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Abstract

We provide tests to perform inference on the coefficient of a linear trend assuming

the noise to be a fractionally integrated process with memory parameter d ∈ (−0.5, 1.5)
by applying a quasi-GLS procedure using d-differences of the data. Doing so, the

asymptotic distribution of the OLS estimators applied to quasi-differenced data and

their t-statistics are unaffected by the value of d and have a normal limiting distribution.

To have feasible tests, we use the Exact Local Whittle estimator of Shimotsu (2010),

valid for processes with a linear trend. The finite sample size and power of the tests are

investigated via simulations. We also provide a comparison with the tests of Perron

and Yabu (2009) valid for a noise component that is I(0) or I(1). The results are

encouraging in that our test is valid under more general conditions, yet has similar

power as those that apply to the dichotomous cases with d either 0 or 1. We also use

our method of proof to show that the main result of Iacone, Leybourne and Taylor

(2013), who considered testing for a break in the slope of a trend function with a

fractionally integrated noise, is valid for the full range d ∈ (−.5, 1.5).
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1 Introduction

Many time series are well captured by a deterministic linear trend. With a logarithmic

transformation, the slope of the trend function is the average growth rate, a quantity of

interest. To be more precise, consider the following model for the time series process yt:

yt = β1 + β2t+ ut, (1)

where ut are the deviations from the trend. The parameter β2 is of primary interest. If

β2 = 0, then tests about β1 pertain to the mean of the time series. Hypothesis testing on the

slope of the trend function is important for many reasons. First, assessing whether a trend

is present is of direct interest in many applications. Second, the correct specification of the

trend function is important in other testing problems, such as assessing the nature of the

noise component ut (e.g., Perron, 1988). Third, tests for hypotheses about the values of β1

and β2 allow constructing confidence intervals via inversions. There is a large literature on

issues pertaining to inference about the slope of a linear trend function, most related to the

case where the noise component is stationary, i.e., integrated of order zero, I(0). A classic

result due to Grenander and Rosenblatt (1957) states that the estimate of β2 obtained from a

simple least-squares regression of the form (1) is asymptotically as efficient as that obtained

from a Generalized Least Squares (GLS) regression when the process for ut is correctly

specified. However, when ut has an autoregressive unit root, i.e., integrated of order one,

I(1), the estimate of the mean of the first-differenced series is efficient in large samples.

Several papers tackled the issue of constructing tests and confidence intervals for the para-

meter β2 when it is not known a priori if ut is I(1) or I(0). Sun and Pantula (1999) proposed

a pre-test method which first applies a test of the unit root hypothesis and then chooses the

critical value to be used according to the outcome of the test. Since the probability of using

the critical values from the I(0) case does not converge to zero when the errors are I(1),

the simulations reported accordingly show that substantial size distortions remain. Canjels

and Watson (1997) considered various Feasible GLS methods. Their analysis is, however,

restricted to the cases where ut is either I(1) or the autoregressive root is local to one. They

do not allow I(0) processes and, moreover, their method yields confidence intervals that are

substantially conservative with common sample sizes. Roy et al. (2004) considered a test

based on a one-step Gauss Newton regression but its limit distribution is not the same in the

I(1) and I(0) cases (see Perron and Yabu, 2012). Vogelsang (1998), Bunzel and Vogelsang

(2005) and Harvey et al. (2007) proposed tests valid with either I(1) or I(0) errors. Their

approach, however, uses randomly scaled versions of tests for trends so that in finite samples
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the good properties of such tests are lost, at least to some extent. Perron and Yabu (2009)

considered a Feasible Quasi GLS approach that uses a superefficient estimate of the sum

of the autoregressive parameters α when α = 1. The estimate of α is the OLS estimate

obtained from an autoregression applied to detrended data and is truncated to take a value

1 when the estimate is in a T−δ neighborhood of 1. This makes the estimate “super-efficient”

when α = 1 and implies that inference on the slope parameter can be performed using the

standard normal distribution whether α = 1 or |α| < 1.
Much of the literature focused on ut being I(0) or I(1), special cases of fractionally

integrated, I(d), processes with memory parameter d. Since d can take any real value

(within some interval), a long-memory process extends the classical dichotomy of I(0) and

I(1) processes. Our aim is to provide tests to perform inference on the coefficients of a linear

trend function assuming the noise component to be an I(d) process with d ∈ (−0.5, 1.5)
excluding the boundary case 0.5. We apply a quasi-GLS procedure using d-differences of

the data. The error term is then short memory and the asymptotic distribution of the OLS

estimators of (β1,β2) and their t-statistics are unaffected by the value of d and standard

OLS procedures can be applied with the limit normal distribution. No truncation or pre-test

is needed given the continuity with respect to d. To make our procedure feasible, we need

an estimator of d valid with a fitted linear time trend and for a wide range of d. After

experimenting with various possible estimators, we opted to use the Exact Local Whittle

(ELW) estimator of Shimotsu (2010) who extended Shimotsu and Phillips (2005) to cover

processes with a linear trend. It is valid for values of d in the range (−0.5, 1.5) and yields
tests with good finite sample properties. Of related interest, Abadir et al. (2011) considered

an I(d) model with trend and cycles and derived the asymptotic distribution of the OLS

estimate of the parameter of the slope of the trend. A related paper is Iacone et al. (2013)

who proposed a test for a break in the slope of a linear time trend when the order of

integration is unknown, whose methodology is similar to ours. We use our method of proof

to show that their result is valid for the full range d ∈ (−.5, 1.5).
This paper is organized as follows. Section 2 describes the model and the test statistics,

and Section 3 discusses the estimate of d used to have feasible tests. Section 4 presents

simulation results about the size and power of the tests in finite samples and a comparison

with the tests of Perron and Yabu (2009) valid when ut is either I(0) or I(1). The results are

encouraging in that our test, valid under much more general conditions, has similar power.

Section 5 considers generalyzing the main result of Iacone et al. (2013). Section 6 provides

brief conclusions and techical derivations are collected in an appendix.
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2 The Model and Test Statistics

The data-generating process is assumed to be:

yt = β1 + β2t+ ut (2)

for t = 1, ..., T , with ut a fractionally integrated process satisfying the following assumptions.

Assumption 1 The process ut is generated by ∆dut = (1 − L)dut = εt¶{t ≥ 1} with
d ∈ (−0.5, 0.5) ∪ (0.5, 1.5), where ∆d is the fractional difference operator and ¶{A} is the
indicator function of the event A.1 Also, εt is a short memory process generated by εt =

A(L)vt =
P∞

j=0Ajvt−j with A(1)
2 > 0,

P∞
l=0 l|Al| < ∞, vt ∼ i.i.d. (0,σ2v) and E|vt|q < ∞

with q > max{4, 2/(3− 2d)}. The long-run-variance of εt is σ2 :=
P∞

k=−∞E[εtεt−k].

The spectral density of εt is defined as fε(λ) = (1/2π)
P∞

j=−∞ γje
−ijλ, where i =

√−1
and {γj}∞j=−∞ is the sequence of autocovariances of εt, satisfying fε(λ) ∼ G for λ ∼ 0.

Assumption 2 {γj}∞j=−∞ is the sequence of autocovariances of εt; then (i) fε(λ) ∼ G0 ∈
(0,∞) and, for some β ∈ (0, 2], fε(λ) = G0(1 + O(λβ)) as λ → 0+; (ii) In a neighborhood

(0, δ) of the origin, A(eiλ) is differentiable and (d/dλ)A(eiλ) = O(λ−1) as λ→ 0+; (iii) fε(λ)

is bounded for λ ∈ [0,π].

Assumptions 1 and 2 are mostly from Iacone et al. (2013) and Shimotsu (2010), and

allow the estimate of d to be consistent and asymptotically normally distributed. They

follow Marinucci and Robinson (2000) and allow a functional central limit theorem for the

partial sums of ut. Applying a d-differencing transformation, the DGP is:

ydt := ∆dyt = β1∆
d¶{t ≥ 1}+ β2∆

dt¶{t ≥ 1}+∆dut¶{t ≥ 1}, (t = 1, ..., T ).

Note that ∆dut = εt and ∆dy1 = y1. We also define Xt = [1, t]
0 and Xd

t ≡ ∆dXt = [∆
d¶{t ≥

1},∆dt¶{t ≥ 1}]0 with ∆dX1 = [1, 1]
0. Hence, the GLS transformed regression is:

ydt = X
d0
t β + εt, (t = 1, ..., T ).

To obtain a feasible regression, we need to replace d by some consistent estimate d̂ to be

discussed in the next section. The tests will then be based on the regression

yd̂t = X
d̂0
t β + u

d̂
t , (t = 1, ..., T ) (3)

1The restriction that d 6= 0.5 is pervasive in the long-memory literature because the case with d = 0.5

needs to be treated separately from the case with d 6= 0.5 (see, e.g., Tanaka, 1999 and Iacone et al, 2013.)
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where ud̂ = ∆d̂ut¶{t ≥ 1}. Let β̂ = (X d̂0X d̂)−1X d̂0yd̂ denote the OLS estimator of β =

[β1, β2]
0, where X d̂ = [X d̂

1 , ...,X
d̂
T ]
0 and yd̂ = [yd̂1 , ..., y

d̂
T ]
0. The test statistic on the time trend

coefficient β2 for H0 : β2 = β02 against H1 : β2 6= β02 , is constructed as the usual t-statistic:

tβ̂2(d̂, σ̂
2) = R(β̂ − β0)/[σ̂2R(X d̂0X d̂)−1R0]1/2

where R = [0 1], β0 = [β01 ,β
0
2 ]
0 and σ̂2 is a consistent estimator of the long-run variance

σ2 =
P∞

j=−∞ Γ(j) where Γ(j) = E(εtεt−j). Similarly, the test statistic on the constant term

β1 for H0 : β1 = β01 can also be constructed as usual with:

tβ̂1(d̂, σ̂
2) = R1(β̂ − β0)/[σ̂2R1(X

d̂0X d̂)−1R01]
1/2

where R1 = [1 0]. The next theorem provides the limit distribution of the test statistics.

Theorem 1 Let {yt} be generated by (2) under Assumptions 1-2. Let “ d→” denote weak
convergence in distribution under the Skorohod topology. Suppose that we have estimated d̂

and σ̂2 such that d̂ − d = Op(T
−κ) for any κ > 0 and σ̂2 − σ2 = op(1). Then, (i) under

H0 : β2 = β02 , tβ̂2(d̂, σ̂
2)

d→ N(0, 1) for any d ∈ (−0.5, 0.5)∪(0.5, 1.5); (ii) under H0 : β1 = β01 ,

tβ̂1(d̂, σ̂
2)

d→ N(0, 1) for any d ∈ (−0.5, 0.5).

Remark 1 Iacone et al. (2013) considered the Fully Extended Local Whittle (FELW) esti-

mator of Abadir, Distaso, and Giraitis (2007) to construct the test statistic based on d̂FELW -

differences of the data. To establish the limiting distribution of d̂FELW , it is required that the

bandwidth parameter m = [c1T
n] with user chosen constant c1 > 0 satisfy a condition that

0 < n < 0.8 (see Corollary 2.1 of Abadir et al., 2007), where [x] denotes the integer part of x.

As addressed in Remark 3 of Iacone et al. (2013), this requirement is somewhat restrictive

because it imposes d < 1.33 with n = 0.65 and d < 1.40 with n = 0.79. Unlike Iacone et al.

(2013), we only require that d̂ be consistent at any polynomial rate for all values of d. Using

our strategy to prove the result, it is easy to modify their proof so that their Theorem 2 holds

under the same condition as our Theorem 1; see Section 5.

A consistent estimate of σ2 is readily available. Popular estimates are weighted sums of

autocovariances of the form σ̂2 = Γ̂(0)+2
PT−1

j=1 h(j, l)Γ̂(j), where Γ̂(j) = T
−1PT

t=j+1 u
d̂
tu
d̂
t−j

with ud̂t the OLS residuals from the regression (3) and h(·) a kernel function with bandwidth
l. In the simulations below, we use the Bartlett kernel and Andrews’ (1991) data dependent

method for selecting the bandwidth based on an AR(1) approximation. The choice of an

appropriate estimate of d is more delicate and discussed in the next section.
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3 Estimate of d

The Exact Local-Whittle estimation procedure for d was studied by Shimotsu and Phillips

(2005) and extended by Shimotsu (2010) for the case with an unknown trend function,

needed in our context. It is valid for a wide range of values for d including values greater

than 1. Accordingly, we shall adopt it as the estimator of d when constructing our test

statistics. Let the discrete Fourier transform and the periodogram of yt evaluated at the

fundamental frequencies as ωy(λj) = (2πT )
−1/2PT

t=1 yt exp(itλj) and Iy(λj) = |ωy(λj)|2, for
λj = (2πj/T ), j = 1, ..., T . The ELW estimator of d is the minimizer of

Qm(G, d) =
1

m

Xm

j=1
[log(Gλ−2dj ) +

1

G
I∆dy(λj)].

Concentrating Qm(G, d) with respect to G, the objective function is R(d) = log Ĝ(d) −
2d(m−1)

Pm

j=1 log(λj), where Ĝ(d) = m−1
Pm

j=1 I∆dy(λj) and, within a pre-specified range

to be defined below, the ELW estimator is ed = argmin d∈[∆1,∆2]R(d). Shimotsu (2010)

extended the ELW estimation procedure to cover an unknown linear time trend via a two-

step procedure applied to detrended data. The first step detrends the data by an OLS

regression of yt on (1, t) with the residuals denoted ŷt. The modified objective function is:

RF (d) = log ĜF (d)− 2d 1
m

Xm

j=1
log(λj), ĜF (d) =

1

m

Xm

j=1
I∆d(ŷ−ϕ(d))(λj)

where ϕ(d) = (1−w(d))ŷ1 with w(d) a twice continuous differentiable weight function such
that w(d) = 1 for d ≤ 1/2 and w(d) = 0 for d ≥ 3/4. As recommended by Shimotsu (2010),
w(d) = (1/2)[1 + cos(4πd)] for d ∈ [1/2, 3/4]. A two-step procedure is applied to ensure

the global consistency of the estimate. In the first step, one uses the tapered local Whittle

estimator of Velasco (1999) denoted d̂T , which is
√
m-consistent and invariant to a linear

trend for d ∈ (−1/2, 5/2). The second step estimator involves the following modification:
d̂∗ELW = d̂T −R0F (d̂T )/R

00
F (d̂T ) (4)

where R0F (d̂T ) and R
00
F (d̂T ) are the 1

st and 2nd derivatives of RF (d). As in Shimotsu (2010),

we use max{R00F (d̂T ), 2} to improve the finite sample properties. The final estimator, d̂ELW ,
is obtained by iterating (4). To obtain the limiting distribution, we also need the following

additional assumptions: (i) as T →∞, m−1 +m1+2β(logm)2T−2β +m−γ log T → 0 for any

γ > 0; (ii) −1/2 < ∆1 < ∆2 ≤ 7/4. Then,
√
m(d̂ELW − d) d→ N(0, 1/4) (Shimotsu, 2010,

Theorem 4). Hence, with our test statistics constructed using d̂ELW , Theorem 1 continues

to hold provided that m = [c1T
n] for any n > 0 and some constant c1 > 0. For all values of

d ∈ (−0.5, 0.5) ∪ (0.5, 1.5), we can use a bandwidth that satisfies m = [T 0.65].
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4 Simulation Results

In this section, we consider the size and power of the test tβ̂2 for the slope of the trend via

simulations, using 1,000 replications throughout (the results for the test tβ̂1for the mean are

qualitatively similar for the range d ∈ (−0.5, 0.5)). The data are generated by (2) with ut
an autoregressive fractionally integrated moving average process (ARFIMA(p, d, q)) of the

form (1 − L)dut = εt¶{t ≥ 1} with A(L)εt = B(L)et, where A(L) = 1 − a1L − ... − apLp
and B(L) = 1+ b1L+ ...+ bqL

q are the autoregressive and moving average lag polynomials,

respectively, and et ∼ i.i.d.N(0, 1). Assumptions 1 and 2 are satisfied if the roots ofA(L) = 0
and B(L) = 0 are outside the unit circle. In all cases, we set β1 = β2 = 0 under the

null hypothesis without loss of generality. Also, the estimate d̂ELW is constructed with

m = [T 0.65]. We consider two-sided tests at the 5% significance level and for d = 0 or 1,

the results are compared to those obtained with the two versions of the Perron and Yabu

(2009) tests (PY), tFSβ (MU) or tFSβ (UB), which use different autoregressive estimates before

applying the truncation (MU stands for Median Unbiased and UB for Upper Biased).

We start with the case of pure fractional processes with A(L) = B(L) = 1. We consider

the range d ∈ [−0.4, 1.4] and T = 500, 1000 and 2000. The results, presented in Table 1,
show that the exact sizes of the test tβ̂2are close to the nominal size in all cases. On the other

hand, tFSβ (MU) and tFSβ (UB) show substantial size distortions unless d = 0, 1. When d is

negative the tests are very conservative, while for 0 < d < 1, the tests are liberal. The liberal

size distortions are especially pronounced when d = 1.4. The power functions for a two-sided

test of β2 = 0 are presented in Figure 1 for T = 500. Given the size distortions of the PY tests

when d is different from 0 and 1, we include them only for the case d = 1 (we return below

to the case d = 0). When d = 1, tFSβ (MU) and tFSβ (UB) have higher power, as expected.

This is due to the fact that the PY tests apply a truncation to 1 when the autoregressive

parameter is in a neighborhood of 1 leading to a smaller bias when d = 1. However, the

differences are not large and decrease as T increases (from unreported simulations). As

expected, the power of tβ̂2 is highest when d is small with power decreasing as d increases

(note the different scaling on the horizontal axis).

Table 2 presents results about the size of the tests for processes with short-run dynamics

of the autoregressive form with an AR(1) so that A(L) = 1− aL with d = 0, cases for which
the PY tests were designed. We consider values of a ranging from 0 to 0.95. The results show

that the exact size remains close to the nominal 5% level, unless a is close to 1, in which case

the exact size of tβ̂2 is below nominal size. It is well known that in the presence of a short-run
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component that has strong correlation, most estimates of d are biased. Accordingly, it is of

some comfort to see that our test retains decent size and exhibits no liberal size distortions.

The power functions for a two-sided test of β2 = 0 are presented in Figure 2 for T = 500.

When a = 0, 0.3 or 0.5, all tests have essentially the same power. When a = 0.7 or 0.9,

the PY tests have slightly higher power. When a = 0.95, tβ̂2has much higher power, despite

being conservative, unless the alternative is close to the null value.

We next consider the size and power of the tests using five different DGPs used in Qu

(2011), which were motivated by financial applications of interest. These are given by:

DGP 1. ARFIMA(1, d, 0): (1− a1L)(1− L)0.4εt = et, where a1 = 0.4 and −0.4.
DGP 2. ARFIMA(0, d, 1): (1− L)0.4εt = (1 + b1L)et, where b1 = 0.4 and −0.4.
DGP 3. ARFIMA(2, d, 0): (1− a1L)(1− a2L)(1− L)0.4εt = et, with a1 = 0.3, a2 = 0.5.
DGP 4. εt = zt + ηt, where (1− L)0.4zt = et and ηt ∼ i.i.d N(0, var(zt)).
DGP 5. (1− L)0.4εt = ηt with ηt = σtet, σ

2
t = 1 + 0.1η

2
t−1 + 0.85σ

2
t−1.

In all cases, et ∼ i.i.d. N(0, 1). DGPs 1-3 are different cases of ARFIMA processes, DGP
4 is a fractionally integrated process with measurement errors and DGP 5 is a generalized

autoregressive conditional heteroskedasticity (GARCH) process. Note that DGPs 4 and 5

do not satisfy the conditions of Assumptions 1-2. We nevertheless include them to assess the

robustness of the results given that conditional heteroskedasticity and measurement errors

are prevalent features of many time series. Given the size distortions of the PY tests when

d is different from 0 or 1, we only present results for the test tβ̂2 .

Table 3 presents the exact sizes of the tests. In all cases, the exact size of tβ̂2 is near 5%,

except for DGPs 2 and 5 for which the test has slight liberal size distortions when T = 500,

which decrease as T increases. The power functions of the test for T = 500 are presented

in Figure 3. In all cases, power increases rapidly to 1 as β2 deviates from 0, with except

perhaps with GARCH errors. Comparing across DGPs, power decreases when additional

short-run dynamics is present. The effect of measurement errors on the power is minor.

5 Extension

Iacone et. al. (2013) considered the problem of testing for a break in trend when the noise

component is a fractional process, i.e., testing whether β3 = 0 in the model:

yt = β1 + β2 t+ β3DTt(τ0) + ut, t = 1, . . . , T, (5)

with DTt(τ0) := (t − [τ0T ])¶{t > [τ0T ]}, τ0 unknown and ut satifying Assumption 1. The
basic method is to take a quasi difference of the data and trend regressors using an estimate
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d̂ of the order of integration d ∈ [0, 1/2) ∪ (1/2, 3/2). A sup-Wald test SW(d̂, σ̂2) is then
applied to the transformed regression. When the rate of convergence of the estimate of d is

Tn/2, that is, Tn/2(d̂−d) = Op(1), they showed that the feasible version of the sup-Wald test
SW(d̂, σ̂2) shares the same limit distribution as SW(d,σ2) provided n > max{0, 2(d− 1)}.
This result imposes restrictions on implementing the sup-Wald test SW(d̂, σ̂2). The rate
of convergence for the estimate of d should be faster for d > 1, while for a given rate of

convergence, the distributional equivalence between SW(d,σ2) and SW(d̂, σ̂2) does not hold
for all values of d in the range considered. We show that a simple modification of their proof,

using our approach to prove Theorem 1, show the results to hold for any n > 0.

Theorem 2 (Theorem 2 of Iacone et al., 2013) Let {yt} be generated according to (5)
and let Assumption 1 hold. Also, let m := [c1T

n], for user chosen constants c1 > 0 and

n > 0. Then, under a local alternative of the form H
κ,d
1 : β3 = κT d−3/2, uniformly in τ ,

W(d̂, τ, σ̂2)−W(d, τ,σ2) = op(1), SW(d̂, σ̂2)− SW(d,σ2) = op(1).

6 Conclusion

We provided tests to perform inference on the coefficients of a linear trend function assuming

the noise to be a fractionally integrated process with memory parameter in the interval

(−0.5, 1.5) excluding the boundary case 0.5. The results are encouraging in the sense that
our test is valid under much more general conditions, yet has power similar to the Perron

and Yabu (2009) tests that apply only to the dichotomous cases with d either 0 or 1. When

d is different from 0 or 1, its exact size is close to the nominal size and power is good. Our

procedure provides a useful tool for inference about the coefficient of a linear trend under

general conditions on the noise component. Though we assumed the errors to follow a Type

II long-memory process, we conjecture that our results remain valid with a Type I process

as defined by Marinucci and Robinson (1999). First, as Shimotsu (2010) argued, his results

remain valid for both types of processes. Also, the conditions for a functional central limit

theorem for Type I processes are very similar, see, e.g., Wang et al. (2003), and could be

slightly modified accordingly. We used our method of proof to show that the main result of

Iacone et al. (2013) is valid for the full range d ∈ (−.5, 1.5) excluding d = 0.5.
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Appendix

As a matter of notation, let Xd = [Xd
1 , ...,X

d
T ]
0, Xd

t = [μ0,t μ1,t]
0, μi,t = ∆dti¶{t ≥ 1} for

i = {0, 1}, and ε = [ε1, ..., εT ]
0. Also, W (r) is a standard Brownian motion with E[W (r)2] =

r. Throughout the appendix, C denotes a finite generic constant whose specific value is not
crucial. We start with the following lemmas, whose proofs follow Iacone et al. (2013, p.40)
with appropriate modifications for the results to hold under the conditions of Theorem 1.
We start with the following Lemma from Robinson (2005, Lemma 1, p.1824)

Lemma 1 As t → ∞ and for an m such that d − 1 < m ≤ d (i) For d ∈ (−0.5, 1),
∆d¶{t ≥ 1} = Γ(1− d)−1t−d +O(t−d−1 + t−m−1¶{d > 0}); (ii) For d ∈ (−0.5, 2), ∆dt¶{t ≥
1} = Γ(2− d)−1t1−d +O(t−d + t−m¶{d > 0}); (iii) For d > −0.5, ∆d¶{t ≥ 1} = O(t−d+δ),
for any δ > 0.

Note that Lemma 1 implies that for d ∈ (−0.5, 1): |μ1,t+1 − μ1,t| = ∆d¶{t ≥ 1} ≤ Ct−d
and

PT−1
t=1 |μ1,t+1 − μ1,t| = O(xx), from part (i), while for d ∈ [1, 1.5): |μ1,t+1 − μ1,t| =

∆d¶{t ≥ 1} ≤ (xx) andPT−1
t=1 |μ1,t+1−μ1,t| = O(T 1−d+δ) for any δ > 0 These results will be

used throughout.

Lemma 2 Suppose that d and σ2 are known: (i) For −0.5 < d < 0.5: tβ̂2(d,σ
2)

d→
RC−1L/[RC−1R0]1/2 := A1, where

C =

⎡⎣ 1
[Γ(1−d)]2(1−2d)

1
Γ(1−d)Γ(2−d)(2−2d)

1
Γ(1−d)Γ(2−d)(2−2d)

1
[Γ(2−d)]2(3−2d)

⎤⎦ , L =

⎡⎣ 1
Γ(1−d)

R 1
0
r−ddW (r)

1
Γ(2−d)

R 1
0
r1−ddW (r)

⎤⎦ ,
and

A1 =
√
3− 2d

∙
2(1− d)

Z 1

0

r1−ddW (r)− (1− 2d)
Z 1

0

r−ddW (r)

¸
.

(ii) For 0.5 ≤ d < 1.5: tβ̂2(d,σ2)
d→ R eC−1eL/[R eC−1R0]1/2 = C−1/222 L2 := A2, where C22 and

L2 are the relevant sub-matrix and sub-vector of C and L, and A2 =
√
3− 2d R 1

0
r1−ddW (r).

Proof of Lemma A.2: From Robinson and Iacone (2005, A.34), for any τ ∈ (0, 1], with [τT ]
the integer part of τT , we have (a) for d ∈ (−0.5, 1): T d∆d¶{[τT ] ≥ 0} → Γ(1 − d)−1τ−d;
(b) for d ∈ (−0.5, 1.5), T d−1∆d[τT ]¶{[τT ] ≥ 0} → Γ(2 − d)−1τ 1−d. For part (i), using
KT := diag{T 1/2−d, T 3/2−d}, the t-statistic for β2 follows:

tβ̂2(d,σ
2) =

R(β̂ − β0)

[σ2R(Xd0Xd)−1R0]1/2
=
R(K−1

T X
d0XdK−1

T )
−1(K−1

T X
d0ε)

[σ2R(K−1
T X

d0XdK−1
T )

−1R0]1/2
d→ RC−1L
[RC−1R0]1/2

,

where K−1
T X

d0XdK−1
T → C and K−1

T X
d0ε

d→ σL are proved in Robinson and Iacone (2005,

A.36). For part (ii), using eKT := diag{1, T 3/2−d}, the t-statistic for β2 follows:

tβ̂2(d,σ
2) =

R( eK−1
T X

d0Xd eK−1
T )

−1( eK−1
T X

d0ε)

[σ2R( eK−1
T X

d0Xd eK−1
T )

−1R0]1/2
.

1



The result follows given that for 0.5 < d < 1.5,

eK−1
T X

d0Xd eK−1
T →

⎡⎣O(1) 0

0 C−122

⎤⎦ , eK−1
T X

d0ε
d→ σeL :=

⎡⎣Op(1)
σL2

⎤⎦ ,
and for d = 0.5, the limit distribution of eK−1

T X
d0ε is the same, while

³ eK−1
T X

d0Xd eK−1
T

´−1
→
⎡⎣0 0

0 C−122

⎤⎦ .
Lemma 3 Suppose that d and σ2 are known: For d ∈ (−0.5, 0.5): tβ̂1(d,σ2)

d→ R1C
−1L/

[R1C
−1R01]

1/2 := B1t, where B1 =
√
1− 2d[2(1− d) R 1

0
r−ddW (r)− (3− 2d) R 1

0
r1−ddW (r)].

Proof of Lemma A.3: The proof follows using R1 = [1 0] instead of R in Lemma A.2.

Lemma 4 A1, A2 and B1, defined in Lemmas A.1-A.2 have a N(0, 1) distribution.

Proof of Lemma A.4: When d ∈ (−0.5, 0.5), it is easy to show that the normally dis-
tributed bivariate random vector L has variance-covariance matrix C. Therefore, A1 is also
normally distributed with variance (RC−1CC−1R0)/(RC−1R0) = 1. When d ∈ [0.5, 1.5), L2
is a normally distributed random variable with variance C22. Therefore, A2 = C

−1/2
22 L2 is

also normally distributed with variance one. It is straightforward to show that B1 follows a
standard normal distribution based on the arguments for A1.

Proof of Theorem 1: Here, we establish the limiting distributions of tβ̂l(d̂, σ̂
2), l = {1, 2}

with consistent estimates (d̂, σ̂2). More specifically, we show that tβ̂l(d,σ
2) and tβ̂l(d̂, σ̂

2), l =

{1, 2}, share the same limiting distribution. It is trivial to show that the results remain the
same using a consistent estimate of σ2, hence we concentrate on using an estimate of d. We

need to show that if d̂− d = Op(T−ϕ) for any ϕ > 0, then (a) for −0.5 < d < 0.5,

K−1
T X

d̂0X d̂K−1
T −K−1

T X
d0XdK−1

T

d→ 0, (1)

and

K−1
T X

d̂0ud̂ −K−1
T X

d0ε
d→ 0, (2)

(b) for 0.5 < d < 1.5, eK−1
T X

d̂0X d̂ eK−1
T − eK−1

T X
d0Xd eK−1

T

d→ 0, (3)

and eK−1
T X

d̂0ud̂ − eK−1
T X

d0ε
d→ 0, (4)

2



where ud̂t := ∆d̂ut¶{t ≥ 1} and μ̂i,t := ∆d̂ti¶{t ≥ 1} for i = {0, 1}. Consider first (1) and
(3). For (1) with −0.5 < d < 0.5, we show that for i, j = {0, 1}, T 2d−1−i−j(PT

t=1 μ̂i,tμ̂j,t −PT

t=1 μi,tμj,t)
d→ 0,or equivalently,

T 2d−1−i−j[
TX
t=1

(μ̂i,t − μi,t)μj,t +

TX
t=1

μi,t(μ̂j,t − μj,t) +

TX
t=1

(μ̂i,t − μi,t)(μ̂j,t − μj,t)]
d→ 0. (5)

Note that from Iacone et al. (2013, A.22), for i ∈ {0, 1} and d ≤ 1, and for i = 1 and d > 1,

μ̂i,t − μi,t = op(t
i−d). (6)

By the Cauchy-Schwarz inequality,

T 2d−1−i−j
TX
t=1

(μ̂i,t − μi,t)μj,t ≤ T 2d−1−i−j[
TX
t=1

(μ̂i,t − μi,t)
2

TX
t=1

μ2j,t]
1/2. (7)

In the view of (6) and |μj,t| ≤ Ctj−d, it is straightforward to show that the expression on the
RHS of (7) is op(T

2d−1−i−j+i−d+1/2+j−d+1/2) = op(1). Following the same arguments, we can
show that the other terms in (5) are op(1), which establishes (1). For (3) with 0.5 < d < 1.5,

we show that T (i+j)(d−3/2)(
PT

t=1 μ̂i,tμ̂j,t −
PT

t=1 μi,tμj,t)
d→ 0,or equivalently,

T (i+j)(d−3/2)[
TX
t=1

(μ̂i,t − μi,t)μj,t +

TX
t=1

μi,t(μ̂j,t − μj,t) +

TX
t=1

(μ̂i,t − μi,t)(μ̂j,t − μj,t)]
d→ 0.

For i = j = 1, the proof is similar to that for d ∈ (−0.5, 0.5). Note that μ̂0,t − μ0,t =

op(t
−d) for d ∈ (0.5, 1), which implies PT

t=1(μ̂0,t − μ0,t)
2 = op(T

1−2d). For d ∈ [1, 1.5),PT

t=1(μ̂0,t−μ0,t)
2 = op(1) using Robinson (2005, Lemma 4) and Iacone et al. (2013, Lemma

A.2). Then, for i = 0, j = 1,

T d−3/2
TX
t=1

(μ̂0,t − μ0,t)μ1,t ≤ T d−3/2[
TX
t=1

(μ̂0,t − μ0,t)
2

TX
t=1

μ21,t]
1/2

=

(
op(T

d−3/2+(1−2d+3−2d)/2) = op(T−d+1/2) = op(1) for d ∈ (0.5, 1),
op(T

d−3/2+(3−2d)/2) = op(1) for d ∈ [1, 1.5).

For i = 1, j = 0, using Lemma 1(iii),

T d−3/2
TX
t=1

(μ̂1,t − μ1,t)μ0,t ≤ T d−3/2[
TX
t=1

(μ̂1,t − μ1,t)
2

TX
t=1

μ20,t]
1/2

=

(
op
¡
T d−3/2+(3−2d+1−2d)/2

¢
= op(T

−d+1/2) = op(1) for d ∈ (0.5, 1),
op
¡
T d−3/2+(3−2d+1−2d+2δ)/2

¢
= op(T

−d+1/2+δ) for d ∈ [1, 1.5),

3



where op(T
−d+1/2+δ) = op(1) when d > 1/2+δ, that is, δ ∈ (0, 0.5). Similar arguments apply

when i = j = 0. The proofs for the other terms are similar, which completes the proof of
(3). For (2) and (4), we first show that for d ∈ (−0.5, 1.5),

T d−3/2
TX
t=1

μ̂1,tu
d̂
t − T d−3/2

TX
t=1

μ1,tεt
d→ 0,

or equivalently,

T d−3/2[
TX
t=1

(μ̂1,t − μ1,t)εt +

TX
t=1

μ1,t(u
d̂
t − εt) +

TX
t=1

(μ̂1,t − μ1,t)(u
d̂
t − εt)]

d→ 0.

The following lemmas are useful for that purpose.

Lemma 5 Under Assumption 1, for d ∈ (−0.5, 1.5), T d−3/2PT

t=1 μ1,t(u
d̂
t − εt)

p→ 0.

Proof of Lemma A.5: As Robinson and Hualde (2013, p.1758) and Iacone et al. (2013,
p.44), let

a(r)s (ν) :=
∂r∆

(ν)
s

∂νr
, g(r)(εt, ν) :=

t−1X
s=1

a(r)s (ν)εt−s

for any ν ≥ 0 where the process ut is such that ut =
Pt

s=−∞∆
(d)
t−sεs¶{s ≥ 1}. Using Robinson

and Hualde (2003, C.19 and C.20), we can rewrite

T d−3/2
TX
t=1

μ1,t(u
d̂
t − εt) = T

d−3/2
TX
t=1

μ1,t

Ã
B−1X
r=1

1

r!
(d− d̂)rg(r)(εt, 0)

!
(8)

+ T d−3/2
TX
t=1

μ1,t
1

B!
(d− d̂)Bg(B)(εt, d− d̂). (9)

Iacone et al. (2013, p.44) showed that

(lnT )−(r+1)T−1/2
[τT ]X
t=1

g(r)(εt, 0)
p→ 0 (10)

uniformly in τ . Using summation by parts, we have

T d−3/2T−rϕ|
TX
t=1

μ1,tg
(r)(εt, 0)|

≤ T d−3/2T−rϕ
"
T−1X
t=1

|μ1,t+1 − μ1,t|
¯̄̄̄ TX
s=t+1

g(r)(εs, 0)

¯̄̄̄
+

¯̄̄̄
μ1,1

TX
t=1

g(r)(εt, 0)

¯̄̄̄#

≤ T d−3/2T−rϕ
"
sup
t

Ã¯̄̄̄ TX
s=t+1

g(r)(εs, 0)

¯̄̄̄! T−1X
t=1

|μ1,t+1 − μ1,t|+
¯̄̄̄
μ1,1

TX
t=1

g(r)(εt, 0)

¯̄̄̄#
. (11)
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Note that μ1,1 = ∆d and |μ1,t+1 − μ1,t| = ∆d¶{t ≥ 1}. From Lemma 1 (i), |μ1,t+1 − μ1,t| =
∆d¶{t ≥ 1} ≤ Ct−d and PT−1

t=1 |μ1,t+1 − μ1,t| = O(T 1−d) for d ∈ (−0.5, 1) (??check) From
Lemma 1(iii),

PT−1
t=1 |μ1,t+1 − μ1,t| = O(T 1−d+δ) for any δ > 0. Using (10), the expression

(11) is op(T
d−3/2−rϕT 1/2(lnT )r+1T 1−d+δ) for any δ > 0. This is the largest for r = 1, and

it is op(T
−ϕ+δ(lnT )2), which is op(1) when −ϕ + δ < 0, that is, 0 < δ < ϕ. Since the

aforementioned results hold for any δ > 0, the condition 0 < δ < ϕ always holds for any
ϕ > 0 with δ depending on ϕ, say δ = ϕ/2. Moreover, each summand in r in (8) is op(1)

since (d − d̂)rT rϕ = Op(1). Lastly, consider the expression (9). Using the Cauchy-Schwarz
inequality, we have

TX
t=1

μ1,tg
(B)(εt, d− d̂) ≤

vuutÃ TX
t=1

μ21,t

!Ã
TX
t=1

[g(B)(εt, d− d̂)]2
!
= Op(

√
T 2(1−d)+1T 2),

where the equality holds due to Lemma 1(ii) and Robinson and Hualde (2003, C.13). Hence,

the expression (9) is Op(T
d−3/2T 5/2−dT−Bϕ) = Op(T 1−Bϕ) = op(1) upon extending the Taylor

series expansion up to B > 1/ϕ.

Lemma 6 Under Assumption 1, for d ∈ (−0.5, 1.5), T d−3/2PT

t=1(μ̂1,t − μ1,t)εt
p→ 0.

Proof of Lemma A.6: Iterating the mean value theorem application in Robinson (2005,

Lemma 4), for |ed− d| ≤ |d̂− d|,
μ̂1,t = μ1,t +

B−1X
r=1

1

r!
(d̂− d)rμ(r)1,t +

1

B!
(d̂− d)Beμ(B)1,t

for a user chosen B, where eμ(B)1,t = (lnT )B∆
ed−m̄∆m̄t¶{t ≥ 1} with μ

(r)
1,t defined similarly

(??check), and m̄ = 0 if d ∈ (−0.5, 0.5) and m̄ = 1 if d ∈ (0.5, 1.5). By choosing B >

(1 + d)/ϕ, we have (1/B!)(d̂− d)Beμ(B)1,t = op(t
1/2−d) (see Iacone et al., 2013, p.43). Then,

T d−3/2
TX
t=1

(μ̂1,t − μ1,t)εt = T
d−3/2

TX
t=1

Ã
B−1X
r=1

1

r!
(d̂− d)rμ(r)1,t

!
εt (12)

+ T d−3/2
TX
t=1

µ
1

B!
(d̂− d)Beμ(B)1,t

¶
εt. (13)

For the expression (12), using summation by parts, we have

T d−3/2T−rϕ
TX
t=1

μ
(r)
1,tεt ≤ T d−3/2T−rϕ

¯̄̄̄ TX
t=1

μ
(r)
1,tεt

¯̄̄̄

≤ T d−3/2T−rϕ
∙ T−1X
t=1

|μ(r)1,t+1 − μ
(r)
1,t |
¯̄̄̄ TX
s=t+1

εs

¯̄̄̄
+

¯̄̄̄
μ
(r)
1,1

TX
t=1

εt

¯̄̄̄¸

≤ T d−3/2T−rϕ
∙
sup
t

¯̄̄̄ TX
s=t+1

εs

¯̄̄̄ T−1X
t=1

|μ(r)1,t+1 − μ
(r)
1,t |+

¯̄̄̄
μ
(r)
1,1

TX
t=1

εt

¯̄̄̄¸
,
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which is Op(T
−rϕ+δ(ln∆)r) because |μ(r)1,t+1 − μ

(r)
1,t | = (ln∆)r∆d¶{t ≥ 1} = O(t−d+δ(ln∆)r)

from Lemma 1(iii),
PT

t=1 |μ(r)1,t+1 − μ
(r)
1,t | = O(t1−d+δ(ln∆)r) for any δ > 0. This is the largest

for r = 1, and it is Op(T
−ϕ+δ(ln∆)), which is op(1) when 0 < δ < ϕ. Furthermore, each

summand in r in (12) is op(1) because (d− d̂)rT rϕ = Op(1). For the expression (13), using
the Cauchy-Schwarz inequality, we have

T d−3/2
TX
t=1

µ
1

B!
(d̂− d)Beμ(B)1,t

¶
εt ≤

∙
T d−3/2

TX
t=1

µ
1

B!
(d̂− d)Beμ(B)1,t

¶2
T d−3/2

TX
t=1

ε2t

¸1/2
=

q
op(T d−3/2T 2−2d)Op(T d−3/2T ) = op(1),

upon extending the Taylor series expansion up to B > (1 + d)/ϕ.

Finally the proof that T d−3/2
PT

t=1(μ̂1,t − μ1,t)(u
d̂
t − εt)

p→ 0 is a straightforward combi-
nation of the aforementioned Lemmas A.5-A.6, hence omitted. We still need to consider the
parts of (A.2) and (A.4) which pertain to μ0,t and μ̂0,t. First, for −0.5 < d < 0.5, we need
to show that

T d−1/2
TX
t=1

μ̂0,t u
d̂
t − T d−1/2

TX
t=1

μ0,t εt
p→ 0,

or equivalently,

T d−1/2
∙ TX
t=1

(μ̂0,t − μ0,t) εt +

TX
t=1

μ0,t(u
d̂
t − εt) +

TX
t=1

(μ̂0,t − μ0,t)(u
d̂
t − εt)

¸
p→ 0.

Lemma 7 Under Assumption 1, for d ∈ (−0.5, 0.5), T d−1/2PT

t=1 μ0,t(u
d̂
t − εt)

p→ 0.

Proof of Lemma A.7: Note that |μ0,t+1−μ0,t| = |∆d(t+1)0¶{t ≥ 1}−∆dt0¶{t ≥ 1}| = 0
for t = 1, . . . , T − 1. Similar to the arguments in Lemma 5, using summation by parts,

T d−1/2T−rϕ|
TX
t=1

μ0,tg
(r)(εt, 0)|

≤ T d−3/2T−rϕ
"
T−1X
t=1

|μ1,t+1 − μ1,t||
TX

s=t+1

g(r)(εs, 0)|+ |μ1,1
TX
t=1

g(r)(εt, 0)|
#

≤ T d−1/2T−rϕ
"
sup
t

Ã
|

TX
s=t+1

g(r)(εs, 0)|
!
T−1X
t=1

|μ0,t+1 − μ0,t|+ |μ0,1
TX
t=1

g(r)(εt, 0)|
#
,

which is Op(T
d−1/2T−rϕ(lnT )r+1T 1/2T−d) using Lemma 1(i). This is the largest for r = 1,

and it is Op(T
−ϕ(lnT )2), which is op(1) when ϕ > 0. Also, from Cauchy-Schwarz’s inequality,

TX
t=1

μ0,tg
(B)(εt, d− d̂) ≤

vuutÃ TX
t=1

μ20,t

!Ã
TX
t=1

[g(B)(εt, d− d̂)]2
!
= Op(

√
T 2(−d)+1T 2),

6



where the equality follows from Lemma 1(i) and Robinson and Hualde (2003, C.13). Hence,

the expression T d−1/2
PT

t=1 μ0,t(1/B!)(d − d̂)Bg(B)(εt, d − d̂) is Op(T d−1/2T 3/2−dT−Bϕ) =
Op(T

1−Bϕ) = op(1) upon extending the Taylor series expansion up to B > 1/ϕ.

Lemma 8 Under Assumption 1, for d ∈ (−0.5, 0.5), T d−1/2PT

t=1(μ̂0,t − μ0,t)εt
p→ 0.

Proof of Lemma A.8: Iterating the mean value theorem application in Robinson (2005,

Lemma 4), for |ed− d| ≤ |d̂− d|,
μ̂0,t = μ0,t +

B−1X
r=1

1

r!
(d̂− d)rμ(r)0,t +

1

B!
(d̂− d)Beμ(B)0,t

for a user chosen B, where eμ(B)0,t = (lnT )
B∆

ed−m̄∆m̄1¶{t ≥ 1}. By choosing B > (1 + d)/ϕ,
we have (1/B!)(d̂− d)Beμ(B)0,t = op(t

−1/2−d). Then,

T d−1/2
TX
t=1

(μ̂0,t−μ0,t)εt = T d−1/2
TX
t=1

Ã
B−1X
r=1

1

r!
(d̂− d)rμ(r)0,t

!
εt+T

d−1/2
TX
t=1

µ
1

B!
(d̂− d)Beμ(B)0,t

¶
εt

Using summation by parts, we have

T d−1/2T−rϕ
TX
t=1

μ
(r)
0,tεt ≤ T d−1/2T−rϕ[sup

t

|
TX

s=t+1

εs|
T−1X
t=1

|μ(r)0,t+1 − μ
(r)
0,t |+ |μ(r)0,1

TX
t=1

εt|],

which is Op(T
d−1/2−rϕT−d+1/2) because |μ(r)0,t+1 − μ

(r)
0,t | = 0 for t = 1, . . . , T − 1. This is the

largest for r = 1, and it is Op(T
−ϕ), which is op(1) when ϕ > 0. Furthermore, each summand

in r is op(1) because (d− d̂)rT rϕ = Op(1). Using the Cauchy-Schwarz inequality, we have

T d−1/2
TX
t=1

µ
1

B!
(d̂− d)Beμ(B)0,t

¶
εt ≤ [T d−1/2

TX
t=1

µ
1

B!
(d̂− d)Beμ(B)0,t

¶2
T d−1/2

TX
t=1

ε2t ]
1/2

=

q
op(T d−1/2T−2d)Op(T d−1/2T ) = op(1),

upon extending the Taylor series expansion up to B > (1 + d)/ϕ.

The proof that T d−1/2
PT

t=1(μ̂0,t − μ0,t)(u
d̂
t − εt)

p→ 0 is a straightforward combination
of the aforementioned arguments and omitted. Second, for 0.5 < d < 1.5, we need to show

that
PT

t=1 μ̂0,t u
d̂
t −

PT

t=1 μ0,t εt
p→ 0, or equivalently,

TX
t=1

(μ̂0,t − μ0,t) εt +

TX
t=1

μ0,t(u
d̂
t − εt) +

TX
t=1

(μ̂0,t − μ0,t)(u
d̂
t − εt)

p→ 0.

Lemma 9 Under Assumption 1, for d ∈ (0.5, 1.5), PT

t=1 μ0,t(u
d̂
t − εt)

p→ 0.
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Proof of Lemma A.9: Using summation by parts, we have

T−rϕ|
TX
t=1

μ0,tg
(r)(εt, 0)| ≤ T d−3/2T−rϕ

"
T−1X
t=1

|μ1,t+1 − μ1,t||
TX

s=t+1

g(r)(εs, 0)|+ |μ1,1
TX
t=1

g(r)(εt, 0)|
#

≤ T−rϕ
"
sup
t

Ã
|

TX
s=t+1

g(r)(εs, 0)|
!
T−1X
t=1

|μ0,t+1 − μ0,t|+ |μ0,1
TX
t=1

g(r)(εt, 0)|
#
,

which is Op(T
−rϕ(lnT )r+1T 1/2T−d+δ) for any δ > 0 using Lemma 1(iii). This is the largest

for r = 1, and it is Op(T
−ϕ+1/2−d+δ(lnT )2), which is op(1) when 0 < δ ≤ ϕ. Each summand

in r is also op(1). Moreover, using the Cauchy-Schwarz inequality, we have

TX
t=1

μ0,tg
(B)(εt, d− d̂) ≤

vuutÃ TX
t=1

μ20,t

!Ã
TX
t=1

[g(B)(εt, d− d̂)]2
!
= Op(

√
T 2(−d+δ)+1T 2),

where the equality follows from Lemma 1(iii) and Robinson and Hualde (2003, C.13). Hence,

the expression
PT

t=1(1/B!)(d̂ − d)Beμ(B)0,t εt = Op(T
3/2−d+δ−Bϕ) = op(1) upon extending the

Taylor series expansion up to B > (3/2− d+ δ)/ϕ.

Lemma 10 Under Assumption 1, for d ∈ (0.5, 1.5), PT

t=1(μ̂0,t − μ0,t)εt
p→ 0.

Proof of Lemma A.10: We have:

TX
t=1

(μ̂0,t − μ0,t)εt =

TX
t=1

Ã
B−1X
r=1

1

r!
(d̂− d)rμ(r)0,t

!
εt +

TX
t=1

µ
1

B!
(d̂− d)Beμ(B)0,t

¶
εt

and using summation by parts,

T−rϕ
TX
t=1

μ
(r)
0,tεt ≤ T−rϕ[sup

t

|
TX

s=t+1

εs|
T−1X
t=1

|μ(r)0,t+1 − μ
(r)
0,t |+ |μ(r)0,1

TX
t=1

εt|],

which is Op(T
−rϕ−d+δ+1/2) because |μ(r)0,t+1−μ

(r)
0,t | = 0 for t = 1, . . . , T − 1. This is the largest

for r = 1, and it is Op(T
−ϕ−d+δ+1/2), which is op(1) when 0 < δ ≤ ϕ. Also, each summand

in r is op(1) since (d− d̂)rT rϕ = Op(1). Using Cauchy-Schwarz’s inequality,
TX
t=1

µ
1

B!
(d̂− d)Beμ(B)0,t

¶
εt ≤ [

TX
t=1

µ
1

B!
(d̂− d)Beμ(B)0,t

¶2 TX
t=1

ε2t ]
1/2

=

q
op(T−2d)Op(T ) = Op(T

1/2−d) = op(1).

Finally the proof that
PT

t=1(μ̂0,t−μ0,t)(u
d̂
t − εt)

p→ 0 is a straightforward combination of the
aforementioned arguments, hence omitted.
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From Shimotsu (2010, Theorem 4), under Assumptions 1-2, d̂ − d = Op(m
−1/2) with

d ∈ (∆1,∆2) and −1/2 < ∆1 < ∆2 ≤ 7/4. Moreover, the long-run variance can be estimated
consistently, that is, σ̂2 − σ2 = op(1) (see, e.g., Andrews, 1991). Therefore, tβ̂i(d̂, σ̂

2) −
tβi(d,σ

2)
d→ 0, i = {1, 2}, is satisfied with the bandwidth m = [C T 2ϕ] for any ϕ > 0.

Proof of Theorem 2: Here, we suggest a simple modification for the proof of Iacone et al.
(2013, Lemma A.2), which plays a crucial role in establishing the result in Theorem 2. In
the proof of Lemma A.2, Iacone et al. (2013, p.44) considered, using summation by parts,

T d−3/2T−rϕ sup
τ

|
TX

t=1+[τT ]

μt(τ)g
(r)(εt, 0)|

≤ T d−3/2T−rϕ
⎛⎝ TX

t=1

|μ1,t+1 − μ1,t| sup
t

|
TX
s=t

g(r)(εs, 0)|+ sup
τ

|
TX

t=1+[τT ]

g(r)(εt, 0)|
⎞⎠ , (14)

which is op(1) when d ≤ 1, using the uniform convergence of
P[τT ]

t=1 g
(r)(εt, 0) and |μ1,t+1 −

μ1,t| ≤ Ct−d. This result is based on Robinson (2005, Lemma 1), more specifically, Lemma
1(i). For d > 1, Iacone et al. (2013) used Lemma 1(i) to show that the same expres-

sion is op(T
d−3/2−rϕ+1/2(lnT )r+1) = op(T

d−1−rϕ(lnT )r+1). For r = 1, this is the largest as

op(T
d−1−ϕ(lnT )2), which is op(1) when ϕ > d − 1. This follows since from Lemma 1(i)

|μ1,t+1 − μ1,t| = ∆d¶{t ≥ 1} ≤ Ct−d and PT

t=1 |μ1,t+1 − μ1,t| = O(T 1−d) = o(1) for d > 1.
However, the bound in Lemma 1(i) is not the strongest possible using Lema 1(i). Instead,
using Lemma 1(iii), |μ1,t+1 − μ1,t| = ∆d¶{t ≥ 1} = Op(T

−d+δ) for any δ > 0. So the ex-

pression (14) is op(T
d−3/2−rϕ+1/2(lnT )r+1T 1−d+δ) = op(T

δ−rϕ(lnT )r+1). When r = 1, it is

op(T
δ−ϕ(lnT )2), which is op(1) when 0 < δ < ϕ. Since the aforementioned results hold for

any δ > 0, the condition 0 < δ < ϕ always holds for any ϕ > 0 with δ depending on ϕ, say
δ = ϕ/2. With this modification, the arguments in Iacone et al. (2013, Lemma A.2) hold
for any ϕ > 0, which establish the results in Theorem 2 for any ϕ > 0 as desired.

9



Table 1: Finite Sample Size; Pure Fractional Processes. 

T d -0.4 0.2 0.4 0.8 1 1.4 
500 ELW 0.054  0.056  0.057  0.047  0.062  0.051  

 
MU 0.000  0.098 0.157 0.155 0.053 0.462 

 
UB 0.000  0.093 0.139 0.100 0.052 0.462 

1000 ELW 0.047  0.051  0.059  0.034  0.043  0.049  

 
MU 0.000  0.138 0.173 0.134 0.049 0.495 

 
UB 0.000  0.138 0.163 0.099 0.049 0.495 

2000 ELW 0.054  0.047  0.044  0.051  0.043  0.039  

 
MU 0.000  0.178 0.277 0.108 0.046 0.559 

 
UB 0.000  0.178 0.277 0.097 0.046 0.559 

 

 

Table 2: Finite Sample Size; AR(1) Processes with d=0. 

T AR 0 0.3 0.5 0.7 0.9 0.95 
500 ELW 0.074  0.068  0.049  0.018  0.017  0.005  

 
MU 0.051  0.059  0.030  0.037  0.049  0.045  

 
UB 0.051  0.059  0.030  0.037  0.047  0.034  

1000 ELW 0.085  0.068  0.057  0.008  0.017  0.005  

 
MU 0.057 0.031 0.046 0.046 0.042 0.053 

 
UB 0.057 0.031 0.046 0.046 0.042 0.051 

2000 ELW 0.064  0.067  0.069  0.017  0.029  0.005  

 
MU 0.066 0.045 0.058 0.041 0.044 0.049 

 
UB 0.066 0.045 0.058 0.041 0.044 0.049 

 

 

Table 3 Finite Sample Sizes; DGP 1-5 with d=0.4 

 
DGP-1 DGP-1 DGP-2 DGP-2 DGP-3 DGP-4 DGP-5 

T AR=0.4 AR=-0.4 MA=0.4 MA=-0.4 
AR1=0.3, 

AR2=0.5 

Measurement 

error 
GARCH 

500 0.061 0.059 0.084 0.107 0.033 0.052 0.084 

1000 0.057 0.058 0.076 0.094 0.056 0.031 0.074 

2000 0.048 0.065 0.08 0.069 0.045 0.052 0.069 

 



Figure 1: Unadjusted power for pure fractional processes
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Figure 2: Unadjusted power for AR(1) processes
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Figure 3: Unadjusted power for DGP 1-5
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