As discussed, we need to estimate
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Table 4: Exchange Rates: P -values and Test Results

MR Test ST Test 5%-Test 10%-Test

JPY/USD 0.2930 0.3578 NMR-NST NMR-NST
CHF/USD 0.7356 0.6894 NMR-NST NMR-NST
GBP/USD 0.0250 0.0228 MR-ST MR-ST
ASD/NZD 0.0400 0.0802 MR-NST MR-ST

the Lamperti transformation to implement the ST test. Following our theoretical results,

we estimate the Lamperti transformation at higher frequency (daily), and apply the unit

root test at lower frequency (weekly) after the transformation.

We test four exchange rates data, JPY/USD, CHF/USD, GBP/USD and ASD/NZD,

respectively for Japan-US, Swiss-US, UK-US and Australia-New Zealand, from October 2,

1980 to August 5, 2016, which are obtained from FRED from St. Louis Fed. The tests

are applied to the logarithms of exchange rates, and we report the results in Table 4. The

evidence for no mean reversion and nonstationarity in JPY/USD and CHF/USD appears

to be rather strong. In contrast, the evidence against no mean reversion and nonstation-

arity in GBP/USD is equally strong, suggesting unambiguously that it is stationary (and

mean-reverting). Interestingly, we see some evidence of mean-reverting nonstationarity in

ASD/NZD.

For the interest rates, we test 3 month T-bill and 10 year T-bill rates, and their spreads

over the period from January 2, 1962 to August 11, 2016. The subperiod ranging from

January 2, 1962 to August 14, 2008 is also considered to exclude the effect of recent near

zero interest rates. The data are downloaded from FRED. We report the results in Table 5.

For both rates, the tests strongly suggest no mean reversion and nonstationarity, regardless

of whether we include or exclude the recent period of near zero interest rates. The p-values

of the tests are slightly lower for the subperiod, compared to those for the entire period. The

differences, however, are not significant. On the other hand, the spreads between 3 month

T-bill and 10 year T-bill rates are clearly stationary (and mean-reverting) with p-values less

than 1-2%. It seems clear that they are cointegrated, sharing one common stochastic trend.

Our findings here are consistent with those of Stock and Watson (1988) based on monthly

observations.

We also test some commodity prices. Considered are three different types of commodity

prices, agricultural products (Corn and Wheat, December 8, 1988 - March 3, 2016), precious

metals (Gold and Silver, July 2, 1973 - August 23, 2016) and oils (WTI and Gasoline, June

2, 1986 - August 15, 2016). Corn and Wheat prices are non-adjusted future prices based on
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Table 5: Interest Rates: P -values and Test Results

Full Sample MR Test ST Test 5%-Test 10%-Test

3M 0.5340 0.8442 NMR-NST NMR-NST
10Y 0.7964 0.8268 NMR-NST NMR-NST

10Y−3M 0.0010 0.0092 MR-ST MR-ST

Sub-Sample MR Test ST Test 5%-Test 10%-Test

3M 0.3268 0.6228 NMR-NST NMR-NST
10Y 0.6822 0.6174 NMR-NST NMR-NST

10Y−3M 0.0112 0.0188 MR-ST MR-ST

spot-month continuous contract calculations from Chicago Mercantile Exchange, and Gold

and Silver prices are London Fixing Price in London Bullion Market with fixing levels set per

troy ounce. Corn, Wheat, Gold and Silver prices are downloaded from Quandl, and WTI

and Gasoline prices are from FRED. All prices are taken logarithms, and their differences

are also tested. The results are summarized in Table 6. All commodity prices considered

here seem to be clearly non-mean-reverting and nonstationary. They fail to reject both

hypotheses unambiguously with large p-values. The spreads in their prices, however, are

all mean-reverting with p-values almost negligible. The price spreads in Wheat/Corn and

WTI/Gasoline are also strongly supportive of stationarity with negligible p-values. There-

fore, our test results suggest, quite convincingly, the presence of cointegration between these

commodity prices in logarithms. On the contrary, the spreads in the prices of Gold/Silver

shows some strong evidence of nonstationarity. This implies that the Gold/Silver prices in

logarithms are cointegrated only in an extended sense.11

Finally, we test four international stock indexes from Morgan Stanley Capital Interna-

tional (MSCI), developed markets (DW), emerging markets (EM) and developed market in

Europe (DE) from August 2, 1988 to June 9, 2016. The data are obtained from the Datas-

tream Research Service. We apply the tests to the cumulative log returns, of each index

and the differences of the cumulative returns, and report the results in Table 7. All stock

indexes we consider are non-mean-reverting and nonstationary. The evidence is strong and

unambiguous. The differences in log cumulative returns of DW/EM and DE/EM are also

non-mean-reverting and nonstationary, implying the absence of cointegration. However,

11Our finding here sheds light on the previous test results for cointegration between the Gold/Silver prices.
Escribano and Granger (1998), Lucey and Tully (2006) and Baur and Tran (2014) all find some evidence
of a cointegrating relationship between the Gold/Silver prices, but they also observe quite clearly that the
nature of the relationship is time varying and unstable.
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Table 6: Commodity Prices: P -values and Test Results

MR Test ST Test 5%-Test 10%-Test

Wheat 0.2866 0.2918 NMR-NST NMR-NST
Corn 0.4232 0.3954 NMR-NST NMR-NST

Wheat/Corn 0.0010 0.0004 MR-ST MR-ST

Gold 0.7508 0.6570 NMR-NST NMR-NST
Silver 0.3792 0.3956 NMR-NST NMR-NST

Gold/Silver 0.0096 0.1220 MR-NST MR-NST

WTI 0.5390 0.4082 NMR-NST NMR-NST
Gasoline 0.4568 0.3746 NMR-NST NMR-NST

WTI/Gasoline 0.0000 0.0000 MR-ST MR-ST

Table 7: Stock Indexes: P -values and Test Results

MR Test ST Test 5%-Test 10%-Test

DW 0.4886 0.4778 NMR-NST NMR-NST
DE 0.2814 0.2942 NMR-NST NMR-NST
EM 0.3266 0.2706 NMR-NST NMR-NST

DW−EM 0.5888 0.5748 NMR-NST NMR-NST
DE−EM 0.6706 0.6952 NMR-NST NMR-NST
DW−DE 0.0284 0.2226 MR-NST MR-NST

Notes: For each of DE, DW and EM indexes, the stock markets in the following countries are included: Aus-
tria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Netherlands, Norway, Portugal,
Spain, Sweden, Switzerland, and United Kingdom are in DE, Australia, Canada, Hong Kong, Japan, New
Zealand, Singapore, and United States, as well as all countries in DE, are in DW, and Argentina, Brazil,
Chile, China, Colombia, Czech Republic, Egypt, Hungary, India, Indonesia, Israel, Jordan, Korea, Malaysia,
Mexico, Morocco, Pakistan, Peru, Philippines, Poland, Russia, South Africa, Taiwan, Thailand, Turkey, and
Venezuela are in EM.

there is one exception. Though the differences in cumulative log returns of DW/DE are

nonstationary, they are mean-reverting. This supports the presence of an extended notion

of cointegration between DW/DE cumulative log returns.

6 Conclusion

In this paper, we clarify how the notions of unit root, mean reversion and nonstatonarity

in financial time series generated from general diffusion models are related to each other.
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In particular, we show that mean reversion is not synonymous with stationarity. While

all stationary diffusions are mean-reverting, not all nonstationary diffusions are non-mean-

reverting. Nonstationary diffusions may also be mean-reverting if they have time-varying

stochastic volatilities and the drift terms dominating the diffusion terms. The existence

of nonstationary mean-reverting processes makes it useful to extend the concept of coin-

tegration. The unit root test can be used to test for no mean reversion, and also for

nonstationarity, in general diffusion models. Both tests are fully consistent within our gen-

eral framework allowing for all recurrent diffusions. The limit distributions of the tests

are generally model-dependent, and the usual critical values of the unit root test are not

applicable. To implement the tests, we propose a subsample bootstrap test and develop its

asymptotics. In our illustrative applications of the tests, we demonstrate that many nonsta-

tionary time series are mean-reverting, and also that two non-mean-reverting nonstationary

time series may well have errors that are mean-reverting though nonstationary.
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Appendix A Useful Lemmas

A.1 Lemmas for Diffusion Asymptotics

Throughout, we assume that Assumptions 2.1 and 2.2 hold and X satisfies the recurrence

condition s(x) = −∞ and s(x) =∞.

Lemma A1. Let f be regularly varying on D. (a) If f is m-nonintegrable at xB, then

s−1 ∈ RVκ at s(xB) with 0 < κ < ∞ for xB = ±∞, and −∞ < κ < 0 for xB = 0.

(b) f is m-nearly integrable/strongly nonintegrable at xB if and only if fs is ms-nearly

integrable/strongly nonintegrable at s(xB).

Proof of Lemma A1. For the first part, note that mf = f/(s′σ2) with regularly varying σ

and s′ is nonintegrable at xB. If s′ is rapidly varying, it has to be rapidly increasing since it

is nonintegrable at xB. Therefore, for any regularly varying f , f becomes m-integrable. It

follows that s′ ∈ RVp with −1 < p <∞ for xB = ±∞, and −∞ < p < −1 for xB = 0. By

the property of regularly varying function (see, e.g., Proposition 1.5.7. in Bingham et al.

(1993)), s−1 ∈ RVκ at s(xB), where κ = 1/(p + 1) with 0 < κ < ∞ for xB = ±∞, and

−∞ < κ < 0 for xB = 0. This completes the proof for the first part.

For the second part, let s′ ∈ RVp at xB. If σ2 ∈ RVq and f ∈ RVr at xB, mf ∈ RVa
with a = r − p − q, whereas msfs ∈ RVb at s(xB) with b = (r − 2p − q)/(p + 1) since

fsms = (f/(s′σ)2) ◦ s−1. However, we have m(f) = ms(fs), from which it follows that

b ≥ −1 if and only if a ≥ −1 for xB = ±∞, and a ≤ −1 for xB = 0. The stated result

therefore follows immediately from Karamata’s theorem.

Lemma A2. Let m be nonintegrable at xB. (a) 1/σ is nonintegrable at xB. (b) r(xB) =∞
for xB = x, and r(xB) = −∞ for xB = x. (c) m is nearly integrable/strongly nonintegrable

at xB if and only if 1/(s′σ) ◦ r−1 is nearly integrable/strongly nonintegrable at r(xB).

Proof of Lemma A2. Note that m ∈ RVa with a ≥ −1 for xB = ±∞, and a ≤ −1 for

xB = 0. As shown in the proof of Lemma A1 (a), m being nonintegrable at xB implies that

s′ ∈ RVp with −1 < p < ∞ for xB = ±∞, and −∞ < p < −1 for xB = 0. If σ2 ∈ RVq at

xB, then a = −p − q at xB since m = 1/(s′σ2). Therefore, q < 2 at xB = ±∞ and 2 < q

at xB = 0, and hence, 1/σ ∈ RV−q/2 is nonintegrable at xB by Karamata’s theorem, which

completes the proof of the part (a). The part (b) follows immediately from the part (a).

For the part (c), note that m is nonintegrable at xB if and only if 1/(s′σ) ◦ r−1 is

nonintegrable at r(xB) by a change of variables in integrals. Moreover, r ∈ RV(2−q)/2 at

r(xB) due to the proof of the part (a) with Karamata’s theorem. Consequently, 1/(s′σ) ◦
r−1 ∈ RVb at r(xB), where b = −(2p + q)/(2 − q) with −1 ≤ b if and only if −1 ≤ a for
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xB = ±∞, and a ≤ −1 for xB = 0, from which, jointly with the part (b), we have the

stated result in the part (c).

Lemma A3. Let τ be the stopping time defined in (7).

(a) If f and g2 are m-integrable, then

1

λT

∫ T

0
f(Xt)dt→d L(τ, 0),

1√
λT

∫ T

0
g(Xt)dWt →d

√
L(τ, 0)N,

where N is a standard normal random variate independent of L(τ, 0).

(b) If f and g2 are m-strongly nonintegrable, then

1

λ2T (msfs)(λT )

∫ T

0
f(Xt)dt→d

∫ τ

0
msfs(Bt)dt,

1

λT (m
1/2
s gs)(λT )

∫ T

0
g(Xt)dWt →d

∫ τ

0
m

1/2
s gs(Bt)dBt.

(c) If f and g2 are m-nearly integrable, then∫ T

0
f(Xt)dt ∼d λT [msfs](λT )L(τ, 0) + λ2T (msfs)(λT ) lim

ε→0

∫ τ

0

1

Bt
1{|Bt| > ε}dt,

or

1

λT [msfs](λT )

∫ T

0
f(Xt)dt→d L(τ, 0),

depending upon whether msfs(x) = 1/x or msfs(x) 6= 1/x, and

1√
λT [msg2s ](λT )

∫ T

0
g(Xt)dWt →d

√
L(τ, 0)N,

where N is a standard normal random variate independent of L(τ, 0).

(d) If f is m-nearly integrable, then∫ T

0
f(Xt)dt = Op(λT [ms|fs|](λT )).

(e) If ST holds, then L(τ, 0) = 1 with probability one.

Proof of Lemma A3. Due to Lemma A1 (b), the stated results in (a), (b) and (c) follow
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respectively from Theorems 3.3, 3.4 and 3.5 of Kim and Park (2017).

As for the part (d), note that if f is m-nearly integrable, then |f | is m-nearly integrable

and ms|fs| 6= 1/x. It then follows from the part (c) of this lemma that

1

λT [ms|fs|](λT )

∫ T

0
f(Xt)dt ≤

1

λT [ms|fs|](λT )

∫ T

0
|f |(Xt)dt→d L(τ, 0)

which completes the proof of the part (d). Finally, the part (e) follows immediately from

the construction of τ .

Lemma A4. Let X be null recurrent, and define XT by XT
t = θ−1T XTt for 0 ≤ t ≤ 1.

(a) We have XT →d X
◦, where X◦ = s−1(Y ◦) for a strongly nonstationary X, and

X◦ = 0 a.s. for a nearly stationary X. Here Y ◦ is defined in (8).

(b) If X is strongly nonstationary, then X◦ becomes a semimartingale with quadratic

variation [X◦] is given by [X◦]t =
∫ At

0

(
(s−1)

′
−

)2
(Bs)ds, where (s−1)

′
− is the left-hand

derivative of s−1, and At = inf
{
s|
∫
Rms(x)L(s, x) > t

}
.

Proof of Lemma A4 (a). Since ms and s−1 have +∞ as their dominating boundary, s−1 ∈
RVκ at +∞ with 0 < κ <∞ by Lemma A1 (a) with f = 1. Moreover, if we let Y = s(X),

XT
t =

s−1(λTYTt/λT )

s−1(λT )
= s−1(YTt/λT )(1 + op(1))→d s−1(Y

◦
t )

by Proposition 3.2 of Kim and Park (2017), the continuous mapping theorem and the

uniform convergence of regularly varying functions (see, e.g., pages 21-22 in Bingham et al.

(1993)). This completes the proof.

Proof of Lemma A4 (b). Note that s−1 is nondecreasing and can be represented as the

difference of two convex functions. As in Kim and Park (2017), we may apply Itô-Tanaka

formula to Y ◦ = B ◦A to deduce

X◦t −X◦0 = s−1(B ◦At)− s−1(B ◦A0)

=

∫ t

0
(s−1)

′
−(B ◦As)d(B ◦As) +

1

2

∫
R
L(At, x)(s−1)′′(dx), (A.1)

where (s−1)′′ is the second derivative of s−1 in the sense of distributions. In (A.1), the first

and second terms represent respectively the martingale and bounded variation components

of the semimartingale X◦, for which we have [X◦]t =
∫ At

0

(
(s−1)

′
−

)2
(Bs)ds. This completes

the proof.
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Lemma A5. If ST holds, we have (a) XT = op(θT ), and (b) XT = op(θT ).

Proof of Lemma A5. If X is stationary, XT = Op(1) = op(θT ) since θT = s−1(λT ) → ∞
as T → ∞. If X is nearly stationary, XT = op(θT ) as shown in Lemma A4 (a), which

completes the proof for the part (a).

For the part (b), note that [ms] is slowly varying by Karamata’s theorem, and

XT =
1

T

∫ T

0
Xtdt =


Op(λT /T ), if ι is m-integrable

Op(λT [ms|ιs|](λT )/T ), if ι is m-nearly integrable

Op(λ
2
T (msιs)(λT )/T ), if ι is m-strongly nonintegrable

(A.2)

by Lemma A3. If ι is m-integrable, then XT = op(θT ) since λT /T = O(1) and θT →∞.

If ι is m-nearly integrable, then |ιs| is ms-nearly integrable, and hence, [ms|ιs|] becomes

slowly varying due to Karamata’s theorem. It follows that [ms|ιs|](λT )/[ms](λT ) ≤ `(λT )

for some slowly varying `, and

λT [ms|ιs|](λT )

θTT
=

[ms|ιs|](λT )

s−1(λT )[ms](λT )
≤ `(λT )

s−1(λT )
→ 0 (A.3)

since T = λT [ms](λT ) and s−1 ∈ RVκ with 0 < κ <∞ at +∞, as shown in Lemma A1 (a).

Finally, let ι be m-strongly nonintegrable. In this case, we have

λ2T (msιs)(λT )

θTT
=

λT (msιs)(λT )

s−1(λT )[ms](λT )
=
λTms(λT )

[ms](λT )
→ 0, (A.4)

where, in particular, the last convergence follows from Karamata’s theorem since ms is

either integrable or nearly integrable. The part (b) follows from (A.2)-(A.4).

Lemma A6. If X is defined on D = (0,∞), then (ι/s′)(x)→ 0 and 1/s′(x)→ 0 as x→ 0.

Proof of Lemma A6. Since X is recurrent on (0,∞), s(0) =
∫ 0
ω s
′(x)dx = −∞ for any

ω > 0, and hence, s′ ∈ RVp with p < −1 at xB = 0. This completes the proof.

Lemma A7. Let DD hold. (a) 1/s′(x)→ 0 as x→ x, x, (b) ι/s′ ◦ s−1(λ) ≺ [msσ
2
s ](λ) and

ι/s′◦s−1(−λ) ≺ [msσ
2
s ](λ), (c) [msσ

2
s ](λ) ∼ −2[msιsµs](λ), and (d) θ2T = o(λT [msσ

2
s ](λT )).

Proofs of Lemma A7 (a) and (b). Due to Lemma A6, it suffice to prove the statements at

xB = ±∞. Note that DD holds if and only if 1/s′ is either integrable or nearly integrable

since mσ2 = 1/s′. It follows that 1/s′(x)→ 0 as x→ ±∞ which completes the proof of the

part (a).
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For the part (b), we write

[msσ
2
s ](λ) =

∫ λ

−λ

1

(s′)2 ◦ s−1(x)
dx =

∫ s−1(λ)

s−1(−λ)

1

s′(x)
dx. (A.5)

By Karamata’s theorem, we have

ι/s′ ◦ s−1(λ)

[msσ2s ](λ)
,
ι/s′ ◦ s−1(−λ)

[msσ2s ](λ)
→ 0

which completes the proof of the part (b).

Proof of Lemma A7 (c). We have

−2[msιsµs](λ) = −2

∫ λ

−λ
msιsµs(x)dx = −2

∫ s−1(λ)

s−1(−λ)
mιµ(x)dx =

∫ s−1(λ)

s−1(−λ)

xs′′(x)

[s′(x)]2
dx

=

∫ s−1(λ)

s−1(−λ)

1

s′(x)
dx−

[ ι
s′
◦ s−1(λ)− ι

s′
◦ s−1(−λ)

]
(A.6)

due to the integration by parts, from which, jointly with Lemma A7 (b) and (A.5), we have

the stated result.

Proof of Lemma A7 (d). Under DD, s′ ∈ RVp with −1 < p ≤ ∞ at +∞. If s′ ∈ RV∞, then

s−1 ∈ RV0, and hence,

θT√
λT [msσ2s ](λT )

=
s−1(λT )√

λT [msσ2s ](λT )
→ 0.

If −1 < p <∞, then θT s
′(θT ) ∼ (p+ 1)s(θT ) by Karamata’s theorem, and hence,

θT√
λT [msσ2s ](λT )

≤ θT√
s(θT )

∫ θT
0 1/s′(x)dx

∼

(
(p+ 1)θT

s′(θT )
∫ θT
0 1/s′(x)dx

)1/2

→ 0 (A.7)

since
∫ θT
0 1/s′(x)dx ≤ [msσ

2
s ](λT ) by (A.5), and

∫ θT
0 1/s′(x)dx is slowly varying and satisfies

(θT /s
′(θT ))/

∫ θT
0 1/s′(x)dx→ 0 by Karamata’s theorem. This completes the proof.

Lemma A8. If DD holds, then∫ T

0
Xtσ(Xt)dWt ≺p

∫ T

0
Xtµ(Xt)dt.



40

Proof of Lemma A8. For a brevity of notations, we write I, NI and SN instead of integrable,

nearly integrable and strongly nonintegrable, respectively. It then follows from Lemma A3

that ∫ T

0
Xtσ(Xt)dWt =

{
Op
(√

λT [msι2sσ
2
s ](λT )

)
, if ι2σ2 is m-I or m-NI

Op
(
λT (m

1/2
s ιsσs)(λT )

)
, if ι2σ2 is m-SN.

(A.8)

and

1

λT [msσ2s ](λT )

∫ T

0
Xtµ(Xt)dt→d −

1

2
L(τ, 0). (A.9)

due, in particular, to Lemma A7 (c).

If ι2σ2 is either m-I or m-NI, then [msι
2
sσ

2
s ] is slowly varying. In this case, the stated

result follows from (A.8) and (A.9) since
√
λT [msι2sσ

2
s ](λT )/λT [msσ

2
s ](λT )→ 0.

Finally, let ι2σ2 be m-SN. Then

λT (m
1/2
s ιsσs)(λT )

λT [msσ2s ](λT )
=

(ι/s′)(θT )

[msσ2s ](λT )
≤ (ι/s′)(θT )∫ θT

0 1/s′(x)dx
→ 0, (A.10)

where the first equality is due to m
1/2
s ιsσs = (ι/s′) ◦ s−1, the second inequality follows from∫ θT

0 1/s′(x)dx ≤ [msσ
2
s ](λT ) as in (A.7), and the convergence to zero holds by Karamata’s

theorem with the fact that
∫ θT
0 1/s′(x)dx is slowly varying. The stated result for m-SN ι2σ2

follows immediately from (A.8), (A.9) and (A.10), which completes the proof.

Lemma A9. If DD does not hold, then∫ T

0
Xtµ(Xt)dt -p

∫ T

0
Xtσ(Xt)dWt.

Proof of Lemma A9. If DD does not hold, then ι2σ2 is m-strongly nonintegrable and

1

λT (m
1/2
s ιsσs)(λT )

∫ T

0
Xtσ(Xt)dWt →d

∫ τ

0
msιsσs(Bt)dBt (A.11)

by Lemma A3. Following the notation in the proof of Lemma A8, we have

∫ T

0
Xtµ(Xt)dt =

{
Op
(
λT [msιsµs](λT )

)
, if ιµ is m-I or m-NI

Op
(
λ2T (msιsµs)(λT )

)
, if ιµ is m-SN.

(A.12)

We first let ιµ be either m-I or m-NI. It then follows from (A.6) and m
1/2
s ιsσs = (ι/s′) ◦
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s−1 that

λT [msιsµs](λT )

λT (m
1/2
s ιsσs)(λT )

= −1

2

∫ θT
−θT 1/s′(x)dx

(ι/s′)(θT )
+O(1) = O(1) (A.13)

by Karamata’s theorem with the fact that 1/s′ is strongly nonintegrable.

Finally, let ιµ be m-SN. Note that s′ ∈ RVp at xB = +∞ for −∞ ≤ p ≤ ∞ if and only

if xµ(x)/σ2(x)→ −p/2 as x→ +∞ by the representation of regularly and rapidly varying

functions. Moreover, if DD does not hold, −1 < p < 1 under Assumption 2.2. Therefore,

λ2T (msιsµs)(λT )

λT (m
1/2
s ιsσs)(λT )

=
λT (m

1/2
s µs)(λT )

σs(λT )
=

s(θT )µ(θT )

s′(θT )σ2(θT )
→ −p

2 + 2p
= O(1) (A.14)

since s(θT )/(θT s
′(θT ))→ 1/(1 + p) by Karamata’s theorem. The stated result follows from

(A.11)-(A.14).

Lemma A10. If ST holds, then∫ T

0
(Xt −XT )dXt ∼p −

1

2

∫ T

0
σ2(Xt)dt.

Proof of Lemma A10. We write∫ T

0
(Xt −XT )dXt =

1

2

[
(X2

T −X2
0 )− 2XT (XT −X0)−

∫ T

0
σ2(Xt)dt

]
. (A.15)

By applying Lemma A3 to the last term in (A.15), we have

1

aT

∫ T

0
σ2(Xt)dt→d P, (A.16)

where aT and P are defined in Section 3.2. Moreover,

(X2
T −X2

0 )− 2XT (XT −X0) = op(θ
2
T ) (A.17)

due to Lemma A5. To complete the proof, it suffice to show θ2T = O(aT ).

If DD holds, aT = λT [msσ
2
s ](λT ) and θ2T = o

(
λT [msσ

2
s ](λT )

)
as shown in Lemma

A7 (d). On the other hand, if DD does not hold, then aT = λ2T (msσ
2
s)(λT ) and θ2T =
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O(λ2T (msσ
2
s)(λT )) because

θ2T
λ2T (msσ2s)(λT )

=

(
θT s
′(θT )

s(θT )

)2

→ (1 + p)2 = O(1) (A.18)

since s(λ) ∼ λs′(λ)/(1 + p) and p 6= ±∞ as discussed in the proof of Lemma A1 (a). In all

cases, we have θ2T = O(aT ), and hence, the stated result follows from (A.15)-(A.17).

Lemma A11. If DD holds, then∫ T

0
(Xt −XT )dXt ∼p −

1

2

∫ T

0
σ2(Xt)dt.

Proof of Lemma A11. Due to Lemma A10, it suffice to prove the lemma for a strongly

nonstationary X. If X is strongly nonstationary, then

XT = Op(λ
2
T (msιs)(λT )/T ) = Op(θT )

by Lemma A3, from which, together with Lemma A4 (a), we have

(X2
T −X2

0 )− 2XT (XT −X0) = Op(θ
2
T ). (A.19)

However, if DD holds, θ2T = o
(
λT [msσ

2
s ](λT )

)
as shown in Lemma A7 (d). Therefore, the

stated result follows from (A.15), (A.16) and (A.19).

Lemma A12. We have

n∑
i=1

(
∆xi −∆xn

)2
=

n∑
i=1

(∆xi)
2 +Op(δT (ι2)/T ),

where ∆xn = n−1
∑n

i=1 ∆xi. Moreover, if δ → 0, then

n∑
i=1

(∆xi)
2 =

∫ T

0
σ2(Xt)dt+Op(δT (µ2)T ) +Op(δT (µσ)T 1/2)

+Op

(
δ1/2T (µσ)T

√
log(T/δ)

)
+Op

(
δ1/2T (σ2)T 1/2

√
log(T/δ)

)
.

Proof of Lemma A12. We have

n∑
i=1

(
∆xi −∆xn

)2
=

n∑
i=1

(∆xi)
2 − n(∆xn)2. =

n∑
i=1

(∆xi)
2 +Op(δT (ι2)/T ) (A.20)
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since n(∆xn)2 = n ((XT −X0)/n)2 = Op(δT (ι2)/T ). The leading term of (A.20) satisfies

n∑
i=1

(xi − xi−1)2 − [X]T =
n∑
i=1

((
Xiδ −X(i−1)δ

)2 − ([X]iδ − [X](i−1)δ
))

= 2
n∑
i=1

∫ iδ

(i−1)δ

(
Xt −X(i−1)δ

)
dXt

= 2 (PT +QT +RT + ST )

by Itô’s formula, where

PT =
n∑
i=1

∫ iδ

(i−1)δ

(∫ t

(i−1)δ
µ(Xs)ds

)
µ(Xt)dt = Op(δT (µ2)T ),

QT =
n∑
i=1

∫ iδ

(i−1)δ

(∫ t

(i−1)δ
µ(Xs)ds

)
σ(Xt)dWt = Op(δT (µσ)T 1/2),

RT =
n∑
i=1

∫ iδ

(i−1)δ

(∫ t

(i−1)δ
σ(Xs)dWs

)
µ(Xt)dt = Op

(
δ1/2T (µσ)T

√
log(T/δ)

)
,

ST =

n∑
i=1

∫ iδ

(i−1)δ

(∫ t

(i−1)δ
σ(Xs)dWs

)
σ(Xt)dWt = Op

(
δ1/2T (σ2)T 1/2

√
log(T/δ)

)
due to Lemmas B4 and B5 of Kim and Park (2017). This completes the proof.

A.2 Lemmas for Subsample Bootstrap

In what follows, we assume that Assumption 2.1 holds. The proofs of subsequential lemmas

rely on the representation of a scale transformed diffusion Y = s(X) as a time-changed

Brownian motion, i.e., Y = B ◦ A, where B is Brownian motion and A is time change

defined as At = inf
{
s|
∫
Rms(x)L(s, x)dx > t

}
from the local time L of B. For the details

of the representation, the reader is referred to, e.g., Rogers and Williams (2000).

In the sequel, for f = s′, s, s−1,m,ms, A, we simply let f̂ be defined similarly as f with

µ and σ2 replaced by µT and σ2T , respectively.

Lemma A13. If δaλ−bT KSS(ω)→p 0, then

sup
x∈DS

∣∣(1/σ2T )(x)− (1/σ2)(x)
∣∣ = Op

(
δaλ−bT KSS(ω2)

)
.
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Proof of Lemma A13. We have

(1/σ2T )(x)− (1/σ2)(x) =
(σ2 − σ2T )(x)

σ4(x)
(
1− ((σ2 − σ2T )/σ2)(x)

)
=

(σ2 − σ2T )(x)

σ4(x)
(

1 +Op

(
δaλ−bT KSS(1/σ2)

)) = Op

(
δaλ−bT KSS(1/σ4)

)

uniformly in x ∈ DS , since supx∈DS

∣∣(σ2 − σ2T )(x)
∣∣ = Op

(
δaλ−bT KS

)
by (12).

Lemma A14. If (a) δaλ−bT KSS(ω)→p 0 and (b) δaS(ω2)→p 0, then

sup
x∈DS

∣∣∣∣ µσ2 (x)− µT
σ2T

(x)

∣∣∣∣ = Op

(
λ−bT KSS(ω)

)
.

Proof of Lemma A14. We have

µT
σ2T

(x)− µ

σ2
(x) =

µT − µ
σ2T

(x) + µ(x)

(
1

σ2T
(x)− 1

σ2
(x)

)
= Op

(
λ−bT KSS(ω)

)
since

µT − µ
σ2T

(x) =
(µT − µ)(x)

σ2(x)
(

1 +Op

(
δaλ−bT KSS(1/σ2)

)) = Op

(
λ−bT KSS(1/σ2)

)

due to (12) with the condition (a) in this lemma, and

sup
x∈DS

∣∣∣∣µ(x)

(
1

σ2T
(x)− 1

σ2
(x)

)∣∣∣∣ = Op

(
δaλ−bT KSS(ω2)S(µ)

)
= Op

(
λ−bT KSS(ω)

)
due to Lemma A13 with the condition (b) in this lemma.

Lemma A15. Let the conditions in Lemma A14 hold. If λ−bT KSS(ω2)→p 0, then

sup
x∈DS

∣∣∣s′k(x)− ŝ′k(x)
∣∣∣ = Op

(
λ−bT KSS(ω3)

)
for k = 1, 2,

sup
x∈DS

|s(x)− ŝ(x)| = Op

(
λ−bT KSS(ω4)

)
.

Moreover, if λ−bT KSS(ω4)→p 0, then

sup
x∈RS

∣∣s−1(x)− ŝ−1(x)
∣∣ = Op(λ

−b
T KSS(ω5)),
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where RS = {y|y = s(x), x ∈ DS} ∩ {y|y = ŝ(x), x ∈ DS}.

Proof of Lemma A15. It follows from Lemma A14 that

sup
x∈DS

∣∣∣∣∫ x

w

µT
σ2T

(y)dy −
∫ x

w

µ

σ2
(y)dy

∣∣∣∣ = Op

(
λ−bT KSS(ω)S(ι)

)
,

and therefore,

ŝ′(x) = s′(x) exp

(
−2

(∫ x

w

µT
σ2T

(y)dy −
∫ x

w

µ

σ2
(y)dy

))
= s′(x)

(
1 +Op

(
λ−bT KSS(ω)S(ι)

))
(A.21)

uniformly in x ∈ DS . The stated result for s′ follows immediately from (A.21). Similarly,

we can show the result for s′2.

The result for s can be deduced from (A.21), and we have

sup
x∈DS

|s(x)− ŝ(x)| = sup
x∈DS

∣∣∣∣∫ x

w

(
s′(y)− ŝ′(y)

)
dy

∣∣∣∣ = Op

(
λ−bT KSS(ω3)S(ι)

)
as desired.

As for s−1, we let x = ŝ−1(y) for y ∈ RS . We then have

s−1(y)− ŝ−1(y) = s−1(ŝ(x))− x = s−1(ŝ(x))− s−1(s(x)) (A.22)

and

sup
x∈DS

|s−1(ŝ(x))− s−1(s(x))| ≤ sup
y∈RS

|(s−1)′(y)| sup
x∈DS

|ŝ(x)− s(x)|

= Op

(
λ−bT KSS(ω4)S(1/s′)

)
(A.23)

since s−1 is continuously differentiable with (s−1)′ = (1/s′) ◦ s−1. The stated result for s−1

follows immediately from (A.22) and (A.23).

Lemma A16. Let the conditions in Lemma A15 hold. If λ−bT KSS(ω6)→p 0, then

sup
x∈DS

|(ŝ′σT )2(x)− (s′σ)2(x)| = Op

(
λ−bT KSS(ω5)

)
,

sup
x∈DS

∣∣∣∣ 1

(ŝ′σT )2
(x)− 1

(s′σ)2
(x)

∣∣∣∣ = Op

(
λ−bT KSS(ω7)

)
.
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Proof of Lemma A16. It follows from Lemma A15 that

sup
x∈DS

|(ŝ′σT )2(x)− (s′σ)2(x)| = sup
x∈DS

|(ŝ′σT )2(x)− (s′σT )2(x)|+ sup
x∈DS

|(s′σT )2(x)− (s′σ)2(x)|

= Op

(
λ−bT KSS(ω3)S(σ2)

)
+Op

(
δaλ−bT KSS(s′2)

)
= Op

(
λ−bT KSS(ω5)

)
. (A.24)

Moreover, we can deduce from the proof of Lemma A13 with (A.24) that

sup
x∈DS

∣∣∣∣ 1

(ŝ′σT )2
(x)− 1

(s′σ)2
(x)

∣∣∣∣ = Op

(
λ−bT KSS(ω5)S((m/s′)2)

)
as desired.

Lemma A17. For any ε > 0, we have

sup
0≤s,t≤S,|t−s|≤ε

|At −As| = Op(εS(ω)).

Proof of Lemma A17. Since ms(x) > 0 for all x ∈ R, A is invertible and

A−1(t) =

∫
ms(x)L(t, x)dx =

∫ t

0
ms(Bu)du,

where the last equality follows from the occupation times formula. Moreover, A−1 is con-

tinuously differentiable and we have (A−1)′(t) = ms(Bt), and hence,

A′(t) =
1

(A−1)′(A(t))
=

1

ms(B ◦A(t))
= (s′/m)(Xt).

Therefore, we have

sup
0≤s,t≤S,|t−s|≤ε

|At −As| ≤ ε sup
0≤t≤S

(s′/m)(Xt) = Op(εS(ω))

as desired.

Lemma A18. Let the conditions in Lemma A16 hold. Then we have

sup
0≤t≤S

|At − Ât| = Op

(
λ−bT KSS(ω7)S

)
.

Proof of Lemma A18. We have At − Ât = A ◦ Â−1(Ât)− A ◦ A−1(Ât), where Â−1(Ât) = t
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and

A−1(Ât) =

∫ Ât

0
ms(Bu)du =

∫ t

0
(ms/m̂s)(Bu)du

by the occupation times formula and change of variables. Moreover, we have

sup
x∈RS

|(ms/m̂s)(x)− 1| ≤

(
sup
x∈RS

ms(x)

)(
sup
x∈RS

|(1/m̂s)(x)− (1/ms)(x)|

)

≤

(
sup
x∈DS

(m/s′)(x)

)(
sup
x∈DS

|(ŝ′σT )2(x)− (s′σ)2(x)|

)
= Op

(
λ−bT KSS(ω5)S(m/s′)

)
due to Lemma A16, and hence,

sup
0≤t≤S

|A−1(Ât)− Â−1(Ât)| = Op

(
λ−bT KSS(ω6)S

)
from which, jointly with Lemma A17, we have the stated result.

Appendix B Proofs for Main Results

Proof of Lemma 2.1. The stated result follows immediately from Lemmas A8 and A9.

Proof of Lemma 2.2. It follows from the integration by parts with s′′(x) = −2(s′µ/σ2)(x)

that for any xl, xu ∈ D, we have

−2

∫ xu

xl

(mµν)(x)dx =

∫ xu

xl

(mσ2ν ′)(x)dx−
[
(ν/s′)(xu)− (ν/s′)(xl)

]
,

from which we can obtain the stated result by letting xu → x and xl → x.

Proof of Lemma 3.1. We note that

n∑
i=1

xi−1δ =

∫ T

0
Xtdt+Op(δT (µ)T ) +Op(δT (σ)T 1/2), (B.1)

n∑
i=1

x2i−1δ =

∫ T

0
X2
t dt+Op(δT (ιµ)T ) +Op(δT (σ2)T ) +Op(δT (ισ)T 1/2) (B.2)

due to Lemma B1 of Kim and Park (2017). Moreover, we may deduce from Lemma B3 of
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Kim and Park (2017) that

n∑
i=1

xi−1∆xi =

n∑
i=1

X(i−1)δ

∫ iδ

(i−1)δ
µ(Xt)dt+

n∑
i=1

X(i−1)δ

∫ iδ

(i−1)δ
σ(Xt)dWt

=

∫ T

0
Xtµ(Xt)dt+

∫ T

0
Xtσ(Xt)dWt +RT + ST

=

∫ T

0
XtdXt +RT + ST , (B.3)

where

RT = Op(δT (µ2)T ) +Op(δT (µσ)T 1/2),

ST = Op(δT (µσ)T 1/2) +Op

(
δ1/2T (σ2)T 1/2

√
log(T/δ)

)
.

The stated result for β̂ follows immediately from (B.1)-(B.3) given Assumption 3.1.

As for t(β̂), we write

v̂2
/
δ =

1

nδ

n∑
i=1

[
∆xi − (α̂− β̂xi−1)δ

]2
=

1

nδ

n∑
i=1

(
∆xi −∆xn

)2 − 1

nδ

[
∑n

i=1 (xi−1 − xn) ∆xi]
2∑n

i=1 (xi−1 − xn)2
. (B.4)

For the second term in (B.4), we may deduce from (B.1)-(B.3) with Assumption 3.1 that

1

nδ

[
∑n

i=1 (xi−1 − xn) ∆xi]
2∑n

i=1 (xi−1 − xn)2
=
δ

T

(∫ T
0 (Xt −XT )dXt

)2
∫ T
0 (Xt −XT )2dt

(1 + op(1)), (B.5)

where ∫ T

0
(Xt −XT )dXt =

1

2

(
(XT −XT )2 − (X0 −XT )2 −

∫ T

0
σ2(Xt)dt

)
= Op(T (ι2)) +Op(T (σ2)T ).

The leading term of (B.5) satisfies

δ

T

(∫ T
0 (Xt −XT )dXt

)2
∫ T
0 (Xt −XT )2dt

= Op
(
δT (ω4)T

)
= op(1), (B.6)
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where, in particular, the last equality is due to Assumption 3.1. It then follows from (B.4)-

(B.6) with Lemma A12 that

v̂2
/
δ =

1

T

n∑
i=1

[
∆xi − (α̂− β̂xi−1)δ

]2
=

1

T

∫ T

0
σ2(Xt)dt(1 + op(1)) (B.7)

due to Assumption 3.1. The stated result for t(β̂) follows immediately from (B.7) with the

proof of the first part of this lemma.

Proof of Lemma 3.2. By Lemma A3 with Lemmas A10 and A11, we have the desired con-

vergences for [X]T ,
∫ T
0 (Xt−XT )dXt and

∫ T
0 (Xt−XT )dt. To complete the proof, it suffice

to show that TaT /bT →∞.

If SI holds, then bT = λT `(λT ), and hence, TaT /bT = TaT /(λT `(λT )) → ∞ since

λT = O(T ) and aT /`(λT )→∞.

Now let SI do not hold. If both DD and ST hold, then

TaT
bT

=
[ms](λT )[msσ

2
s ](λT )

(msι2s)(λT )
=

[ms](λT )

λTms(λT )

[msσ
2
s ](λT )

λT (msσ2s)(λT )

λ2T (msσ
2
s)(λT )

ι2s(λT )

≡ ATBTCT →∞ (B.8)

where AT , BT → ∞ and CT = (s(θT )/θT s
′(θT ))2 → 1/(p + 1)2 by Karamata’s theorem,

since s′ ∈ RVp with −1 < p <∞ at +∞ as shown in the proof of Lemma A1 (a).

If DD holds and ST does not hold, then

TaT
bT

=
λT [msσ

2
s ](λT )

ι2s(λT )
= BTCT →∞

by the same argument in (B.8).

If DD does not hold, then ST should be satisfied. In this case, we have

TaT
bT

=
λT [ms](λT )σ2s(λT )

ι2s(λT )
= ATCT →∞

by the same argument in (B.8). In all cases, we have TaT /bT → ∞, which completes the

proof.

Proof of Lemma 3.3. We have

1

λ2T (msσ2s)(λT )
[X]T →d

∫ τ

0
msσ2s(Bt)dt
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by Lemma A3, and

1

θ2T
(X2

T −X2
0 )− 2XT (XT −X0)→d (X◦21 −X◦20 )− 2X

◦
1(X

◦
1 −X◦0 ),

1

Tθ2T

∫ T

0
(Xt −XT )dt→d

∫ 1

0
(X◦t −X

◦
1)dt

by Lemma A4 (a). Moreover, we have∫ 1

0
(X◦t −X

◦
1)dX

◦
t =

1

2

[
(X◦21 −X◦20 )− 2X

◦
1(X

◦
1 −X◦0 )− [X◦]t

]
,

where [X◦]t =
∫ At

0

(
(s−1)′−

)2
(Bs)ds, by Itô’s formula with Lemma A4 (b). Since s′ inf RVp

with p 6= −1,±∞ as discussed in (A.18), we have θ2T ∼ (1+p)2λ2T (msσ
2
s)(λT ) by Karamata’s

theorem. Therefore, the stated result follows immediately if we show(
(s−1)′−

)2
=

1

(1 + p)2
msσ2s . (B.9)

To show (B.9), note that msσ
2
s =

(
(s−1)′

)2
since msσ

2
s = (1/s′◦s−1)2 and (s−1)′ = 1/s′◦

s−1. It then follows from the property of regularly varying function (see, e.g., Proposition

1.5.7. in Bingham et al. (1993)) and Assumption 2.2 that (s−1)′ ∈ RVκ with κ = −p/(p+

1) > −1, from which, jointly with Karamata’s theorem, we can show that (s−1)′ = (1 +

p)(s−1)′−. Therefore, we have (B.9), which completes the proof.

Proof of Theorem 3.4. The stated results follow from Lemmas 3.1, 3.2 and 3.3.

Proofs of Corollaries 4.1 and 4.2. The stated results follow from Lemmas 3.2 and 3.3.

Proof of Corollary 4.3. For the part (a), we let σ2 be a constant function on D, or equiv-

alently σ2 be a slowly varying function on D. If ST holds, then m` is integrable for some

slowly varying function `. We define `σ2 = `/σ2 from the slowly varying function `. It then

can easy to see that `σ2 is slowly varying since both ` and σ2 are slowly varying. Then

mσ2`σ2 is integrable, and hence, DD holds. The converse can be shown analogously.

As for the part (b), we let s′ be a constant function on D, or equivalently s′ be a slowly

varying function on D. Then 1/s′ is also slowly varying, and is neither integrable nor nearly

integrable by Karamata’s theorem. Therefore, DD does not hold in this case.

Proof of Lemma 4.4. It is easy to see that s′ is a constant function on R if and only if s′ is

slowly varying such that s′(λ)/s′(−λ)→ 1 as λ→∞. Due to the representation of regularly

varying functions, s′ is slowly varying if and only if xµ(x)/σ2(x) → 0 as x → xB = ±∞.
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Moreover, s′(λ)/s′(−λ) → 1 as λ → ∞ if and only if
∫
|x|≤λ µ(x)/σ2(x)dx → 0 as λ → ∞

since s′(λ)/s′(−λ) = exp
(
−2
∫
|x|≤λ µ(x)/σ2(x)dx

)
. This completes the proof.

Proof of Lemma 4.5. The part (a) follows immediately from Lamma A1 (b) with f = 1.

For the part (b), we let Y = r(X), and define Dr = (r(x), r(x)). Then, by Itô’s lemma, we

have

dYt = (µ/σ − σ′/2) ◦ r−1(Yt)dt+ dWt

and its scale density s′r and speed measure mr are given, respectively, as

s′r = (s′σ) ◦ r−1 and mr = 1/s′r.

By a change of variables in integrals, mr(Dr) = m(D), and hence, Y is stationary on Dr
if and only if X is stationary on D. Moreover, it follows from Lemma A2 (b) that mr is

nearly integrable/strongly nonintegrable on Dr if and only if m is nearly integrable/strongly

nonintegrable on D. This completes the proof of the lemma.

Proof of Proposition 4.6. In the following, we simply write ŷi = r̂(Xiδ) and yi = r(Xiδ)

with ŷ0 = r̂(X0) and y0 = r(X0). If εaλ−bT KTT (1/σ3)→p 0, we can deduce from (11) that

sup
0≤i≤n

|ŷi − yi| = sup
x∈DT

∣∣∣∣∫ x

w

(
1

σ̂(y)
− 1

σ(y)

)
dy

∣∣∣∣
≤ sup

x∈DT

∣∣∣∣( σ2 − σ̂2

σ̂σ(σ + σ̂)

)
(x)

∣∣∣∣T (ι)

≤ sup
x∈DT

|σ2(x)− σ̂2(x)|T (ι)T (1/σ3) = Op

(
εaλ−bT K ′T

)
,

where K ′ = KTT (ι)T (1/σ3). Moreover, if εaλ−bT K ′T →p 0, then

sup
0≤i≤n

|ŷ2i − y2i | = Op

(
εaλ−bT KTT (r)

)
.

Therefore, we have

n∑
i=1

ŷi−1δ =

n∑
i=1

yi−1δ +Op

(
εaλ−bT K ′TT

)
,

n∑
i=1

ŷ2i−1δ =
n∑
i=1

y2i−1δ +Op

(
εaλ−bT K ′TT (r)T

)
,

ŷ2n−1 − ŷ20 − ŷn(ŷn−1 − ŷ0) = y2n−1 − y20 − yn(yn−1 − y0) +Op

(
εaλ−bT K ′TT (r)

)
,
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and

n∑
i=1

(ŷi − ŷi−1)2 =
n∑
i=1

(yi − yi−1)2 + PT +QT ,

where

PT =

n∑
i=1

((ŷi − ŷi−1)− (yi − yi−1))2 = Op

(
ε2aλ−2bT K ′2T T/δ

)
,

QT = 2
n∑
i=1

(yi − yi−1)((ŷi − ŷi−1)− (yi − yi−1)) = Op

(
εaλ−bT K ′TT (r)

)
.

Now we let β̂r̂ and β̂r be the least square estimators of the first-order autoregressions

using, respectively, (ŷi) and (yi). If εaλ−bT K ′TT (r)T →p 0 and εaλ−bT K ′T (T/δ)1/2 →p 0, then

β̂r̂ ∼p β̂r since

n∑
i=1

(zi−1 − zn)∆zi =
1

2

(
z2n−1 − z20 − zn(zn−1 − z0)−

n∑
i=1

(zi − zi−1)2
)

for z = ŷ, y. We can prove t(β̂r̂) ∼p t(β̂r) analogosly.

Proof of Lemma 5.1. We let Y and Ŷ be the scale transformed processes of X and X̂,

respectively. Due to the representation of martingale diffusion, we can write

Xt = s−1(Yt) = s−1(B ◦At), X̂t = ŝ−1(Ŷt) = ŝ−1(B ◦ Ât).

It then follows from the global modulus of continuity for Brownian motion (see Kanaya

et al. (2017)) with Lemma A18 that

sup
0≤t≤S

|Ŷt − Yt| = sup
0≤t≤S

|B ◦ Ât −B ◦At| = Op

(√
λ−bT KSS(ω7)S log

(
λ2Sλ

b
T /(KSS(ω7)S)

))
since AS = Op(λ

2
S) which is shown in Proposition 3.2 in Kim and Park (2017). Moreover,

we have

sup
0≤t≤S

|X̂t −Xt| = sup
0≤t≤S

|ŝ−1(Ŷt)− s−1(Yt)|

≤ sup
0≤t≤S

|ŝ−1(Ŷt)− s−1(Ŷt)|+ sup
0≤t≤S

|s−1(Ŷt)− s−1(Yt)|,
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where

sup
0≤t≤S

|ŝ−1(Ŷt)− s−1(Ŷt)| = Op

(
λ−bT KSS(ω5)

)
by Lemma A15, and

sup
0≤t≤S

|s−1(Ŷt)− s−1(Yt)| ≤ sup
x∈DS

|(1/s′)(x)| sup
0≤t≤S

|Ŷt − Yt| = Op (ζ(S, T ))

since (s−1)′ = (1/s′) ◦ s−1, from which, together with Assumption 5.1, we have the stated

result.

Proof of Lemma 5.2. Note that∫ S

0
(Xt −XS)dXt =

1

2

(
(XS −XS)2 − (X0 −XS)2 −

∫ S

0
σ2(Xt)dt

)
,∫ S

0
(Xt −XS)2dt =

∫ S

0
X2
t dt− SX

2
S .

It then follows from Lemma 5.1 that∫ S

0
X̂tdt =

∫ S

0
Xtdt+Op (ζ(S, T )S) ,∫ S

0
X̂2
t dt =

∫ S

0
X2
t dt+Op (ζ(S, T )S(ι)S) ,∫ S

0
σ2T (X̂t)dt =

∫ S

0
σ2(Xt)dt+Op

(
δaλ−bT KSS

)
+Op

(
ζ(S, T )S((σ2)′)S

)
from which we have the stated result.

Proof of Theorem 5.3. The stated result follows immediately from Lemma 5.2.
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