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This paper presents a theoretical examination of price responses to movements in demand 
and supply where firms face either unwanted inventories or stockouts in each period. The 
response mechanism consists of two complementary motives that arise when operating under 
uncertain business environments. To an increase in demand, a firm has a motive to lower its 
price reflecting lower effective marginal costs but also has another motive to raise its price to 
rebalance expected marginal revenues associated with two distinct demand states, unwanted 
inventories and stockouts. These two motives cancel out each other at optimum, resulting in 
a limited response of prices to demand shocks. To a cost-push shock, the firm has a motive to 
raise its price reflecting higher effective marginal costs for a given output level and is further 
prompted to raise prices reflecting a higher expected value of unit inventory. The two 
motives push prices up in the same direction, resulting in a large response of prices to supply 
shocks. 
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8 
I. Introduction 

 
The responsiveness of prices to demand and supply movements is a crucial 

question in economics because it helps explain short-run output fluctuations. Prior 
research has focused on the frequency of price changes,1 but this paper shifts the 
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focus to the magnitude of price changes and their dependence on the nature of 
shocks. The theory presented predicts that prices respond little to demand shocks 
but much to supply shocks.  

The framework used in this theory, developed by Kim and Moon (2017), 
highlights two complementary motives that shape a firm’s pricing and production 
decisions where its sales performances and profits are stochastic. Any firm that 
needs to set prices and produce outputs before knowing its precise market demand 
like most businesses in the real world would end up with either of two loss 
consequences: unwanted inventories (excess supply) versus unwanted stockouts 
(excess demand). Two complementary motives may emerge then. On one side, a 
firm has a “cost-compensating” motive to reflect some additional costs associated 
with the increased probability of being left with unwanted inventories. On the other 
side, the firm also has a “loss-balancing” motive to balance contingent losses that 
arise from two distinct states. 

The two motives also come into play in response to movements in demand and 
work to reoptimize the probabilities of unwanted inventories and stockouts. An 
increase in demand induces a firm to lower its price for each given level of output to 
reflect the lower effective marginal costs of unwanted inventories. At the same time, 
as the favorable demand shock generates imbalances in losses between two distinct 
demand states, the firm has a motive to raise prices, thereby reducing the stretched 
amount of marginal revenue associated with excess demand. These opposing 
motives cancel out each other at optimum, resulting in a limited response of prices 
to demand shocks. 

A cost-push shock, by contrast, increases the effective marginal costs of 
production and induces a firm to raise its price for each given level of output. At the 
same time, the shock increases the expected value of unwanted inventories, in turn 
increasing the marginal revenue associated with excess supply. The firm will raise 
prices, with a motive to rebalance marginal revenues associated between two distinct 
demand states. As the two motives let prices move in the same direction, prices will 
respond greatly to the adverse supply shock.  

Our theory is supported by recent microeconomic evidence on price-setting 
behaviors. For instance, Gagnon and Lopez-Salido (2019) find that prices change 
little to even large demand shocks such as mass population displacement and 
shopping sprees around hurricanes and snowstorms, using a weekly scanner data set 
from US supermarket chains. Moreover, the size of price responses is barely relevant 
to price stickiness in that such small price responses to large demand shocks are 
made amid frequent price changes.  

Eichenbaum et al. (2011) use a similar weekly scanner data set, but shift their 
focus to the sources of large price movements. They find that although prices 
typically change every two weeks, the magnitude of price changes is contained 
within a narrow band, which they call “reference prices.” They further find that 
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large price movements are associated with shifts of the reference levels, which occur 
systematically in relation to changes in costs. In other words, prices hover around 
reference levels most times unless the reference levels themselves shift, and large 
price movements are observed typically when costs change.2  

These studies jointly support the predictions of our theory: Eichenbaum et al. 
(2011) provide evidence of large price movements to cost shocks, while Gagnon and 
Lopez-Salido (2019)’s findings are evidence of little price responses to demand 
shocks. 

A number of empirical studies examining the size of unconditional price changes 
document the prevalence of small price adjustments, which is also closely related to 
the baseline prediction of our model. For example, Klenow and Kryvtsov (2008) 
examine the BLS microdata set for items of the US CPI and find that more than 40% 
of regular price changes are smaller than 5% in absolute value. These findings are 
consistent around the world: Wulfsberg (2009) documents that nearly half of price 
changes are smaller than 5% in Norway; Barros et al. (2012) report a similar result 
for Brazil and Vermeulen et al. (2012) for the Euro area. 

This paper provides a unified explanation for such scattered pieces of empirical 
evidence, which have long been found across different countries but without a 
theory. Furthermore, our theory contributes to the literature on the causes and 
mechanisms that underlie short-run output fluctuations. Most of the existing 
studies assume price stickiness and take it as a convenient device for generating 
large output movements in response to demand shocks. We shift the focus from 
frequency to magnitude and demonstrate how demand shocks and supply shocks 
can lead to considerable different price responses.  

The rest of the paper is structured as follows: Section 2 develops a dynamic 
model of monopolistic pricing and production decisions by extending the static 
model of Kim and Moon (2017). Section 3 examines some key properties of the 
model. Section 4 presents theoretical predictions and quantitative results. Section 5 
concludes. 

 
 

II. Setup  
 
We have expanded the static model proposed in Kim and Moon (2017) into a 

dynamic model with an infinite horizon.3 The fundamental business environment 

____________________ 
2 Midrigan (2011) uses a different term “regular prices” corresponding to the notion of “reference 

prices” and finds similar price behaviors. Using store-level scanner data collected at Dominick’s Finer 
Foods in the Chicago area, he finds that prices change frequently but tend to return to “regular prices”, 
which themselves barely change. 

3 Kim and Moon (2017) developed a static model in which firms have to handle uninsurable 
business losses to address why we observe unclear and mixed cyclical behaviors of markups. The paper 
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remains the same, where firms need to set prices and produce goods without prior 
knowledge of their market demand. However, in the dynamic model, firms base 
their pricing and production decisions on their expectations of future business 
conditions such as the evolution of production costs and demand distributions. At 
the start of each period t , a firm sets price tp  and produces output ty  before the 
realization of demand td . Once the price tp  and output ty  are decided, the 
market demand td  is determined upon the realization of a random demand factor 

tx :  
 

( )t t td x D p= ,  

 
where the demand function D  is twice-continuously differentiable with 0pD <  
and follows the standard property that 2 ( ) ( ) 0,p ppD p pD p+ <  indicating a 
decreasing marginal revenue as the price p  increases.  

Market demand evolves along the transition path of the probability distribution 
function for x . Let the distribution function be denoted by ;( )F x q , where the 
second argument q , an 1m´  vector, characterizes the distribution function F . 
The distribution function is continuous and differentiable for given q ; ( ; )f x q =

( ; ) 0F x
x
q¶

¶ > . q  is assumed to be realized at the beginning of each period according 
to the transition function G  following a Markov process, 1( , ) Pr( tG q q q +¢ = £

| 0)tq q¢ = . 
At the beginning of each period t , the firm produces output ty  and makes it 

available for sales together with inventory holdings 1 1( )t t tn s d +
- -= -  brought 

forward from period 1t- . Given that tn  is known at the beginning of period t , 
choosing the output level ty  is equivalent to choosing the level of stock ts  
available for sales,  

 

t t ts y n= + .  (1) 

 
We consider production technology with constant returns to scale and total 

production cost ( )tC y  to be proportional to output produced: ( )t t tC y c y=  with
0tc >  for all t . This specification helps to formulate the monopolist’s dynamic 

decision problem to a standard recursive structure of the Bellman equation. Given 
that carrying inventories tn  from the previous period is costly, we also introduce 
the marginal cost of holding inventories, 0tq > . We assume that tc  and tq  are 
realized at the beginning of each period. 

We now define x̂  as the lowest admissible value of the realized x  needed to 
clear the market:  

____________________ 
found that the cyclicality of markups depends on firms’ fundamental characteristics such as their 
market power, production technology, and reservation value of products. 
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ˆ ( )t t ts x D p= .  (2) 

 
With this identity (2), ( , )t tp s  and ˆ( , )t tp x  are one-to-one injective mapping and 

ts  is monotone-increasing in t̂x  for every given tp . Using this relationship, the 
realized period profit for a firm that starts with inventory holdings tn  and ends 
with a realized market demand td  can be expressed as a function of tp , t̂x , tn , 
and tq . This equation takes the form:  
 

1
ˆ( , , , ) { } ( )t t t t t t t t t t t tp x n p s n c s n q np q += - - - -   (3) 

ˆ ˆ ˆ{ ( ) } ( ) { ( ) }t t t t t t t t t t tp x x x D p c x D p n q n+= - - - - - , 

 
where 1tn +  is determined by the difference between t̂x  and tx , multiplied by a 
factor 1

ˆ( ); ( ) ( )t t t t tD p n x x D p+
+ = -  such that ˆ( ) ( )t t tx x D p-  for t̂ tx x>  and zero 

otherwise. The first term in the equation represents the revenue generated by the 
sale of goods, while the second and third terms represent the production cost and 
the cost of holding inventory, respectively. The realized period profit p  appears 
random at the beginning of each period and thus the expected period profit at the 
time of making decisions for each period t  can be written as follows:  
 

ˆ( , , , )t t t tW p x n q   

ˆ( , , , ) ( ; )
t

t t t t t tx
p x n x dF xp q= ò   (4) 

ˆ ( )

ˆ( )
ˆ ˆ( ) ( ; ) ( ) ( ; ) { ( ) }

t t

t t

x x

t t t t t t t t t t t t t t tx x
p D p x dF x p D p x dF x c x D p n q n

q

q
q q= + - -ò ò , 

 
where ( )x q  and ( )x q  are the lower and upper bounds of x  for the distribution 
function ( ; )F x q .  

We assume that the firm makes pricing and production decisions to maximize 
the expected present value of the future profit stream:  

 

0
0

ˆ{ , } 0

ˆmax ( , , , )
t t t

t
t t t t t

p x t

E W p x nb l q
¥
=

¥

=

é ù
ê ú
ë û
å , (5) 

s.t. 1
ˆ( ) ( )t t t tn x x D p+

+ = -  for all 0,1,2,t = K ,  
ˆ ( )t t tx D p n³ , 

0 0( , )n q  given.  

 
[ ]tE ×  for 0,1,t = K  denotes the expectations operator conditional on period-t 

information set. The constraint, ˆ ( )t t tx D p n³ , follows from the feasibility condition 
that 0ty ³  and thus t ts n³  for all t’s. b  is a subjective discount factor lying 
between 0 and 1 and thus 1 /t tbl l+  is seen as the stochastic discount factor over 
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t   and 1t+ .  
Notably, the cost of stockouts is implicitly contained in the model’s economic 

profits as lost sales opportunities. This cost reflects the fact that customers who 
cannot purchase the product may turn to buying a competitor’s product. The cost 
can be further explicitly specified to include other costs associated with stockouts, 
such as reputation damage, which could also affect the firm’s future sales. We leave 
the explicit inclusion of such costs for numerical analysis later without unnecessary 
complications. 

 
 

III. Optimal Policy Rules  
 
The optimal pricing and production policies that solve the dynamic decision 

problem (5) satisfy the first-order conditions with respect to t̂x  and tp :  
 

ˆ

ˆ 1 1 1( )
ˆ( , , , ) { } ( ) ( ; ) 0

t

t

x

x t t t t t t t t t t tx
W p x n E c q D p dF x

q
q q+ + +

é ù+ L - =ê úë ûò ,  (6) 

 
and  

 
ˆ( , , , )p t t t tW p x n q   (7) 

ˆ

1 1 1( )
ˆ{ }{ } ( ) ( ; ) 0

t

t

x

t t t t t t p t t tx
E c q x x D p dF x

q
q+ + +

é ù+ L - - =ê úë ûò , 

 
where 1

1
t

tt
l
lb +

+L = , and x̂W  and pW  are the first-order derivatives of the 
expected period profit W  defined by (4):  

 
( )

ˆ ˆ

ˆ
( )

( ) ( )
ˆ ˆ

ˆ( , , , ) ( )[ ( ; ) ],

ˆ ˆ( , , , ) [ ( ) ( )] ( ; )

ˆ ˆ( ) ( ; ) ( )[ ( ; ) ].

t

t

t

t

t t

t t

x
x t t t t t x t t t t

x
p t t t t x t t t p t t t

x x
x t t t t t p t x t t t

W p x n D p p dF x c

W p x n x D p p D p dF x

x D p dF x x D p pdF x c

q

q

q q

q q

q q

q q

ì = ò -
ïï = ò +í
ï + ò + ò -ïî

 (8) 

 
By substituting back with (8) and rearranging them, we can reduce (6) and (7) to  
 

{
ˆ( )

ˆ ( )
MC.Y

MR.Y.XD MR.Y.XS

( ; ) ( ) ( ; )
x x

x x
c p dF x E c q dF x

q

q
q qé ù¢ ¢ ¢= + L -ê úë ûò ò1442443 14444244443

,  (9) 

 
and  
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( )

ˆ

MR.P.XD

ˆ0 ( ) ( ; )
x

x
xD p dF x

q
q= +ò144424443

 (10) 

ˆ ˆ

( ) ( )

MR.P.XS

{ ( ) ( ) } ( ; ) ( ) ( ) ( ; )
x x

p px x
x D p D p p dF x E c q xD p dF x

q q
q qé ù¢ ¢ ¢+ - L -ê úë ûò ò

144444444444424444444444443
, 

 
respectively, where we use “prime ( )¢ ” to denote the next period ones while 
removing time subscripts. A set of acronyms in the language of economics 
accompanies the static version of the model developed in Kim and Moon (2017) 
(p.535 provides details).4 For example, “MR.Y.XD” can be read as the expected 
marginal revenue (MR) w.r.t. production decision (Y) over excess demand states 
(XD). 

Equations (9) and (10) characterize the two optimality conditions in terms of 
marginal analysis in economics. Equation (9) is the standard statement of MR=MC. 
But this time, because the production decision is made before the realization of 
demand shock, the firm needs to take into account two distinct states of excess 
demand and excess supply. Therefore, an ex-ante optimal production decision will 
be made where the marginal cost equals the expected marginal revenues summed 
over the two distinct states: XD and XS. To appreciate some unique features of the 
condition in comparison with the standard “MR=MC” statement, we rewrite (9) to  

 

XS /XD odds

ˆ( ; ) ˆ1 { [ ( )] ( ; )}
ˆ1 ( ; )

F x
p c E c q F x

F x
q q
q

ì ü
ï ïï ï ¢ ¢ ¢= - - L -í ý

-ï ï
ï ïî þ
14243

. (11) 

 
This expression can be seen as a dynamic version of the one that was proposed by 
Prescott (1975) and has repeatedly appeared in the literature to capture the idea of 
effective marginal cost pricing under demand uncertainty (for example, Eden 
(1990), Rotemberg and Summers (1990), Dana (1998, 1999), and Kim and Moon 
(2017)). The term denoted by “XS/XD odds” amounts to some additional cost 
attributable to demand uncertainty. As a whole, (11) shows a schedule for the firm’s 
willingness to supply by adding the shadow cost of production under demand 
uncertainty to the traditional supply curve. As in Kim and Moon (2017), we refer to 
the condition as an offer curve to differentiate it from the traditional supply curve.  

Equation (10) states that, for a given production level, the firm’s optimal pricing 
is made at which the expected marginal revenues over the two distinct states (XD 

____________________ 
4 MC stands for marginal cost; MR for marginal revenue; Y for w.r.t. production; P for w.r.t. pricing; 

XD for excess demand; and XS for excess supply. 
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and XS) cancel out each other. The firm’s ex-ante chosen price for a given level of 
production will result in either state of excess demand or excess supply ex post. The 
state of excess demand (excess supply) means that the price set ex ante turns out too 
low (high), in turn meaning that a marginally higher price would make additional 
revenue (loss). Therefore, an ex-ante optimal pricing decision, as enunciated in 
MR.P.XD+MR.P.XS=0 from equation (10), seeks to balance the two marginal 
revenues associated with XD and XS states. We refer to the condition as a hedge 
curve to highlight the firm’s balancing motive. 

A dynamic relationship that commonly appears across the two conditions 
associates the marginal revenue with XS states. This is because unwanted 
inventories are modeled to be carried forward next period, whereas stockouts are 
not.5 The marginal revenues associated with XS states are formed on the difference 
between future production costs and future inventory-holding costs (i.e., c q¢ ¢- ) to 
measure how much the marginal impacts of XS states affect the future profit stream. 
In other words, this term shows how much the firm can save tomorrow if it carries 
forward one additional unit of output produced today. Its expected present value, 
namely, ˆ

( )[ ( ) ( ; )],x
xE c q dF xq q¢ ¢ ¢L ò -  can be thus seen as a “forward­looking 

reservation price” at which the firm is indifferent between selling an additional unit 
in the present and carrying it forward to the future.  

The following result ensures that under a certain condition, the two optimality 
conditions constitute an optimal set of pricing and production.  

 
Lemma. Let q  be a fixed parameter. A set of pairs ( ˆ,p x ) satisfying equation (9) 
generates an upward-sloping curve (which we call an offer curve). By contrast, a set of 
pairs ( ˆ,p x ) satisfying (10) generates a downward-sloping curve (which we call a hedge 
curve) under the condition that ˆ ˆ( ; )

ˆ1 ( ; ) [ ( )]( )xf x P
F x p E c qpq

q e ¢ ¢ ¢- - L -> , where ( )pe  denotes the 
price elasticity of demand. 

 
Proof. To prove that an offer curve is upward-sloping, we will show that 

ˆ eq. (9)| 0dp
dx >  for all x̂  along (9). Similarly, to prove that a hedge curve is 

downward-sloping, we will show that ˆ eq. (10)| 0dp
dx <  for all x̂  along (10) under the 

stated condition. The complete proof can be found in the Appendix.           □ 
 
This result helps clearly visualize the two optimality conditions (9) and (10) 

through the association of p  and x̂ . Equation (9) depicts a positive relationship 
between p  and x̂ , whereas (10) shows a negative relationship between p  and 
x̂  under the stated condition.  

The stated condition for a downward-sloping hedge curve is worth appreciating. 

____________________ 
5 If the model is extended to include explicit cost of stockout, the marginal revenues are associated 

with XD states as well. We provide such a model later in Section 4.2 for numerical analysis. 
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The ratio, ˆ ˆ( ; )
ˆ1 ( ; )

xf x
F x

q
q- , on the r.h.s. of the condition can be read the elasticity of excess 

demand probability w.r.t. x̂  because ˆ ˆ ˆ( ; ) {1 ( ; )} ˆ
ˆ ˆ ˆ1 ( ; ) 1 ( ; )[ / ]xf x d F x dx

F x F x x
q q
q q

-
- -= . Thus, the condition 

requires the firm never to set prices within the inelastic range of the excess demand 
probability, similar to the standard textbook statement that a monopolist never sets 
prices within the inelastic range of market demand.  

Given that the two curves described above complement each other, the firm’s 
optimal pricing and production decisions are made where the two curves intersect.  

 
 

IV. Price Responsiveness to Demand and Supply Shocks  
 

4.1. Price Response Mechanism  
 
The two curves represent two motives that emerge from where a firm faces 

stochastic business outcomes that may lead to unwanted inventories or unwanted 
stockouts. On one side, a firm has a “cost-compensating” motive, by which it 
reflects the shadow cost of production under demand uncertainty on its supply 
schedule. On the other side, the firm also has a “loss-balancing” motive, by which it 
seeks to balance contingent losses that arise from two distinct states. 

These two motives also work to rebalance the probabilities of such outcomes in 
response to changing business conditions. This mechanism results in different price 
responses based on the nature of shocks faced by the firm. We begin by examining 
price responses to demand shocks and then contrast them with price responses to 
cost shocks.  

 
Price Response to Demand Shocks  
 
To understand how a firm reoptimizes its pricing and production decisions, we 

will consider a demand shock that takes the form of a changing mean of x  
following a lognormal distribution. The following result presents the mechanism by 
which prices respond to an increase in demand.  

 
Proposition 1. Consider a log-normal distribution for 2: ln( ) ( , )x x m s: N . Suppose 
an increase in m  from 2{ , }q m s= . On impact, the offer curve (9) associates every 
given x̂  with a lower price following an increase in m , whereas the hedge curve (10) 
associates every given x̂  with a higher price under the condition of Lemma.  

 
Proof. The proof consists of two main parts. First, we demonstrate that the 
optimality conditions (9) and (10) are no longer valid after the demand shock. 
Second, we show that these conditions can be restored through the reoptimization 
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of pricing and production, subject to the condition stated in the Lemma. A complete 
proof is provided in the Appendix.                                     □ 

 
A favorable demand shock leads to a higher probability of stockouts and a lower 

probability of unwanted inventories for every given ˆ( , )p x . That is, the favorable 
demand shock ( )m m¢ >  is expressed as a first-order stochastic dominance in that 

ˆ ˆ1 ( ; ) 1 ( ; )F x F xm m¢- > -  for every given x̂ . This means that the firm is more likely 
to face lost sales opportunities and less likely to be left with unwanted inventories. 
As a result, condition (9) breaks down as the r.h.s. of (9) exceeds the marginal 
production cost c . To restore the condition, the firm needs to lower prices for 
every given x̂  (or increasing production for every given p ). As a result, the offer 
curve shifts downward (or shifts outward) as shown in Figure 1(a).  

At the same time, the favorable demand shock breaks condition (10) and leads 
the r.h.s. of (10) to exceed zero. To restore the condition, the firm needs to raise 
prices for every given x̂  (while also increasing production for every given p ). As 
a result, the hedge curve shifts upward as shown in Figure 1(a).  

These results can be intuitively understood. The offer curve is underlain by a 
“cost-compensating” motive, upon which firms set prices according to the schedule 
of effective marginal costs. Given that the favorable demand shock means being 
more likely to sell for every given output level, the effective marginal costs fall for 
every given output level; thus, the offer curve shifts down. 

 
[Figure 1] Price response mechanism: demand shock vs. cost shock  
 

 
(a) Shifts to demand shock               (b) Shifts to cost-push shock 

 

 
The hedge curve is underlain by a “loss-balancing” motive, upon which firms set 

prices to remove any imbalances in marginal revenues associated with excess 
demand and excess supply. As the marginal revenue associated with excess demand 
(MR.P.XD) increases in response to the favorable demand shock and the marginal 
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revenue associated with excess supply (MR.P.XS) decreases, firms will raise prices 
to rebalance the marginal revenues by moving some of the increase in MR.P.XD to 
cover some of the decrease in MR.P.XS for every given output level. The hedge 
curve shifts up.  

Altogether, the two motives induce opposite price responses to the favorable 
demand shock. Prices little respond to demand shocks.  

 
Price Response to Supply Shocks  
 
The response mechanism based on the two motives remains applicable to shocks 

of various types, although the resulting pricing behaviors may vary. Next, we shift 
our focus to the supply side and investigate how a firm adjusts its pricing and 
production decisions in response to a positive shock to production cost. 

 
Proposition 2. Let c be a stochastic process with a positive autocorrelation. Suppose a 
positive shock to c. Then, the offer curve (9) and the hedge curve (10) both associate 
every given x̂  with a higher price on impact.  
 
Proof. The proof consists of two main parts. First, we demonstrate that the shock 
causes the two optimality conditions (9) and (10) to break down. Then, we show 
that one can restore them by reoptimizing price and production as stated. The 
complete proof can be found in the Appendix.                            □ 
 

As for condition (9), a cost-push shock increases present and future production 
costs ( c  and c¢ ). However, the maximum possible change in the r.h.s. is smaller 
than the shock size on immediate impact because the stochastic discount factor and 
the probability of excess supply are both less than 1. Therefore, the cost-push shock 
makes condition (9) break down toward the l.h.s larger for every given ˆ( , )p x . To 
restore the condition, the firm needs to raise prices for every given x̂ . As a result, 
the offer curve shifts upward as shown in Figure 1(b).  

The response of the firm to the cost-push shock with respect to condition (10) is 
more straightforward. The adverse supply shock affects the condition to the extent 
that it adds to expected future production costs ( )c¢ , leading it to break down as its 
whole r.h.s expression now falls below zero for every given ˆ( , )p x . To restore the 
condition (10), the firm needs to raise prices for every given x̂ . As a result, the 
hedge curve also shifts upward as shown in Figure 1(b). 

Intuitively, an increase in production costs causes the two motives to react in the 
same direction. Firms with the cost-compensating motive will raise prices when the 
effective marginal costs increase, which is indeed so this time by the cost-push shock. 
The offer curve thus shifts up.  

At the same time, the cost-push shock raises the future production costs, in turn 
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raising the value of future inventories that are carried forward in the state of excess 
supply. As the marginal revenue associated with the excess supply becomes greater 
than before (or, the marginal loss expected in the state of excess supply becomes 
smaller now), firms with the loss-balancing motive will raise prices and thus the 
hedge curve shifts up.  

Altogether, the two motives make prices respond to the same direction in 
response to the cost-push shock. Prices are highly responsive to supply shocks. 

 
[Table 1] Benchmark model: Parameter values and steady states  
 

Parameter values  Steady states 

a  e  b  mr  
cr   rL  qr    ssm  sss  ssc   ssL  ssq   ssp   ˆssx  sss  

1 6 0.99 0.9 0.9 0.9 0.9  1 0.5 1 0.99 0.5 1.23 2.21 0.56 

 
4.2. Numerical Analysis  

 
We now consider a demand function with constant elasticity that is used 

extensively in the macroeconomics literature: ( )D p ap e-=  with the price elasticity 
of demand 1e > .6 For a log-normal distribution for x , 2ln( ) ( , )x m s: N , we 
have (9) and (10) as follows: ( / )bl l¢ ¢L =   

 
ˆ ˆ{1 ( ; )} [ ( )] ( ; )c p F x E c q F xq q¢ ¢ ¢= - + L - , (12) 

2 2 ˆ1 lnˆ ˆ0 {1 ( ; )} {1 ( )}exp 1 erf
2 2 2

x
x F x p

s s mq f m
s

é ùæ ö æ ö+ -
= - + - + -ê úç ÷ ç ÷

è ø è øë û
, (13) 

 
where  

 
1 1 lnˆ( , ) erf
2 2 2

x
F x

mq
s

-æ ö= + ç ÷
è ø

, 2{ , }q m s= , 

 
and  

 
[ ( )]

( )
p E c q

p
p

f e
¢ ¢ ¢æ ö- L -

= ç ÷
è ø

, 

 
with the Gauss error function, erf(x), defined by  

____________________ 
6 Strictly speaking, the demand function should be written as ( ) ( / )AD p a p P e-= , where AP  is 

the aggregate price index. However, since the aggregate price index is given exogenously in our partial 
equilibrium model, we have normalized it and set 1AP = . 
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2

0

2
erf ( ) exp( )

x

x t dt
p

= -ò . 

 
We consider a spread-preserving positive demand shock and allow m  to shift 

over time. We assume that m  follows a stationary AR(1) process:  
 

(1 ) ss em m mm r m r m¢ = - + + , 

 
where ssm  denotes the steady state value of m , mr  its autoregressive coefficient, 
em  i.i.d. normal disturbances with mean zero.  

We also consider fluctuations in the marginal costs of production c  and assume 
that c  follows a stationary AR(1) process:  

 
(1 ) ss

c c cc c c er r¢ = - + + , 

 
where ssc  denotes the steady state value, cr  autoregressive coefficient, and ce  

i.i.d. normal disturbances with mean zero.  
 

[Figure 2] Impulse responses to a demand shock 
 

 
Note: The line with crosses traces the movements of variables over 20 periods in response to 

shocks to the demand distribution ( )m . The size of the shock is normalized to 1% of its 



The Korean Economic Review  Volume 40, Number 2, Summer 2024 302

steady state level and the size of responses is expressed in % deviation from the steady state.  
We similarly assume AR(1) processes for the transition of the stochastic discount 

factor ( / )bl l¢ ¢L =  and the cost of inventory holdings ( )q . 
Table 1 presents parameter values and steady states for the model. r  indicates 

the AR(1) autocorrelation coefficient of a variable. The superscript “ss” appended to 
a variable indicates the steady state value of that variable. We set these parameter 
values following the literature: the demand elasticity e  is set to 6, as it is usually 
assumed between 3 and 10 in the literature. The subjective discount factor b  is 
set to 0.99, implying that one period in the analysis can be considered a quarter in 
the calendar. As part of a robustness check, we also carry out quantitative analysis 
with different parameter values and find that our results remain to hold 
qualitatively.  

Figures 2 and 3 show impulse responses of prices ( )p , threshold value ˆ( )x , 
stock levels ( )s , expected value of unit inventory ˆ

( )[ ( ) ( ; )]x
xE c q dF xq q¢ ¢ ¢L ò - , XS 

probability ˆ( ; )F x q , and expected inventory stock ˆ[ ] [( ) ( )]E n E x x D p+¢ = -  over 
the subsequent 20 periods to demand and cost shocks at time 0, respectively. In each 
case, the size of the shock is normalized to 1% of its steady state level and the size of 
responses is expressed in % deviation from the steady state. The quantitative results 
confirm the key predictions of Propositions 1 and 2. 

Figure 2 demonstrates results from the demand shock. Prices respond little to a 
positive increase in demand on impact and throughout the whole time horizon. 
This result remains unchanged irrespective of shock persistence. By contrast, the 
level of x̂  rises on impact by about 1% from its steady state level and gradually 
decreases toward the steady state. These contrasting behaviors of p  and x̂  are 
what has been expected for the case of demand shocks as well illustrated by Figure 1 
(a). Furthermore, the optimal responses of output stock s  can be easily 
understood from the joint movements of ˆ( , )p x . As defined by equation (2), 
{( , )}p s  has a one-to-one map to ˆ( , )p x . Given that p  responds little while x̂  
adjusts by about 1% before gradually returning to its steady state, the stock s  also 
increases immediately by about 1% followed by gradual fall. As a whole, the 
numerical experiments show that demand shocks lead to a small price adjustment 
and make it contrast with output responses. This is exactly as predicted by 
Proposition 1. 

The lower three panels contain extra information. The unresponsive XS 
probability implies that x̂  responds proportionally to the size of shock to m . The 
expected value of unit inventory is neither responsive to the demand shock because 
the future marginal costs of production and inventory holdings ( c¢  and q¢ ) are 
exogenously given. The expected inventory stock increases as the firm optimally 
raises the level of stocks in response to the favorable demand. 

Figure 3 shows the results from a cost-push shock. A 1% increase in the marginal 
production cost is reflected onto price change, driving prices up about 1% from the 
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steady state level on impact. Prices then gradually return toward the steady state. By 
contrast, the level of x̂  responds little to the cost-push shock.7 These contrasting 
responses of p and x̂  are as expected from Figure 1 (b), which illustrates how the 
hedge and offer curves shift for the case of supply shocks. The optimal responses of 
output stock s  can then be easily understood from the joint movements of ˆ( , )p x  
along with equation (2). Given that p  increases by 1% while x̂  responds little, 
the stock ˆs xap e-=  will fall by as much as the magnitude of demand elasticity e , 
which is arbitrarily assumed 6 in the present numerical experiment (Table 1 shows 
specific parameter values). 

 
[Figure 3] Impulse responses to a cost-push shock 
 

 
Note: The line with crosses traces the movements of variables over 20 periods in response to 

shocks to the production cost ( )c . The size of the shock is normalized to 1% of its steady 
state level, and the size of responses is expressed in % deviation from the steady state.  

 
Again, the lower three panels contain extra information. The increase in the 

expected value of unit inventory reflects the fact that it becomes more expensive to 
produce output due to the cost-push shock. The impulse responses for the other two 
variables can be also easily understood: the XS probability rises reflecting a small 
increase in x̂  while the distribution function F  itself unchanged. The expected 
inventory stock falls on impact as the firm optimally reduces the level of stocks in 

____________________ 
7 However, the qualitative responses of x̂  are ambiguous depending on the precise shifts of the 

hedge and offer curves. This is well illustrated by 1 (b). 
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response to the adverse cost shock. 
We further check the quantitative robustness of these results. First, we examine a 

model that explicitly includes stockout costs. We introduce stockout costs by 
assuming that a certain fraction of customers who cannot buy products from a firm 
due to stockouts never return to the firm. That is, stockouts result in reputational 
damage that affects the firm’s future sales. Let b denote the present value of future 
sales losses that arise from one unit of stockouts. We assume for simplicity that the 
marginal stockout cost is constant for each given period while being allowed to vary 
over time. Specifically, the period profit (3) is then changed to  

 

1
ˆ( , , , , ) { } ( )t t t t t t t t t t t t t t tp x n m p s n c s n q n b mp q += - - - - -  

ˆ ˆ ˆ{ ( ) } ( ) { ( ) }t t t t t t t t t t t t tp x x x D p c x D p n q n b m+= - - - - - - , 
 

where tm  is the amount of stockouts that was brought from the previous period 
and thus 1tm +  is determined by the difference between t̂x  and tx , multiplied by 
a factor 1

ˆ( ); ( ) ( )t t t t tD p m x x D p-
+ = - -  such that ˆ( ) ( )t t tx x D p- -  for t̂ tx x<  

and zero otherwise.  
The first-order conditions derived from the corresponding maximization 

problem are obtained as follows:  
 

{
MC.Y MR.Y.XD MR.Y.XS

ˆ ˆ{ [ ]}{1 ( )} [ { }] ( )c p E b F x E c q F x¢ ¢ ¢ ¢ ¢= - L - + L -14444244443 144424443 ,  

 
and  

 

ˆ

MR.P.XD

ˆ ˆ0 ( ){1 ( )} ( ) ( )p x
xD p F x E b D p xdF x

¥é ù¢ ¢= - - Lê úë ûò
14444444244444443

  

ˆ ˆ

0 0

MR.P.XS

{ ( ) ( )} ( ) ( ) ( ) ( )
x x

p px D p pD p dF x E c q D p xdF xé ù¢ ¢ ¢+ + - L -ê úë ûò ò
14444444444244444444443

. 

 
Using the same functions from the previous numerical analysis, the two 

optimality conditions can be expressed to  
 

1 1 ln 1 1 ln
{ [ ]} erf [ ( )] erf

2 2 2 22 2

x x
c p E b E c q

m m
s s

é ù é ù- -æ ö æ ö¢ ¢ ¢ ¢ ¢= - L - + L - +ê ú ê úç ÷ ç ÷
è ø è øë û ë û

, and 

2 2 ˆ1 1 ln 1 lnˆ0 erf [ ]exp 1 erf
2 2 2 22 2

x x
x E b

p
m e s s mm

s s

é ùé ù æ ö æ ö- + -æ ö ¢ ¢= - + L + +ê úç ÷ ç ÷ê úç ÷
è ø è ø è øë û ë û
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2 2 ˆ1 ln
{1 ( )}exp 1 erf

2 2 2

x
p

s s mf m
s

é ùæ ö æ ö+ -
+ - + +ê úç ÷ ç ÷

è ø è øë û
, 

on which the impulse responses shown in Figure 4 are based. More precisely, the 
computation of impulse responses assumes that b , the marginal stockout cost, 
varies over time around the steady state of 0.5ssb = . All the other parameters are 
assumed the same as in Table 1 for (12) and (13). As before, the size of the shock is 
normalized to 1% of its steady state level and responses are in % deviation from the 
steady state. The impulse responses of prices and outputs are qualitatively the same 
whether with or without stockout costs. However, with stockout costs, outputs 
respond less to a cost-push shock than they do without stockout costs. The firm 
reduces production because it now puts more weight on XD states. Above all, the 
results are consistent with the predictions from Proposition 1 and  

 
[Figure 4] Impulse responses of price and quantity: with explicit stockout costs 
 

 
(a) To a 1% increase in m  

 
(b) To a 1% increase in c  

 

Note: The impulse responses are from a model with explicit inclusion of stockout costs. The 
computation is precisely based on where b denotes the marginal stockout cost that varies 
over time around the steady state of 0.5ssb = . All the other parameters are assumed the 
same as in Table 1 for (12) and (13). The size of the shock is normalized to 1% of its steady 
state level and responses are in % deviation from the steady state.  
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Secondly, we conduct quantitative examinations against another common 
specification of demand used in the literature. With linear demand, ( )D p a dp= - , 
we find that, although the output response to the cost-push shock is relatively small 
compared with that to the constant elasticity case, the dynamic behaviors of prices 
and outputs in response to demand and supply shocks remain qualitatively identical. 
These results confirm again the predictions of Propositions 1 and 2 (Figure 5 is an 
example, where we use ( ) 1 / 2D p p= - ). 

 
[Figure 5] Impulse responses of price and quantity: Linear demand 
 

 
(a) To a 1% increase in m  

 
(b) To a 1% increase in c  

 

Note: The impulse responses are from a model with a linear demand function ( ) 1 / 2D p p= - . 
All the other parameters than demand’s are assumed the same as in Table 1 for (12) and 
(13). The size of the shock is normalized to 1% of its steady state level and responses are in % 
deviation from the steady state.  

 
 

V. Conclusions  
 
The paper presents a theoretical model that examines how prices respond to 

changes in demand and supply. We consider firms that have to set prices and 
produce outputs before knowing its precise market demand. The main prediction of 
the model is that prices respond little to changes in demand but much to supply 
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shocks. These conditional price movements have been found by empirical studies 
with data from many different countries, though less known due to the absence of a 
guiding theory.  

Our theory provides new insights into how demand and supply shocks can lead 
to considerable different price movements. The different price responses to different 
shocks are explained within a unified framework in which the cost-compensating 
and loss-balancing motives interplay. The predicted sharp contrast in price 
responses between demand and cost shocks is consistent with recent microeconomic 
evidence that price changes are systematically related to cost changes but little to 
even large demand movements. 
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Appendix  
 

Proof of Lemma  
 
(A) The XS curve upward-slopes. Eq. (9) can be rewritten to and denoted by  
 

ˆ ˆ ˆ( , ; ) {1 ( ; )} [ ( )] ( ; ) 0SM p x p F x E c q F x cq q q¢ ¢ ¢= - + L - - = .  (A.1) 

 
The derivative w.r.t. p  is then given by  
 

ˆ1 ( ; ) 0S
pM F x q= - > . 

 
The derivative w.r.t. x̂  is  
 

ˆ ˆ{ [ ( )]} ( ; ) 0S
xM p E c q f x q¢ ¢ ¢= - - L - < , 

 
because any optimal price must be greater than the forward-looking reservation 
price [ ( )]E c q¢ ¢ ¢L - .  

Consequently,  
 

XS curve (9

ˆ

)

0
ˆ

S
x
S
p

Mdp
dx M

= - > . 

 
(B) The XD curve downward-slopes. Eq. (10) can be rewritten to and denoted by  
 

ˆ ˆ ˆ( , ; ) ( ){1 ( ; )}DM p x xD p F xq q= -  
ˆ

( )
{ ( ) ( ) ( ) [ ( )]} ( ; ) 0

x

p p x
D p D p p D p E c q xdF x

q
q¢ ¢ ¢+ + - L - =ò , (A.2) 

 
We have the derivative w.r.t. p  and obtain:  
 

ˆ ˆ( ){1 ( ; )} {2 ( ) ( )D
p p p ppM xD p F x D p pD pq= - + +  

ˆ

(
[ ( )] ( ) ( ; ) 0

x

pp x
E c q D p xdF x

q
q¢ ¢ ¢- L - <ò  

 
because the standard property of demand (i.e., 2 ( ) ( ) 0p ppD p pD p- < ) implies 
2 ( ) { [ ( )]} ( ) 0p ppD p p E c q D p¢ ¢ ¢+ - L - < .  

We turn to the derivative of ˆ( , )DM p x  w.r.t. x̂  and obtain  
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ˆ ˆ ˆ ˆ( ){1 ( ; )} ( ){ [ ( )]} ( ; )D
x pM D p F x D p p E c q xf xq q¢ ¢ ¢= - + - L -   

( ) ˆ ˆ[ ( )] ( ; )ˆ( ){1 ( ; )} 1
ˆ( ) 1 ( ; )

ppD p p E c q xf x
D p F x

D p p F x
qq
q

é ù¢ ¢ ¢ì ü- L -
= - + í ýê ú-î þë û

  

ˆ ˆ( ; ) [ ( )]ˆ( ){1 ( ; )} 1 ( ) 0
ˆ1 ( ; )

xf x p E c q
D p F x p

F x p
qq e
q

é ù¢ ¢ ¢ì ü- L -
= - - <í ýê ú- î þë û

  

 
under the stated condition. Consequently,  
 

XD curve (1 )

ˆ

0

0
ˆ

D
x
D
p

Mdp
dx M

= - < . 

 
Proof of Proposition 1  
 
(A) The XS curve shifts down. For a log-normal distribution for x , ln( )x :

2( , )m sN , we will show that the condition (9) breaks down in response to an 
increase in m , leading (A.1) to be greater than zero.  

We have the partial derivative of ˆ( , ; )SM p x q  w.r.t. m  as follows:  
 

ˆ ˆ( ; ) ( ; )
[ ( )]S F x F x

M p E c qm
q q

m m
¶ ¶¢ ¢ ¢= - + L -
¶ ¶

 

ˆ( ; )
{ [ ( )]} 0

F x
p E c q

q
m

¶¢ ¢ ¢= - - L - >
¶

  

 
Because [ ( )] 0p E c q¢ ¢ ¢- L - >  and ˆ( ; ) ˆ ˆ( ; ) 0F x xf xq

m q¶
¶ = - <  for all x̂ ’s. To hold (9) 

back, the firm needs to lower prices for every given x̂  because 0S
pM >  (as shown 

in the proof of Lemma).  
 
(B) The XD curve shifts up. Similarly, we will show that the condition (10) breaks  
down in response to an increase in m , leading (A.2) to be greater than zero.  

We have the partial derivative of ˆ( , ; )DM p x q  w.r.t. m :  
 

ˆ

( )

ˆ( ; )ˆ ( ) { ( ) ( ) ( ) [ ( )]} ( ; )
xD

p p x

F x
M xD p D p D p p D p E c q xdF xm q

q q
m m

¶ ¶¢ ¢ ¢= - + + - L -
¶ ¶ ò . 

 
The last term can be rewritten as follows:  
 

ˆ ˆ

( ) ( )

ˆ( ; ) ( ; )ˆ( ; )
x x

x x

F x F x
xdF x x dx

q q

q qq
m m m
¶ ¶ ¶

= -
¶ ¶ ¶ò ò   
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ˆ

( )

ˆ( ; )ˆ ( ; )
x

x

F x
x xdF x

q

q q
m

¶
= +

¶ ò   

 
where the first equality is obtained when applying integration by parts and the 
second equality is because  
 

2
( ; ) 1 1 ln

exp ( ; )
2 2

F x x
dx dx xdF x

q m q
m s p s

æ ö¶ -æ ö= - - = -ç ÷ç ÷ç ÷¶ è øè ø
ò ò ò . 

 
Thus, we have  
 

ˆ( ; )ˆ( ){ [ ( )]}D
p

F x
M D p p E c q xm

q
m

¶¢ ¢ ¢= - L -
¶

 

ˆ

( )
{ ( ) ( ){ [ ( )]}} ( ; )

x

p x
D p D p p E c q xdF x

q
q¢ ¢ ¢+ + - L - ò   

ˆ( ; )ˆ ˆ ˆ( ){ [ ( )]} ( ){1 ( ; )}p

F x
D p p E c q x xD p F x

q q
m

¶¢ ¢ ¢= - L - - -
¶

 

ˆ ˆ ˆ ˆ[ ( ){ [ ( )]} ( ; ) ( ){1 ( ; )}]px D p p E c q xf x D p F xq q¢ ¢ ¢= - - L - - -   

 
where the second equality directly follows from (10) and the third equality utilizes 
the fact that ˆ( ; ) ˆ ˆ( ; )F x xf xq

m q¶
¶ = - . We finally obtain it upon the elasticity notion as 

follows:  
 

( ) [ ( )]ˆ ˆ ˆ ˆ( ) ( ; ) {1 ( ; )}
( )
pM pD p p E c q

M xD p xf x F x
D p pm q q

é ù¢ ¢ ¢ì ü- L -
= - + -í ýê ú

î þë û
 

[ ( )]ˆ ˆ ˆ ˆ( ) ( ) ( ; ) {1 ( ; )} 0
p E c q

xD p p xf x F x
p

e q q
é ù¢ ¢ ¢ì ü- L -

= - - >í ýê ú
î þë û

, 

 
under the condition from Lemma, ˆ ˆ( ; )

ˆ1 ( ; ) [ ( )]( ) xf x p
F x p E c qp q

qe ¢ ¢ ¢- - L -> . To hold (10) back, the 
firm needs to raise prices for every given x̂  since 0D

pM <  (as shown in the proof 
of Lemma).  
 
Proof of Proposition 2  
 
(A) The XS curve shifts up. We have the partial derivative w.r.t. c  as follows: 
 

ˆ( ; ) 1 0S
c

c
M E F x

c
q

¢¶é ù¢= L - <ê ú¶ë û
, 
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as far as c  follows a stationary process. To hold (9) back, the firm needs to raise 
prices for every given x̂  since 0S

pM >  (as shown in the proof of Lemma). 
 
(B) The XD curve shifts up. We have the partial derivative w.r.t. c  as follows:  
 

ˆ

( )
( ) ( ; ) 0

xD
c p x

c
M D p E xdF x

c q
q

¢¶é ù¢= - L >ê ú¶ë û ò . 

 
To hold (10) back, the firm needs to raise prices for every given x̂  because 

0D
pM <  (as shown in the proof of Lemma).  
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수요충격과 공급충격에 가격은 어떻게 반응하는가?* 

김 성 훈** ∙ 문 성 만*** 

9 

 
 

이 논문은 가격이 수요나 공급 변화에 어떻게 반응하는 지에 관한 이론

적 연구로, 독점적 경쟁 기업이 원치 않는 재고와 그 반대 상태인 품절 

가능성을 사전에 미리 반영해서 가격과 생산량을 결정해야 하는 시장 환

경을 고려한다. 여기서 제시된 가격 조정 메커니즘은, 수요 불확실성이 

있는 비즈니스 환경에서 필요한 두 가지 상호 보완적 동기들로 구성된다. 

원치 않는 재고와 품절 가능성이 상존할 때, 수요증가로 인해 줄어든 생

산의 유효 한계비용은 가격 인하의 동기로, 수요증가로 인해 높아진 기대 

한계수익은 가격 인상의 동기로 작동한다. 이 두 가지 동기는 새로운 기

대이윤극대화 지점에선 서로 상쇄되어 수요충격에 대한 가격의 반응은 

매우 제한적으로만 나타난다. 반면, 생산비용 상승과 같은 공급충격은 유

효 한계비용을 높여 기업의 가격 인상을 유도하고, 이와 동시에 다음 기

로 이전될 재고의 가치 상승으로 기대 한계수익도 높여 추가적인 가격 

인상 동기로 작동한다. 따라서 공급충격에 대한 가격의 반응은 매우 크게 

나타난다. 요약하면, 수요충격에 대한 가격의 반응은 제한적인 반면, 공

급충격에 대한 가격의 반응은 크다. 
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