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We show that rationally inattentive firms are forward-looking in their information acquisi-

tion and study the implications of these incentives for inflation dynamics by deriving a new

micro-founded Phillips curve. The Phillips curve is forward-looking and relates current infla-

tion to the forecast errors of firms about future inflation and the growth rate of the output

gap in the economy – a feature that is absent in sticky and noisy information models. Unlike

the forward-looking Phillips curves derived under nominal rigidities, we show inflation is not

necessarily increasing in expected inflation, and it can decrease with the forecast errors of firms

about future inflation and output gap growth. We test this Phillips curve using the Survey of

Professional Forecasters as a proxy for firms’ expectations and show that forecast errors about

future significantly affect current inflation in the direction that is predicted by the model. We

apply our findings to examine the effectiveness of forward guidance policies in a general equilib-

rium model. News about future interest rates affects inflation more if firms are more rationally

inattentive or if they discount future profits less. The model also survives the forward guidance

puzzle as the initial response of inflation decreases with the horizon of forward guidance.

JEL Classification: E31, E32, E37, E52, E70

Keywords: Rational Inattention, Dynamic Information Acquisition, Phillips Curve, Forward

Guidance, Survey of Professional Forecasters

∗Columbia University, Department of Economics. 420 West 118th Street, New York, NY, 10027 U.S.A. Email:
hassan.afrouzi@columbia.edu
†University of Texas at Austin, Department of Economics. 2225 Speedway C3100, Austin, TX, 78712 U.S.A.

Email: c.yang@utexas.edu

1

http://hassan.afrouzi@columbia.edu
http://c.yang@utexas.edu


1 Introduction

This paper proposes a new tractable approach for characterizing the optimal solution for dynamic

rational inattention models with Gaussian fundamentals, and shows that rationally inattentive

agents have a forward-looking behavior in their information acquisition, even when their decisions

only depend on the current realization of their fundamentals. In particular, agents face the following

trade-off in gathering information about their fundamental: on one hand they want to know the

current realization of the fundamental as their contemporaneous payoff depends on it; however, on

the other hand, they also want to learn about the future path of their fundamental to minimize the

distance of their perception when those periods arrive. This leads agents to choose signals that not

only includes the current value of the fundamental, but also the best possible estimates of its future

values. Therefore, when agents choose their optimal actions under such signals, a forward-looking

pattern in actions emerge as at each period the agent’s information set incorporates the future path

of the fundamental.

Applied to the pricing theory, this introduces a forward-looking Phillips curve, an important

feature that has been missing from the sticky and reduced-form noisy information models1. The

importance of expectations of future inflation on its current realization has been the cornerstone of

the modern analysis of monetary policy. This forward-looking behavior has been micro-founded in

the economic literature by introducing price rigidities such as sticky prices or menu cost models.

These models, however, has been criticized for not being able to match the inertial response of

inflation to monetary policy shocks, a feature that has been shown to be consistent with sticky or

noisy information models2.

While noisy and sticky information models are consistent with the inertial response of inflation,

we show that they induce a pricing behavior under which inflation does not depend on firms’

expected future inflation. Therefore, each class of micro-founded models of pricing fail to capture an

important feature of the pricing behavior of the firms. Perhaps it is because of these shortcomings

that, despite the lack of strong micro foundations, reduced-form hybrid models of the Phillips

curve, such as sticky prices with indexation3, are widely used to assess different policies, as they

have proven to be much more consistent with inflation dynamics observed in the data4.

We derive a micro-found hybrid Philips curve without nominal rigidities. We call it the dynamic

inattention Phillips curve. We show the inflation dynamics under this Phillips curve incorporates

both of these features, even within a perfectly flexible pricing environment. Inflation has an inertial

response to shocks due to the fact that rationally inattentive firms have noisy information about

1By reduced-form noisy information models, we refer to models in which agents are assumed to observe noisy signals
of the fundamentals where their signal structure is assumed to be exogenously determined. In this sense, rational
inattention models with Gaussian signals are micro-founded noisy information models that endogenize information
structure of the agents by allowing them to choose their signal structure in an optimal manner.

2See, for instance, Mankiw, Reis, et al. (2002); Woodford (2003).
3These are models that assume within sticky price models, firms who do not get to re-optimize, change their prices

with a rule of thumb. They have been widely criticized as the rule of thumb pricing neglects the assumption of sticky
prices that is the micro-foundation of these models in the first place.

4See, for instance, Christiano, Eichenbaum, and Evans (2005)
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them. More importantly inflation dynamics depends on firms’ expectations of future inflation, as

they optimally choose to allocate some attention to those and form a prior about it before the

period arrives.

The dynamic inattention Phillips curve has salient characteristics that can be tested using data.

It is forward-looking and relates current inflation to the forecast errors of firms about future inflation

and the growth rate of the output gap in the economy – a feature that is absent in sticky and noisy

information models. Moreover, unlike the forward-looking Phillips curves derived under nominal

rigidities, we show inflation is not necessarily increasing in expected inflation, and it can decrease

with the forecast errors of firms about future inflation and output gap growth. We test this Phillips

curve with nonlinear GMM estimation using the Survey of Professional Forecasters as a proxy for

firms’ expectations. We show that forecast errors about future significantly affect current inflation

in the direction that is predicted by the model.

To manifest the importance of the forward-looking behavior in our model, we consider a news

shock exercise, and compare it to sticky and reduced-form noisy information models. Since prices

are flexible, firms within sticky and reduced-form noisy information models, which assume agents

only see the current realizations of their fundamentals, do not respond at all to the news shocks.

However, we show that when firms are allowed to choose their information structure endogenously,

they optimally choose to pay attention to these shocks, and incorporate that information in their

pricing scheme. This leads to dynamics in which inflation responds to these shocks, even before

they affect the fundamentals of firms.

We extend our model to a general equilibrium model to study the effects of the forward guidance

policy. When the future expansionary monetary shock is announced, inflation and output increase

immediately since firms’ optimal signal incorporates their best forecast about the future marginal

costs, and thus firms increase their prices to the news. When the forward guidance shock is actually

realized, the nominal interest rate falls. In a standard Calvo sticky price model, output, inflation,

and the interest rate all go back to steady-states immediately after the shock realization, since

the model is completely forward-looking and the shock is transitory. In contrast, after the shock

realization, inflation slowly converges to the steady-state in our model. This is because the rationally

inattentive firms have noisy information about their fundamentals. In aggregate, the Phillips curve

shows a backward-looking term, which is the past expectation about current inflation and output

gap growth. This backward-looking nature of the Phillips curve enables our model to survive the

forward guidance puzzle, established in Del Negro, Giannoni, and Patterson (2012). Unlike the

standard sticky price model, which is completely forward-looking, the initial responses of inflation

and output decrease with the horizons of forward guidance.

This paper contributes to the rational inattention literature in several dimensions. First, we

characterize and solve the attention problem of the agent as a sequential problem of choosing priors

and posteriors over time, for a given initial prior over the state of the economy. The solution

method relies on the fact that any stationary Gaussian process can be approximated by an MA(T )

process for an arbitrarily large T , and thus the attention problem boils down to choosing a vector
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of weights over the last T innovations of the process. The Euler equation of the attention problem

is derived based on this approximation, which is then can be used to solve for the set of optimal

signals. Furthermore, we show that even when the fundamentals are not stationary, they can be

transformed to choosing an stationary part for the optimal signals based on the stationary parts of

the fundamental. Thus, the method introduced in the paper can be used for any ARIMA process.

Second, this formulation sheds some light on the economic trade-off of the agent in choosing

their information structure. Rationally inattentive agents are aware that they will never perfectly

observe the realizations of their fundamentals. Therefore, any signal that they get at a given period

will serve them in two dimensions: first, it will give them a posterior about the current level of their

fundamental, according to which they choose their optimal action, and second, it will equip them

with a prior over future realization of that fundamental, so that when those periods arrive they

would be able to better estimate what that fundamentals are. This dynamic trade-off manifests

itself in the optimal signal that agents choose at every period: the signal not only incorporates

information about the current fundamental, but also includes information about the best possible

estimates of future fundamentals that can be formed at that period. In fact, the optimal signal

will be a linear combination of the current fundamental and the estimates of its future realizations.

Thus, the optimal signal of an agent for a Gaussian fundamental is one that allows the agent to

form expectations over current and future fundamentals.

We also contribute to a literature on micro-foundations of Phillips curves. Especially, we derive

the dynamic inattention Phillips curve, which is a micro-foundation for reduced-form hybrid models

of the Phillips curve, such as sticky price with indexation(Christiano, Eichenbaum, and Evans

(2005)) or rule-of-thumb firms of backward-looking pricing(Gali and Gertler (1999)). The hybrid

Phillips curve has been an important way to explain both the inertial responses of inflation to

shocks and the forward-looking behavior of inflation dynamics. Nimark (2008), Melosi (2017), and

Šauer (2016) derive the Phillips curves in the models of imperfect-common knowledge with Calvo or

Rotemberg sticky pricing. In their models, the Phillips curves are also forward-looking due to the

nominal rigidities. Moreover, the inflation dynamic shows inertial responses to shocks because of

higher-order beliefs from imperfect-common knowledge. Our model is different from theirs because

we derive a micro-founded hybrid Phillips curve within a perfectly flexible pricing environment with

rationally inattentive firms who face the dynamic incentives to process information.

Lastly, our application also contributes to a literature on forward guidance policy. Forward

guidance policy is an optimal policy commitment at the zero lower bound (e.g. Krugman, Domin-

quez, and Rogoff (1998); Woodford (2003); Campbell, Evans, Fisher, and Justiniano (2012)). In our

model, when firms are allowed to acquire information endogenously, the news about a future interest

rate cut is expansionary: firms increase their prices to the news shocks because their optimal signal

incorporates the best forecast of future marginal costs as they do not want to be “too” mistaken

about future marginal costs when those days come. However, we show that this expansionary effect

of the forward guidance policy is not a free lunch: after the transitory shock is actually realized,

output contracts and slowly converges to the steady-state as firms still increase their prices due to
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the noisy signal that they optimally choose to observe. Our model weakens the power of forward

guidance, suggesting a potential resolution to the forward guidance puzzle. Recent papers suggest

some resolutions using the sticky information models, which weaken firms’ forward-looking behav-

ior.5 For example, Kiley (2016) shows that in a zero-lower bound environment, forward guidance

multipliers are small under the sticky information models. Carlstrom, Fuerst, and Paustian (2015)

examine a general class of interest rate pegs in a variety of dynamic New Keynesian models and find

that a sticky information model can ameliorate the forward guidance puzzle. Angeletos and Lian

(2016) also show that imperfect common knowledge model lessen forward-guidance puzzle through

the agents’ higher-order beliefs about their future fundamentals. The effect of forward guidance

in our model is also in line with these studies: the dynamic inattention Phillips curve depends

not only on the expectations of future fundamentals, but also on the past average expectations

about current fundamental. This backward-looking nature of the Phillips curve helps to resolve the

forward guidance puzzle.

This paper builds on the rational inattention literature and the seminal work of Sims (2003).

The rational inattention problem has been applied in various macroeconomic problem.6 In partic-

ular, Maćkowiak and Wiederholt (2009, 2015), Paciello (2012) and Paciello and Wiederholt (2014)

consider rationally inattentive firms or(and) households, and study the effects of standard monetary

policy shocks on the dynamics of inflation and output. In contrast, our focus is to evaluate the

effect of forward guidance policy, which is a type of unconventional monetary policy. Our forward

guidance exercise clearly illustrates the dynamic incentives of firms’ information acquisitions, and

the importance of these incentives on the aggregate economy.

The dynamic model of this paper also relates to a recent literature on characterizing dynamic

incentives in information acquisition. Steiner, Stewart, and Matejka (2017) solve a general dy-

namic rational inattention problems with discrete choice that an agent repeatedly acquires costly

information about an evolving state. They consider general payoffs and distributions in discrete

environments while we focus on Gaussian fundamentals in continuous choices. There are two re-

cent works that consider the dynamic rational inattention problem under Gaussian fundamentals.

Afrouzi (2016) develops a dynamic rational inattention problem, but focuses on the strategic in-

centives of firms. The model corresponds to our β = 0 case. One of the most related works is

done by Maćkowiak, Matejka, and Wiederholt (2016). They also develop a dynamic rational inat-

tention problem with Gaussian process. There are several differences in the formulation and the

applications between their work and ours. For example, in their model, the time preferenceβ does

not affect on agents’ optimal actions while our model shows the time preference parameter has

important implications on the form of optimal signals that agents choose to observe, and thus on

5Other resolutions suggest to lessen the forward-looking behavior of households. For example, McKay, Nakamura,
and Steinsson (2016) introduce an incomplete market and a borrowing constraint to otherwise a standard NK model,
and show that forward guidance is less powerful due to self-insurance motives of households. Farhi and Werning
(2017) extend a standard NK model by assuming 1) households heterogeneity with incomplete markets and 2)
bounded rationality in the form of level-k thinking. They show that interaction of these two frictions leads to a
powerful resolution of forward guidance puzzle.

6For a comprehensive recent survey of this literature, see Sims (2010) and Luo and Young (2013).
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their optimal actions. Moreover, we characterize the necessary and sufficient conditions for solving

the dynamic rational inattention problem in a Linear-quadratic-Gaussian (LQG) framework. In

terms of applications, they apply their model to a business cycle model with news shocks in tech-

nology while we apply the dynamic rational inattention model to a pricing theory to derive the

dynamic inattention Phillips curve, and focus on the effect of forward guidance monetary policy in

the dynamic rational inattention model.

The estimation of our Phillips curve relates to a literature on New Keynesian Phillips curve

estimation.7 Using instrumental variables to compute a proxy for expectations for future inflation

and growth of output gap, we estimate our dynamic inattention Phillips curve with GMM, which is

widely used in the estimation of Phillips curves.8 We use ex-ante forecast revisions as instruments

for ex-post forecast errors in our Phillips curve. This choice of instruments is based on the theoretical

predictions of noisy information models, established in Coibion and Gorodnichenko (2015a). The

use of forecasts data for estimation also relates this paper to a literature on estimation of Phillips

curves using survey data of inflation forecasts.9

The paper is organized as follows. Section 2 presents a dynamic model of attention allocation,

and develops a tractable way to solve the dynamic rational inattention problem under the Linear-

quadratic-Gaussian (LQG) framework. Applying the results to pricing theory, section 3 derives a

dynamic inattention Phillips curve. Section 4 extends the simple model to a general equilibrium

model to assess the effects of forward guidance shocks. Section 5 concludes. Moreover, all the

technical derivations as well as the proofs of all the propositions and corollaries are included in

Appendix A.

2 A Dynamic Model of Attention Allocation

2.1 Environment Given an Information Structure

Suppose the agent tracks a fundamental that is characterized by a covariance stationary10 Gaussian

process {xt : t = 0, 1, 2, . . . }. At each time t, xt realizes, and then the agent chooses an action at ∈ R.
For a possible realization of the fundamentals x̃ ∈ X̃ ≡ {(xt)∞t=0 |xt ∈ R,∀t ≥ 0}, and for a given

sequence of actions ã = (a0, a1, a2, . . . ), the agent’s realized payoff is

L0(ã, x̃) ≡ −
∞∑
t=0

βt (at − xt)2 .

The agent does not observe {xt : t ≥ 0} directly, but sees another stochastic process {st ∈ F : t = 0, 1, 2, . . . }
that is jointly distributed with the process xt, where F is the set on which the signals are realized.

7See ? for comprehensive reviews.
8See, for example, Gali and Gertler (1999), Roberts (2005), and Rudd and Whelan (2005) for the GMM estimation

of the New Keynesian Phillips curve.
9For example, see Brissimis and Magginas (2008), Coibion (2010), and Coibion and Gorodnichenko (2015b) among

others.
10This assumption will be relaxed in later sections.
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Note that st can be a vector of signals instead of a single signal that are realized at time t. For

any t ≥ 0, let st ≡ (s0, s1, . . . , st) ∈ F t be a possible realization of the signals until time t, and let

St ≡
{
st | st ∈ F t

}
be the set of all possible realizations of signals until time t.

At each time t, having observed st ∈ St the agent chooses an action at ∈ R. Therefore, an

action profile is a sequence of functions that map the set of signals to an action in R. Let Ã be the

set of all possible action profiles:

Ã ≡
{
ã = (at)

∞
t=0 | at : St → R,∀t ≥ 0

}
,

then the agent’s problem in choosing the optimal action profile is

L0 ≡ min
ã∈Ã

∞∑
t=0

βt
∫
st∈St

∫
xt∈R

[(
at(s

t)− xt
)2

+ λI
(
st, xt | St−1

)]
ft
(
xt, s

t
)
dxtds

t

where for st ∈ St and xt ∈ R, ft
(
xt, s

t
)

is their joint density. I
(
st, xt | St−1

)
is the mutual

information between the signal and the state, and we will formally define it in the next section.

Notice that given the information choice, the optimal action profile does not affect the amount of

information flow. The first order condition with respect to at(s
t) is then

∫
xt∈R

(
a∗t
(
st
)
− xt

)
ft
(
xt, s

t
)
dxt = 0

⇒ a∗t
(
st
)

=
∫
xt∈R xt

ft(xt,st)∫
xt∈R

ft(xt,st)dxt
dxt

⇒ a∗t (s
t) = E

[
xt | st

]
,

where E [.] is the mathematical expectation operator. Under this optimal action profile, the expected

net present value of all future losses boils down to a weighted average of the conditional variances

of xt minus the amount of information flow and:

L0 =

∞∑
t=0

βt
∫
st∈St

∫
xt∈R

[(
E
[
xt | st

]
− xt

)2
+ λI

(
st, xt | St−1

)]
ft
(
xt, s

t
)
dxtds

t

=
∞∑
t=0

βt
(
var

(
xt|St

)
− λE

[
I
(
st, xt|St−1

)])
. (1)

Hence, the agent’s objective in choosing her information structure is to minimize this weighted

average of conditional variances over time subject to the informational constraints that she faces.

2.2 The Information Choice Problem

To characterize the agent’s attention problem we need to specify two things; (1) the set of the

objects to which the agent can pay attention at each time, and (2) the constraint that she faces in

allocating her attention among those objects.

To specify the first one, since xt is a covariance stationary Gaussian process, by Wold’s theorem
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it can be decomposed to its innovation process:

xt =
∞∑
j=0

wjut−j ,

where ut−j ’s are uncorrelated and the unconditional distribution of each of them is the standard

normal. Since {xt : t ≥ 0} is stationary,
∑∞

j=0w
2
j is finite. This implies that for any arbitrary ε > 0,

∃T ∈ N such that
∑∞

j=T+1w
2
j < ε, meaning that xt can be approximated in a probabilistic sense

by an MA(T ) process:

∀ε > 0, ∃T ∈ N, P r

∣∣∣∣∣∣xt −
T∑
j=0

wjut−j

∣∣∣∣∣∣ > ε

 < ε.

This approximation will be helpful in later sections in avoiding infinite dimensional covariance

matrices, which may not exist or may not inherit the properties of their finite counterparts. Also,

it justifies using a truncation of the process as we are going to use computational methods to solve

for the solution, when a closed form does not exist.

For an arbitrarily large T ∈ N, we use this approximation for the rest of the paper. Now, In

matrix notation

xt ≈ w′ut,

where w = (w0, w1, w2, . . . , wT )′ is the vector of weights, and ut = (ut, ut−1, ut−2, . . . , ut−T )′. We

assume that at time zero, in addition to u0, the nature also draws a sequence of (u−i)
T
i=1 from

the standard normal. This decomposition gives us the finest set of independently distributed

random variables that the agent might want to know, depending on her optimal attention strategy.

Intuitively, since ut−i’s are independent, paying attention to each of them does not reveal any

information about the rest. Moreover, since at any given time ∀τ > t, uτ is not drawn by the

nature yet, the vector ut contains all the elements that agent can pay attention to at time t.

Second, to specify the information constraint, following the rational inattention literature, we

assume that at any given point in time the agent cannot process more than κ bits of information,

as measured by the reduction in entropy. Formally, this constraint is given by

I
(
st,ut|St−1

)
=

∫
(st,ut)

log2

(
ft(ut, st)

ft(st)ft−1(ut)

)
d (st,ut)

≤ κ.

where ft(.) and ft−1(.) denote densities generated by St and St−1 respectively. The information

choice of the agent can in fact be viewed as choosing these joint distributions over time: at any

time t, the agent inherits her chosen distribution, ft−1, which gives her a prior about ut, and then

chooses a new ft subject to the above information constraint. We assume that at the beginning of

time, t = 0, as the nature draws u0, the agent is born with a prior f−1(.) over u−1.
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Therefore, the information problem of the agent at time zero is

min{ft}∞t=0
L0(f−1) =

∑∞
t=0 β

t
∫
st∈St

∫
xt∈R

[(
E
[
xt | st

]
− xt

)2
+ λI

(
st,ut | St−1

)]
ft
(
xt, s

t
)
dxtds

t

Maćkowiak and Wiederholt (2009) show that when the period loss functions are quadratic and

priors are Gaussian, then the optimal signals under rational inattention are also Gaussian. Since

this result is valid in our framework, given a Gaussian initial prior at time zero, the agent will

choose Gaussian signals over time. Thus, at any point in time, t ≥ 0, the agent is born with a

Gaussian prior over ut. Formally,

ut|St−1 ∼ N
(
ut|t−1,Σt|t−1

)
where Σt|t−1 ≡ Et−1

[(
ut − ut|t−1

) (
ut − ut|t−1

)′]
is the covariance matrix of the agent’s prior over

ut at time t.

Moreover, the set of all signals at time t is given by all the stationary Gaussian signals over ut:

SFt ≡
{
st = y′ut + et|y ∈ RT , et ∼ N

(
0, σ2

e

)
, et ⊥ ut

}
.

Notice that we do not make any restrictions about how many signals firms can observe. The

following Lemma establishes that observing one signal is optimal for each agent.

Lemma 1. Every agent observes only one signal at any time.

Proof. See Appendix.

The intuition for the optimality of observing one signal is simple: since the agent’s optimal

action is a linear combination of signals, instead of seeing multiple signals separately and paying a

high cost, the agent would like to see the combination of the signals. In the following Lemma, we

rewrite the information capacity constraint.

Lemma 2. At any t ≥ 0, given that ut|St−1 ∼ N
(
ut|t−1,Σt|t−1

)
, for any st ∈ SFt , such that

st = y′ut + et, the mutual information of signal st and the fundamental ut reduces to

I
(
st,ut|St−1

)
=

1

2
log2

(
var

{
st|St−1

}
var {st|St−1} − y′Σt|t−1y

)

Proof. We use the entropy definition of the mutual information, and the fact that entropy of a

Gaussian is a constant plus the log of its variance:

I
(
st,ut|St−1

)
= h

(
st|St−1

)
− h

(
st|ut, St−1

)
=

1

2
log2

(
var

{
st|St−1

}
var {st|St−1} − y′Σt|t−1y

)

Thus I
(
st,ut|St−1

)
≤ κ⇔ y′Σt|t−1y ≤

(
1− 2−2κ

)
var

{
st|St−1

}
. Q.E.D.
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Moreover, since inference is independent of scale, meaning that for α 6= 0, st and αst contain

the same information about ut, we can normalize the signals such that var
{
st|St−1

}
= 1, ∀t ≥ 0.

Let ŜFt =
{
y | st = y′ut + et ∈ SFt , var

{
st|St−1

}
= 1
}

be the set of all feasible signals that satisfy

this normalization. Notice that the objects of ŜFt are vectors of y’s and not signals, as there is

a one to one mapping between the two: every signal is a weighted average of the elements of ut,

plus a white noise. From now on, we will refer to signals through these weight vectors. Intuitively,

choosing a signal for the agent is nothing more than choosing how much weight she wants to put

on each of ut−i’s, for i ≥ 0.

To pin down the dynamics of the attention problem, we need to specify how priors evolve

over time as a function of the signal choices of the agent. Given a prior at time t, ut|St−1 ∼
N
(
ut|t−1,Σt|t−1

)
, and a signal choice, yt ∈ ŜFt , the agent’s posterior at time t is given by the

Kalman filter:

ut|St ∼ N
(
ut|t,Σt|t

)
such that ut|t = ut|t−1 + Σt|t−1yt

(
st − y′tut|t−1

)
, Σt|t = Σt|t−1 − Σt|t−1yty

′
tΣt|t−1 (2)

Also, to derive the law of motion for the prior, notice that ut itself evolves according to

ut+1 =

[
ut+1

ut

]
= Mut + ut+1e1, ∀t ≥ −1

where M is the lower shift matrix11, and e1 is the first column of the identity matrix. Since ut+1

is drawn at time t+ 1, it is orthogonal to all the agent’s information until t. Hence,

ut+1|St ∼ N
(
ut+1|t,Σt+1|t

)
such that ut+1|t = Mut|t

, Σt+1|t = MΣt|tM
′ + e1e

′
1 (3)

Therefore, given Σt|t−1, and a signal yt ∈ ŜFt , the agent’s prior at t+ 1 is given by (2) and (3).

Now, by (1), and the fact that var
{
xt|St

}
= w′Σt|tw, we can rewrite the agent’s attention

11M is a T × T matrix with ones on its sub-diagonal and zeros elsewhere. Operating from left, it shifts a vector
down by 1 element and sets the first element of the new vector to zero.
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problem as12

L0

(
Σ0|−1

)
= min

{yt∈ŜFt }∞t=0

∞∑
t=0

βt
(
w′Σt|tw + λκt

)
(4)

s.t. Σt|t = Σt|t−1 − Σt|t−1yty
′
tΣt|t−1

Σt+1|t = MΣt|tM
′ + e1e

′
1

1

2
log2

(
1

1− y′tΣt|t−1yt

)
≤ κt

Σ0|−1 � 0 given.

The following Theorem characterize the necessary and sufficient condition for the optimal signal

vector yt and the covariance matrix Σt|t−1.

Theorem 1. Given an initial prior, u0 ∼ N
(
u0|−1,Σ0|−1

)
, the signals, {yt}∞t=0, that solve the

agent’s attention problem as specified in (4) are given by the following Euler equation

φtyt = (ww′ + Xt) Σt|t−1yt

Xt = βM′ (ww′ + Xt+1 − φt+1yt+1y
′
t+1

)
M.

where φt = λ
2 ln 2

(
1

1−y′tΣt|t−1yt

)
and Xt is the matrix of Lagrange multipliers on each constraints

of the evolution of the prior. Let X̂t = ww′ + Xt. Then, this signals, {yt}∞t=0, are optimal

if and only if for every t, φt is the largest eigenvalue of X̂tΣt|t−1 and yt is the corresponding

eigenvector. Moreover, let Eft [.] ≡ E [.|ut] be the mathematical expectation operator of an agent

with full information about ut. Then, the optimal signal of the agent at time t is of the following

form:

s∗t =
∞∑
j=0

βjbj,tEft [xt+j ] + et.

for a set of real coefficients
{

(bj,t)
∞
j=0

}∞
t=0

, and where et ⊥ ut is the rational inattention error of

the agent.

Proof. See Appendix A.

Now, we define a steady-sate prior of the agents’ information choice problem.

Definition 1. We call an initial prior, Σ, a steady-state prior if it reproduces itself over time,

meaning that for Σ, ∃y such that if Σ0|−1 = Σ, then the constant sequence {y}∞t=0 solves the

agent’s attention problem, and Σt+1|t = Σ,∀t ≥ 0. This implies that (Σ,y) should satisfy the

12Σ0|−1 � 0 means that Σ0|−1 is positive semi-definite.
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following conditions:

φy = (ww′ + X) Σy ,

X = βM′ (ww′ + X− φyy′) M ,

Σ = M (Σ− Σyy′Σ) M′ + e1e
′
1 ,

y′Σy = 1− 2−2κ .

where φ = λ
2 ln 2

(
1

1−y′Σy

)
.

Since the agent’s attention problem is deterministic, the steady-state prior can be thought of as

the prior that emerges when the agent sees a sufficiently large number of signals. In later sections,

when using computational methods, we will use this steady-state prior to avoid time varying signals.

Corollary 1. Suppose {xt : t ≥ 0} follows an ARMA(p,q) process. Then, the optimal signal de-

pends only on p − 1 lags of xt and q − 1 lags of ut. Formally, if xt =
∑p

i=1 ρixt−i +
∑q

j=0 θjut−j.

Then,

s∗t =

p−1∑
i=0

ci,txt−i +

q−1∑
i=0

di,tut−i + et.

for a set of real coefficients
{

(ci,t)
p−1
i=0 , (di,t)

q−1
i=0

}∞
t=0

. Moreover, these coefficients are time invariant

in the steady-state of the attention problem.

Proof. See Appendix A.

Theorem 1 shows that the optimal signals are chosen under a forward-looking behavior: each

signal not only gives the agent information about the current state of the fundamental, but also

it will be useful by shaping the agent’s future priors. Each period, while the agent wants to know

the realized value of xt as precisely as possible, they also do not want to be “too” mistaken about

future xt+i’s when those days come. As a result they choose a signal that incorporates an optimal

amount of available information13 about each of xt+i’s at time t.

This trade-off is represented in the Euler equation: the vector yt, which includes the optimal

weights that the agent puts on each innovation, is a combination of w, which represents how each

innovation will affects current periods fundamental, and matrix Xt, which represents how today’s

information will affect the evolution of the agent’s prior about each innovation in the next period.

While this solution does not have a closed-form in general, the following examples illustrate

some its properties.

Example 1. Suppose β = 0, meaning that the agent fully discounts the future losses; then, the

agent’s optimal signal at time t is to observe xt with the highest possible precision allowed by their

capacity:

s∗t = xt + et, et ∼ N
(

0,
w′Σw

22κ − 1

)
, et ⊥ ut−i,∀i ≥ 0.

13Since future innovations are not realized at time t, the best information that the agent can get about xt+i at
time t is Eft {xt+i} = E{xt+i|ut}.
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where κ = 1
2 log2

(
2 ln 2
λ w′Σw

)
and et is the agent’s rational inattention error.

This result follows directly from the Euler equation in Theorem 114. Intuitively, when the agent

fully discounts the future, the evolution of the prior becomes irrelevant for them. At each period,

they only care about minimizing that period’s loss, and accordingly, they weigh each innovation

exactly according to how that innovation affects their fundamental.

Nevertheless, this is not the only case where the agent chooses to only see xt. The following

example shows that even when the agent does not fully discount the future, meaning that β > 0, if

xt follows an AR(1) process, the optimal signal is the same as the one above. The reason is based

on the very specific nature of the AR(1) process: while β > 0 implies that the agent cares about

the evolution of its prior and wants to infer the future realizations of the fundamental, at any given

time, the best forecast of any future fundamental is simply proportional to today’s fundamental,

that is Eft {xt+i} = ρixt; therefore, seeing xt as precisely as possible is sufficient for inferring how it

will evolve over time.

Example 2. Suppose xt follows an AR(1) process such that xt = ρxt−1 + ut, then the optimal

signal at time t is given by

s∗t = xt + et, et ∼ N
(

0,
w′Σw

22κ − 1

)
, et ⊥ ut−i,∀i ≥ 0.

where w =
(
1, ρ, ρ2, . . .

)
, κ = 1

2 log2

(
2 ln 2
λ w′Σw + βρ2

)
and w′Σw = 1

1−ρ22−2κ . Also, agent’s

optimal action profile, a∗t
(
st
)
, is given by

a∗t
(
st
)

= 2−2κρa∗t−1

(
st−1

)
+
(√

(1− 2−2κ) w′Σw
)
st

Proof. See Appendix A.

This result immediately breaks down if we move on to other processes as, in general, seeing xt

alone is not sufficient for the best possible inference of its future realizations. This intuition sheds

light on the result in Corollary 1: for any ARMA(p, q) process, all Eft {xt+i}’s break down to seeing

(xt, xt−1, . . . , xt−p+1, ut, ut−1, . . . , ut−q+1).

Example 3. For instance, if xt follows stationary AR(2) such that xt = (0.95 + ρ)xt−1 − ρxt−2 +

ut,
15 in order to form expectations over xt+i, the agent needs to see both xt and xt−1, and according

to Corollary 1, their optimal signal in the steady-state of the attention problem is simply a weighted

average of the two:

s∗t = xt + γxt−1 + et,

where et is the rational inattention error of the agent16. While having xt in their signal helps

14Here, the optimal signal is normalized such that the coefficient on xt is equal to 1.
15Here ρ measures the degree of inertia in the AR(2) process. For instance ρ = 0 corresponds to an AR(1), and

ρ > 0 corresponds to AR(2) with a humped shape response to ut.
16Again, since inference is independent of scale, the signal is presented with a normalization such that the coefficient

on xt is equal to 1.
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the agent to both predict the current realization of the fundamental, and prepare themselves with

shaping a better prior for predicting its future values, the presence of the parameter γ is purely due

to the agent’s desire to infer about the future realizations of the fundamental. In fact, in absence

of this desire, as we saw in example 1, the agent will choose γ to be zero. Hence, the magnitude of

γ is directly linked to the agent’s intertemporal incentive to acquire information.

An interesting exercise is to analyze how this intertemporal incentive depends on the underlying

parameters of the model, namely the discount factor, β; the inertia parameter, ρ; and the agent’s

capacity of processing information κ. To do so we solve the attention problem computationally

and plot the magnitude of the coefficient on xt−1 in the optimal signal, γ, versus different values

of these underlying parameters.17

Figure 1a shows that the intertemporal incentive of the agent in acquiring information increases

with β. A higher discount factor means that the agent values future losses more, and hence has

a higher incentive to minimize those losses by being able to predict future fundamentals more

precisely. This, in turns, leads to a higher coefficient on xt−1 in the optimal signal that the agent

gets at time t.

Figure 1b shows the degree of the agent’s forward-looking behavior increases with the degree

of inertia in the AR(2) process. To better understand this result, first let us consider the case of

ρ = 0, which corresponds to the AR(1) case in example 1. Recall that with an AR(1), knowing xt is

sufficient for predicting the future realizations of the fundamental conditional on time t information.

Therefore, the agent chooses to only see xt as precisely as possible. However, as ρ increases, xt is

no longer sufficient for predicting future realizations of the fundamental, and the agent needs to

include xt−1 in their signal to be able to do so. Therefore, with higher ρ’s the agent will choose a

higher weight on xt−1.

Finally, the most interesting case is to see how capacity of processing information affects the

agent’s intertemporal incentive in acquiring information. Figure 1c shows that as the capacity

increases the agent’s incentive to infer about future realizations of the fundamental decreases.18

The higher the capacity of processing information, the less concerned the agent is about figuring

out what is going to happen in the future, as they will have enough resources to acquire sufficient

information when the time comes. The case of λ = 1 shows that an agent with infinite capacity,

which corresponds to full-information rational expectations, is completely ignorant of the evolution

of xt over time, and chooses to only see xt at any given time t. Moreover, their infinite capacity,

however, guarantees them a perfectly precise signal that minimizes their life time losses to zero.

On the contrary, when the capacity of processing information is low, the agent’s optimal strategy

is to get a signal that reveals information not only about the current state of their fundamental,

but also about what it will be in the future.

17The baseline values set for the parameters are as follows: β = 0.95, ρ = 0.5 and κ = 1.
18We consider a monotone transformation of the capacity defined as λ ≡ 1 − 2−2κ. λ is strictly increasing in the

capacity of processing information. λ = 0 corresponds to zero capacity, κ = 0, and λ = 1 corresponds to infinite
capacity, κ→∞.
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2.3 Attending to Difference Stationary Processes

So far we have only considered the case of stationary fundamentals, and characterized the solution

of the attention problem under this assumption. However, in many economic problems agent’s do

not necessarily follow a stationary process. For instance, firms in the economy track their nominal

marginal costs, whose levels are not stationary.

In this section, we relax the stationarity assumption, and characterize the attention problem

when the fundamental has a unit root. Suppose the environment is the same as the previous

sections, but with the difference that the agent follows a difference stationary Gaussian process

{xt : t = 0, 1, 2, . . . }, which implies that xt is integrated of order 1. Therefore, since ∆xt is a

stationary process, by Wold’s theorem it can be decomposed to its innovations over time:

∆xt = dw′ut,

where dw′ = (dw0, dw1, dw2, . . . ) ∈ `2 is a square-summable sequence and ut = (ut, ut−1, ut−2, . . . )
′

is the sequence of independently distributed innovations of ∆xt, with ut−i ∼ N (0, 1) ,∀i ≥ 0. Now

let M be the infinite dimensional lower shift matrix19. Thus we can write

xt =
∞∑
i=0

dw′ut−i

=
∞∑
i=0

dw′M′iut

= dw′

( ∞∑
i=0

M′i

)
ut.

where M′ is the transpose of M, and the second equality is derived from the fact that20 ut−i =

(ut−i, ut−i−1, ut−i−2, . . . ) = M′iut. Notice that
∑∞

i=0 M′i is the upper triangular matrix whose

(i, j)′th element is zero if i > j, and 1 if i ≤ j, ∀i, j. Also, notice that dw′
(∑∞

i=0 M′i) is a well-

defined infinite dimensional vector whose i’th element is sum of the first i elements of dw. Thus

we can define the vector w such that

w ≡

( ∞∑
i=0

Mi

)
dw.

and

xt = w′ut.

Since the matrix
∑∞

i=0 Mi is infinite dimensional, we have to be careful about inverting it, since,

in general, infinite dimensional matrices do not necessarily inherit the properties of their finite

19M is matrix with ones in its sub-diagonal and zero elsewhere. Operated from left, it shifts an infinite dimensional
vector one element down, and replaces the first element of the new vector with zero.

20M′ is simply the matrix representation of the lag-operator: M′ut = ut−1 as L.ut = ut−1.
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dimensional counterparts. Let I be the infinite dimensional identity matrix: first, observe that

I −M is a well-defined matrix with ones on its diagonal and −1’s on its sub-diagonal. Second,

observe that [
(I−M)

( ∞∑
i=0

Mi

)]
(j,k)

=

1 j = k

0 j 6= k

Thus, (I−M)
∑∞

i=0 Mi = I. Thus, we now define
(∑∞

i=0 Mi
)−1 ≡ I−M, and we have21

dw = (I−M) w, w = (I−M)−1 dw

Thus,

xt = w′ut

= dw′
(
I−M′)−1

ut.

Now, let x̃t be a random walk such that x̃t = x̃t−1 + ut =
∑∞

i=0 ut−i. Define ũt ≡ (I−M′)−1 ut

and observe that

(I−M′)−1ut = (x̃t, x̃t−1, x̃t−2, . . . )
′ ,

Now, since dw ∈ `2, we can again truncate the process of xt as follows22

xt ≈ dw′ũt

where, dw = (dw0, dw1, dw2, . . . , dwT )′ and ũt = (x̃t, x̃t−1, x̃t−2, . . . , x̃t−T )′. Similarly, truncate the

matrix M to a (T + 1)× (T + 1) lower shift matrix. Finally, observe that

ũt =



x̃t−1 + ut

x̃t−1

x̃t−2

...

x̃t−T


=
(
M + e1e

′
1

)
ũt−1 + ute1

where e1 is the first column of the T × T identity matrix and ut ∼ N (0, 1) , ut ⊥ ũt−1 is the time

t innovation to the process. This brings us back to a problem similar to the previous section, but

now the agent chooses a signal over ũt. Similar to before, we assume that the agent starts with an

initial prior over ũ0 ∼ N
(
ũ0|−1,Σ0|−1

)
, Σ0|−1 � 0.

21In fact, the matrix M is the matrix representation of the lag-operator. The equation (I −M)w = dw, simply
corresponds to the fact that for any difference stationary process xt, (1−L)φ(L)xt = ut, where φ(L) is an invertible
lag-polynomial.

22An argument similar to the case of stationary processes gives us this result, for any given prior over ũt.

16



Now, to specify the agent’s choice set of signals, we allow them to choose any signal over ũt:

SFt ≡
{
st = dy′ũt + et|dy ∈ RT , et ∼ N

(
0, σ2

e

)
, et ⊥ ũt

}
.

Moreover, we again normalize the set of signals such vart−1(st) = 1, as inference is independent of

the scale of the signal. The set of signals at time t become

ŜFt =
{
dy|st = dy′ũt + et ∈ SFt , var

{
st|St−1

}
= 1
}
.

The agent’s attention problem can now be re-written as

L0

(
Σ̂0|−1

)
= min

{dyt∈ŜFt }∞t=0

∞∑
t=0

βt
(
dw′Σt|tdw + λκt

)
(5)

s.t. Σt|t = Σt|t−1 − Σt|t−1dytdy′tΣt|t−1

Σt+1|t =
(
M + e1e

′
1

)
Σt|t

(
M′ + e1e

′
1

)
+ e1e

′
1

1

2
log2

(
1

1− dy′tΣt|t−1dyt

)
≤ κt

Σ0|−1 � 0 given.

This is now a choice problem within stationary signals as before, meaning that we have re-written

the agent’s problem in terms of choosing the stationary part of their signal dyt, given the stationary

part of their fundamental dw. Therefore, we can use the method presented in Theorem 1 to derive

the Euler equation of the agent’s problem:

φtdyt =
(
dwdw′ + Xt

)
Σt|t−1dyt (6)

Xt = β (M′ + e1e
′
1)
(
dwdw′ + Xt+1 − φt+1dyt+1dy′t+1

)
(M + e1e

′
1) .

where φt = λ
2 ln 2

(
1

1−dy′tΣt|t−1dyt

)
and Xt is the matrix of Lagrange multipliers on the evolution of

the priors.

Lemma 3. Suppose that the agent’s fundamental follows a first order integrated ARIMA process

xt. Then the optimal signals are of the form

s∗t =

∞∑
j=0

βjbj,tEft {xt+j}+ et

where Eft {.} ≡ E{.|ũt} is the expectation operator of an agent with full information at time t, and et

is the agents rational inattention error, and
{

(bj,t)
∞
j=0

}∞
t=0

is a set of sequences of real coefficients

that are given by the Euler equation above.

Proof. See Appendix A.

17



Corollary 2. Suppose the agent’s fundamental follows an ARIMA(p, 1, q) process, then the optimal

signal is a linear combination of (xt, xt−1, . . . , xt−p+1, ut, ut−1, . . . , ut−q+1):

s∗t =

p−1∑
k=0

ck,txt−k +

q−1∑
l=0

dl,tut−k,

where
{

(ck,t)
p−1
k=0 , (dl,t)

q−1
l=0

}
are a set of real coefficients.

Proof. See Appendix A.

After solving for the optimal signal through the Euler equation, the evolution of the optimal

action, a∗t
(
st
)

= E
{
xt|st

}
, will be then given by the Kalman filter. Also, similar to before we can

define a steady-state for the problem as an initial prior that reproduces itself over time.

3 A Rational Inattention Phillips Curve

In the previous section, we develop a tractable method to solve a dynamic rational inattention

problem under Linear-quadratic-Gaussian (LQG) set-up. In this section, we apply the results to a

simple pricing model to derive a dynamic inattention Phillips curve, which has novel characteristics

of inflation dynamics.

3.1 Environment

Assume that there is a measure 1 of firms indexed by i ∈ [0, 1]. There is a price taking final good

producer that assembles the products of these firms to a single consumption good through a CES

aggregater. This implies that the demand function of firm i is given by

Yi,t = Yt

(
Pi,t
Pt

)−σ
where Yi,t is i’s output, Pi,t is its chosen price, Yt is the aggregate output and Pt is the aggregate

level of prices. Firm i’s flow profit function is given by

Π (Pi,t;Pt, Yt) = P 1−σ
i,t P σt Yt − TC (Pi,t;Pt, Yt)

where the first term is the firm’s revenue and the second term is a function that maps the firms

price, and the aggregate variables, to its total cost of production23. Let P ∗t = P ∗ (Pt, Yt) ≡
arg maxx Π (x;Pt, Yt) be the maximizer of this flow profit function at time t. Thus,

Π1 (P ∗t ;Pt, Yt) = 0.

23We assume this function is twice differentiable in all its arguments, and convex in Pi,t so that the maximum
exists. Moreover, assume that TC(.; ., .) is homogeneous of degree zero in its first two arguments so that only relative
price of the firm matters.
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A Taylor expansion of this first order condition around an optimal non-stochastic point (P ;P, Y )24

gives

p∗t = pt +

∣∣∣∣Π13

Π11

Y

P

∣∣∣∣ yt
where small letters denote the log-deviation from the optimal non-stochastic point around which

we have linearized the equation, and α ≡
∣∣∣Π13Y

Π12P

∣∣∣ is the degree of strategic complementarity. Now,

define the function L (Pi,t;Pt, Yt) as the flow loss in the profit of firm i for any given price Pi,t:

L (Pi,t;Pt, Yt) = Π (P ∗t ;Pt, Yt)−Π (Pi,t;Pt, Yt) .

It is straight forward to show that this loss function, up to a second order approximation is pro-

portional to the quadratic difference between pi,t and p∗t .

L(Pi,t;Pt, Yt) =
1

2

∣∣Π11P
2
∣∣ (pi,t − p∗t )2 .

Thus p∗t = pt +αyt is the firms’ fundamental, and given its process, the firm’s problem is the same

as the one in section 2.1. Finally, to close the model, following the literature25, we assume that

the aggregate nominal GDP, Qt ≡ PtYt, is exogenous to the decision of firms, and is set by the

monetary authority. This implies

p∗t = (1− α) pt + αqt

Specifically, we assume that the growth rate of nominal GDP follows an ARIMA(1,1,0)26:

∆qt = ρ∆qt−1 + ut.

3.2 The Equilibrium

Let ũt be the vector of the random walk part of the nominal GDP until time t, as defined in section

2.3, for an arbitrarily large truncation of the process T ∈ N. Thus,

qt ≈ dw′qũt s.t. dwq ≡ (1, ρ, ρ2, . . . , ρT ).

Each firm takes the process of p∗t as given and given a prior over ũ0 solves a rational inattention

problem as defined in previous sections. We assume that agents’ rational inattention errors are

orthogonal in the cross section so that the aggregate price only depends on ũt. Since qt follows a

difference stationary process, the attention problem of the agents are similar to the one discussed

in section 2.3.

Thus, a symmetric steady-state rational inattention equilibrium to the model is a pair of steady-

24The CES aggregation implies that, due to symmetry, in a non-stochastic optimal point all firms charge the same
price which turns to be the aggregate price.

25See, for instance, Maćkowiak and Wiederholt (2009); Woodford (2003); Mankiw, Reis, et al. (2002).
26In the section 3.4, we assume that the growth rate of nominal GDP has a news shock component to show how

the firms’ dynamic incentives to process information affects inflation dynamics.
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state prior and signal (Σ,dy), and a set of vectors {dwp∗ ,dwp} such that

1. Given that p∗t = dw′p∗ũt, the constant sequence {(Σt+1|t = Σ,dyt = dy)}∞t=0 is a solution to

each firms’ rational inattention problem

L0(Σ̂) = min
{dyt∈ŜFt }∞t=0

∞∑
t=0

βtdw′p∗Σt|tdwp∗ (7)

s.t. dy′tΣt|t−1dyt ≤ 1− 2−2κ

Σt|t = Σt|t−1 − Σt|t−1dytdy′tΣt|t−1

Σt+1|t = (M + e1e
′
1)Σt|t(M

′ + e1e
′
1) + e1e

′
1

Σ0|−1 = Σ given.

2. Given the the set of {pi,t}i∈[0,1], where each pi,t is implied by the Kalman filtering of the

sequence of optimal signals {s∗i,t = dy′ũt + ei,t}∞t=0,∀i∈[0,1], dwp is such that

pt =

∫ 1

0
pi,tdi = dw′pũt.

3. Given dwq and dwp, dw∗p is such that

p∗t = (1− α)pt + αqt ⇔ dwp∗ = (1− α)dwp + αdwq.

Such a solution can be derived by iteration. we start with guessing a process for wp∗ , in particular,

wp∗ = wq, the solution to the model when κ → ∞. Given the guess, we solve for (Σ,y) using

the steady-state Euler equation of the attention problem derived in equation 6. Then, given the

sequence of optimal signals implied by (Σ,y), we find dwp such that
∫ 1

0 pi,tdi = dw′pũt using the

Kalman filter. Finally, given dwp, we update our guess of dwp∗ = (1−α)dwp +αdwq, and iterate

until convergence.

3.3 A Rational Inattention Phillips Curve

In this section, we derive the dynamic rational inattention Phillips curve by solving the above

rational inattention equilibrium. We first define agents’ average forecast errors, which are the novel

components in our dynamic inattention Phillips curve.

Definition 2. For any stochastic process {xt|t ≥ 0}, we define firms’ average forecast error of x

at time t for horizon τ as

FEt[xt+τ ] ≡ Ẽt [xt+j ]− Eft [xt+j ]

where Ẽt [·] is the average expectations at time t and Eft [·] is the full-information rational expectation

at time t.
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With this definition, we derive a semi-analytical form of the dynamic inattention Phillips curve

in the following lemma.

Lemma 4. (Dynamic Inattention Phillips Curve where β > 0) By Lemma 3 that the

optimal signals under dynamic inattention has the form s∗t =
∑∞

j=0 β
jbjEft

[
p∗t+j

]
+et. Then, given

the sequence (bj)
∞
j=0, the Phillips curve under dynamic inattention is given by

πt = Ẽt−1 [πt + α∆yt] + c0αyt −
∞∑
j=1

cjFEt [πt+j + α∆yt+j ] (8)

where cj = 22κδ0

(∑∞
k=j β

kbk

)
for every j ≥ 0 and δ0 ≡ dw′p∗Σdy.

Proof. See Appendix A.

We call (8) the dynamic inattention Phillips curve (DIPC). While we have to solve for (cj)
∞
j=0

numerically, this representation illustrate how dynamic inattention introduces a forward-looking

behavior among agents. Unlike the forward-looking Phillips curves derived under nominal rigidities,

current inflation is not necessarily increasing in expected inflation, and it can decrease with the

forecast errors of firms about future inflation and output gap growth. More importantly, current

inflation depends not only on current output, but also on all the future forecast errors. Therefore,

by altering these expectations, any forward guidance policy can have immediate effects on inflation,

and consequently output. Before we go through the inflation dynamics to forward guidance shocks

in this model, we consider some special cases that we can derive analytical solutions to get intuitions

of our Phillips curve.

Example 4. (The case of a random walk with no strategic complementarity) Suppose

that the aggregate demand is a random walk, meaning that ∆qt = ut. Also assume that there is

no strategic complementarity in pricing, α = 1, then the Phillips curve under rational inattention

is given by

πt = (22κ − 1)yt

which together with the evolution of the aggregate demand implies that output and inflation both

follow an AR(1) process:

yt = 2−2κyt−1 + 2−2κut ,

πt = 2−2κπt−1 + (1− 2−2κ)ut

Proof. See Appendix A.

Woodford (2003) made the argument that noisy information models are well-equipped for match-

ing the persistence of the real effects of monetary policy, as observed in the data; a feature that

early models of information rigidity, such as Lucas (1972), failed to generate. In spite of its very

restrictive parameterization, the closed form solution of this example sheds light on how rational
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inattention can create an endogenous real and persistent effect for monetary policy, where both

directly depend on firms’ capacity of processing information.

Figure 2 shows the impulse responses of inflation and output to a 1% shock to the aggregate

demand, for different values of κ. Lower capacity corresponds to a smaller response of output on

impact, which is accompanied by a larger response for inflation. The persistence of the effect is

lower for both inflation and output, when capacity is higher. For instance, for a very large capacity,

the shock has no effect on output at all. Moreover, inflation responds one to one to the shock and

is zero after the first period, meaning that there is zero persistence in its response.

A shortcoming of this example, however, is that it fails to present the dynamic effects of rational

inattention, as the solution is independent of β, the discount factor of the firms. The reason for

this independence relates to the very specific nature of a random walk. Each innovation has a

symmetrically permanent effect on the optimal price of the firms, which translates into a signal

that is independent of how patient the firms are. Nevertheless, this is not true in general. For

instance, later in example 6 we show that even with a random walk fundamental, the optimal

signal depends on β when shocks are announced beforehand.

Example 5. (Myopic Inattention Phillips Curve where β = 0) Suppose β = 0, then the

optimal set of signals is given by sit = p∗t+e
i
t, ∀t,∀i. Also the Phillips curve under rational inattention

is

πt = Ẽt−1 [πt + α∆yt] + α
(
22κ − 1

)
yt (9)

where Ẽt [.] ≡
∫ 1

0 E
[
.|Si,t

]
di is the average expectation of firms given the optimal signal structure.

Proof. See Appendix A.

In contrast to (8), we call (9) the myopic inattention Phillips curve since it eliminates firms’

dynamic incentives of information acquisition. The full discounting of future profit losses, β = 0,

leads firms to choose signals of their current fundamental, p∗t , and gives rise to a Phillips curve

without any forward-looking behavior. The semi-closed form of the Phillips curve, however, allows

us to visualize the effect of firms’ capacity and strategic complementarity on dynamics of inflation,

as the slope of curve depends only on the two. This slope increases with higher capacity or strategic

complementarity, which leads to the intuition that inflation should be more inertial when either of

these parameters are lower.

Moreover, this is an example with endogenous feedback in formation of firms’ expectations:

firms get a signal of their fundamental p∗t = (1− α) pt + αqt, and choose their price at each period

given the sequence of their signals over time. This, in turn, shapes the path of the fundamental as it

depends on the aggregate price through α. Thus, intuitively, p∗t should follow a more inertial path

as the strategic complementarity increases, which would lead to a more inertial path for aggregate

prices.

Figure 3 shows the impulse responses of inflation and output to a 1% shock to aggregate demand

for two different values of strategic complementarity, when κ = 0.2. As expected, inflation follows
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a more inertial path in presence of higher strategic complementarity, which in turn translates to a

more amplified response for output.

Moreover, Figure 4 shows the impulse responses of inflation and output for different levels of

capacity of processing information27. Higher capacity corresponds to a higher response of inflation

on impact, and less persistence as well as less humped-shape behavior for it over time. In the extreme

case of a very high capacity the response of inflation corresponds one to one to the response of the

growth of the aggregate demand, which is an AR(1) by assumption. Output, on the other hand,

responds more strongly to monetary policy when capacity is lower. In fact, monetary policy is

neutral when capacity is very high.

3.4 The Effect of News Shocks

3.4.1 Attention Allocation to News Shocks

In the previous section, we have considered some special cases of the model in which either β was

assumed to be zero (example 5) or it was irrelevant due to strong assumptions on the nature of

the fundamental (example 4). In this section, we present examples and results that illustrate the

forward-looking behavior that a positive β induces through rational inattention, and compare it to

other models of information rigidity such as noisy information and sticky information models. We

start with a simple example of monetary news shocks, for which a closed form Phillips curve can

be derived.

Example 6. (News Shock under Rational Inattention) Suppose that there is no strategic

complementarity in pricing and ∆qt = ut−1. This corresponds to a monetary policy in which the

shocks are announced a period before they take effect. While the fundamental of the firms has the

same process as in example 4, the difference is that here firms have the option to pay attention to

the shock that is going to take effect in the following period. In fact, the optimal signal incorporates

information about ∆qt+1, and is given by

st = qt + γ∆qt+1 + et

where γ is implicitly characterized by the following two equations as a function of the discount

factor, β, and the capacity of processing information, κ:

(1−β)γ+βδ
1−γ = β

1−γδ

(1− δ(1− γ))(1− δγ) = 2−2κ

Here, γ is the optimal weight that firms put on ut = ∆qt+1, the news shock about the next period

monetary policy, relative to qt, their current fundamental. The purpose of this example is therefore

to see how this optimal weight depends on the two parameters of the model, and whether inflation

or output respond to the news shock. Even though, δ, which is shown below to be related to

27The value of strategic complementarity in these responses is set to α = 0.5.
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persistence of the response of output, cannot be eliminated in deriving a closed form solution for

γ, we can derive a closed form solution of the Phillips curve:

πt = δ
γδ

1− δ(1− γδ)
(yt−1 + γut−1) + δ

1− γδ
1− δ(1− γδ)

(yt + γut)

which implies that inflation not only responds to current output yt, and the current shock to

aggregate demand, ut−1, but also to the news shock ut. Notice that the response of inflation to

ut is proportional to γ, the optimal weight on ut in the optimal signal. Moreover, we can also

characterize the joint equilibrium path of inflation and output over time:

πt = δyt−1 +
(
1− 2−2κ

)
ut−1 + γδ (1− γδ)ut

yt = (1− δ) yt−1 + 2−2κut−1 − γδ (1− γδ)ut

The response of output and inflation to the news shock is proportional to γ, and zero in net as

the shock is set to affect the aggregate demand in the next period. Moreover, we now have an

interpretation for 1 − δ: it is the persistence of the response of output to the shocks. Figure 5

shows the equilibrium values of γ and 1− δ for different levels of capacity and patience: the dashed

blue curves depict iso-capacity curves in the (γ, 1− δ) space, and the red solid lines are iso-patience

curves. Each intersection is an equilibrium that corresponds to that particular level of capacity

and patience. Notice that higher β always corresponds to higher value of γ: more patient firms

have a higher incentive to know about the future path of their fundamental. The more interesting

observation is that higher capacity always corresponds to a lower γ: firms with a larger capacity

are more confident that when the time comes they will be able to recognize their fundamental

and therefore choose to ignore the news shock, and pay a higher portion of their capacity to their

current fundamental. Moreover, higher capacity also translates to a lower persistence in response

of output to shocks, an observation similar to example 4.

Figure 6 shows the impulse responses of output and inflation in this setting under full discounting

of future losses, β = 0, and β = 0.99. When β = 0, the model behaves the same as in example 4:

firms completely ignore the news shock and wait until the time that the shock hits to get information

and react to it. However, when β > 0, firms optimally choose to pay attention to the news shock

and increases with an announced positive monetary policy shock: at the time of the announcement

firms get a high signal, but as they are not able to perfectly differentiate between the current shock

and the future shock they start increasing their prices immediately. Since the aggregate demand

has not increased yet at time zero, output falls to compensate for the increase in prices. Intuitively,

this result can be interpreted as follows: a rationally inattentive firm that cares about its future

losses will optimally choose to be informed about news of monetary policy; however, this does not

imply that they will have sufficient information to perfectly differentiate the news about future

monetary policy from current policy. Accordingly, news about future shocks will have a real affect

on the current state of the economy.
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Proof. See Appendix A.

3.4.2 Comparison with Sticky/Noisy Information Phillips Curves

Now, we compare our dynamic rational inattention Phillips curve with the other Phillips curves

derived from other information friction models. This comparison highlights the novel forward-

looking behavior in the dynamic inattention Phillips curve (8). First, let’s consider the myopic

inattention Phillips curve we derived in (9), which is the case of β = 0. This corresponds to a

setting when firms choose to only observe their current fundamental, as shown above in example 5.

This setting is similar to the noisy information models, which exogenously assume an information

structure for the agents in which the agent sees their current fundamental with an observation

error. Recall from example 5 that the myopic inattention Phillips curve is given by

πt = Ẽt−1 [πt + α∆yt] + α
(
22κ − 1

)
yt, (10)

where Ẽt−1 [.] ≡
∫ 1

0 E
[
.|Si,t

]
di denotes the average expectation of firms conditional on their time

t− 1 information given by the signal vector Si,t = (p∗0 + ei,t, . . . , p
∗
t−1 + ei,t), and α is the strategic

complementarity in pricing.

Sticky information models assume that at each period only a fraction of firms update their

information, but those who do acquire perfect information about the state of the economy and

their expectations correspond to those of fully informed agent. For these models, we use the

Phillips curve derived in Mankiw, Reis, et al. (2002):

πt = Êt−1 [πt + α∆yt] + α
λ

1− λ
yt,

where λ is the fraction of the firms that update their information at each period, and Êt−1 [.] =

λ
∑∞

j=0 (1− λ)j Eft−j−1 [.] is the average expectation of firms at time t− 1.

The similarity of the two Phillips curves is not a coincidence. In both models the response of

inflation, and the real effects of monetary policy, depends on two things: the a priori expected

changes in marginal cost, represented by time t − 1 expectation term, and a surprise element

represented by the coefficient on yt: in both models as the degree of friction reduces, either by a

higher capacity of processing information or a higher fraction of firms updating their information,

the slope becomes steeper, and in the limit converges to a vertical Phillips curve, in which there can

be no surprises in monetary policy and therefore no real effects. The fact that only yt appears in the

Phillips curve corresponds to the fact that there is no forward-looking behavior in neither of these

models: in the noisy information models it is by the assumption that firms have no incentive to do

so by construction. In the sticky information model, it is because of the fact that firms who update

their information can perfectly differentiate between current shocks, and future ones. Accordingly,

in choosing their prices, they only incorporate information that is relevant for their current prices,

and keep the information about future shocks out of their decision.
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We now compare the impulse responses of the three models to a forward guidance shock. Sup-

pose that ∆qt = ρ∆qt−1 + ut−τ , where τ is the degree of forward guidance: shocks to aggregate

demand are announced τ periods before taking effect. The goal here is to compare dynamic inat-

tention with reduced-form noisy information and sticky information models.

Figure 7 shows the impulse responses of the three models to an announced 1% shock to aggregate

demand that is going to take effect in three periods (τ = 3). For this exercise we have set κ = 0.5,

ρ = 0.5, and α = 0.8. Moreover, in the sticky information model, we have set λ = 0.2, so that the

peak of output and inflation in this model and noisy information (myopic inattention) one would

be the same28. In both sticky information and myopic inattention models the announced shock has

no effect, as in the first firms completely ignore it due the fact that it does not affect their current

fundamental, and in the latter firms who have updated their information can perfectly differentiate

it from the current shocks. In both these models, it is only after the shock takes effect that firms

start to respond to it. Output and inflation are more persistent in the sticky information model

because this model needs a relatively large amount of friction, λ = 0.2, to have the same peak effect

on output and inflation.

Unlike the former models, the dynamic inattention model exhibits immediate effects for the

announced shock: rationally inattentive firms who care about their future losses optimally choose

to be informed about future policy, but are not able to perfectly differentiate future shocks from

current ones due to their limited capacity in processing information. Therefore, upon getting a

high signal at time zero, they immediately respond by increasing which translates to an immediate

increase in response of inflation. Since the shock has not taken effect yet, output starts to fall

to compensate for the increase in prices. The peak of output is larger, however, when the shock

takes effect. This is due to the fact that firms are actively paying attention to future shocks,

which comes at the cost of being less informed about past ones compared to the myopic inattention

model. Therefore, both inflation and output demonstrate more inertial behavior under dynamic

inattention.

3.5 Estimation of the Dynamic Inattention Phillips Curve

To assess the empirical validity of our dynamic inattention Phillips curve, we estimate it using

historical US inflation data. We are interested in that whether US inflation dynamics indeed shows

both forward- and backward-looking behavior. Recall that the DIPC is written as,

πt = Ẽt−1 [πt + α∆yt] + c0αyt +
∞∑
j=1

cj

(
Eft [πt+j + α∆yt+j ]− Ẽt [πt+j + α∆yt+j ]

)

where Ẽt [·] is firms’ average expectation at time t and Eft [·] is full-information rational expectation

at time t. Notice that Eft [πt+j + α∆yt+j ] = πt+j + α∆yt+j − vt+j where vt+j is independent and

28There is no clear way that how these models should be compared. However, since the goal is to eventually match
these models to the observed behavior of output and inflation in the data, it seems reasonable to compare them in
such a manner.
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identically distributed (i.i.d) rational expectation error. Let F̃Et (Xt+j) = Ẽt (Xt+j) −Xt+j be an

ex-post average forecast error of variable Xt+j at time t. Then, we can rewrite the DIPC as

πt = Ẽt−1 [πt + α∆yt] + c0αyt −
∞∑
j=1

cj

(
F̃Et (πt+j) + αF̃Et (∆yt+j)

)
+ ṽ∞t+1 (11)

where ṽ∞t+1 = −
∑∞

j=1 cjvt+j is the weighted sum of rational expectation errors which are dated

t+ 1 and later.

There are two main challenges to consistently estimate the above DIPC. First, the infinite

amount of regressors on the right-hand side should be truncated. Second, although we use some

proxies for firms’ average forecasts, there might be measurement errors since it is difficult to directly

observe firms’ forecasts of inflation and changes in output gap. We now address each of these

difficulties in turn.

In practice, we need to truncate the infinite amount of regressors in RHS to estimate our DIPC.

This truncation will tend to provide a source of error. Specifically, equation (11) should be written

as

πt = Ẽt−1 [πt + α∆yt] + c0αyt −
J∑
j=1

cj

(
F̃Et (πt+j) + αF̃Et (∆yt+j)

)
+ ṽ∞t+1 + ξt,t+J

where ξt,t+J = −
∑∞

j=J+1 cj

[
F̃Et (πt+j) + αF̃Et (∆yt+j)

]
. Because this additional source of error is

dated t, the orthogonality condition will generally fail if we estimate the equation using ordinary

least squares or nonlinear least squares. However, consider the covariance of any variable z with

ξt,t+J :

cov (z, ξt,t+J) = −
∞∑

j=J+1

cj

[
cov

(
z, F̃Et (πt+j + α∆yt+j)

)]
.

This covariance will be nonzero unless z is uncorrelated with all ex-post forecast errors dated t of

future inflation and changes in the output gap. However, because each covariance is weighted by cj ,

it follows that the covariance of any regressors with ξt,t+j will converge to 0 as J goes to infinity as

long as cj converges to zero as J increases and the covariance of z with ex-post forecast errors is not

too explosive. Quantitatively, truncating ex-post forecast errors should thus have little effect on the

estimation for a large enough J . In Figure 9, we numerically show that the coefficient {cj}vanishes

quickly to zero as the forecast horizons increase. For example, if the nominal demand follows a

ARIMA(1,1,0) process, the coefficients {cj} of DIPC converge to zero in 3-4 periods. Based on this

quantitative results, we set our estimation equation as the following:

πt = βẼt−1 [πt + α∆yt] + c0αyt −
J∑
j=1

cj

(
F̃Et (πt+j) + αF̃Et (∆yt+j)

)
+ ṽ∞t+1 (12)

where ṽ∞t+1 is the error term which includes rational expectation errors dated t+ 1 and later.

Another source of difficulty for consistent estimation of the DIPC is a potential measurement
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error of expectation terms in RHS. Since firms’ true expectations of inflation and changes in output

gap are not observed in data, we need to proxy the average expectations of inflation and changes in

output gap. We use inflation and GDP forecasts data from Survey of Professional Forecasters(SPF).

However, one might have a concern about whether the forecasts data are relevant proxies for the

firms’ expectations. Especially, the ex-post forecast errors in RHS are likely to be vulnerable to

measurement error problem since the dispersion of forecasts of variables in SPF is increasing as the

forecast horizons increase. This measurement error issue can be addressed using the instrumental

variable approach. A set of instruments should be correlated with the RHS variables, but not

with the error term which is dated t + 1 and later. Notice that lags of output gap and past

expectations of current inflation and changes in output gap are valid instruments. However, it is

not obvious to find a set of instruments for ex-post forecast errors of future inflation and changes

in output gap. We argue that forecast revisions for future inflation and changes in output gap are

valid instruments for the average ex-post forecast errors. This choice of instruments is based on

a theoretical prediction of general noisy information models like ours. We exploit the results of

Coibion and Gorodnichenko(AER 2015) that the average forecast errors can be predicted by ex-

ante forecast revisions in models with information frictions. For example, if the variable of interest

for forecast follows AR(1) process, then noisy information model implies that

F̃Et (xt+j) =
1−G
G

(Ftxt+j − Ft−1xt+j) + νt,t+j

where G is the implied Kalman gain, Ft (·) is an average forecast at time t and vt,t+j is rational

expectations error. This tells us that average ex-post forecast errors are systemically related with

current average forecast revision if the forecasters are subject to a noisy or sticky information

friction.29 In general, under the information friction models like ours, average forecast errors can

be systemically predicted by current and past average forecast revisions. Based on this prediction,

we choose the set of instruments: 1) past forecasts of inflation and changes in output gap, 2) lags

of output gap, 3) current and lags of forecast revisions for inflation and changes in output gap.

3.5.1 Data

We use mean expectations data from the Survey of Professional Forecasters (SPF).30 The SPF

data provide an ideal source of expectations because they are a direct measure of what economists

were forecasting and are available on a quarterly basis. To generate expectations of changes in the

output gap, we follow Coibion (2006) and assume that forecasters knew the actual changes in the

29Coibion and Gorodnichenko (2015) test the noisy/sticky information models predictions by assuming that
true inflation dynamics follows AR(1) process and setting up the following estimation equation: F̃Et (xt+j) =
β (Ftxt+j − Ft−1xt+j) + νt,t+j . The null hypothesis is β = 0 and they find that β is significantly different from
zero and positive. This tells that the forecasters are subject to sticky or noisy information. This results also hold
if one assumes that inflation follows AR(p) process or VAR(p) process or if one uses other variables such as GDP
growth.

30SPF data are available at the Philadelphia Federal Reserve Board: https://www.philadelphiafed.org/research-
and-data/real-time-center/survey-of-professional-forecasters. Median forecasts were also used and yielded qualita-
tively similar results.
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Congressional Budget Office (CBO) measure of potential output and derive expectations of future

changes in the output gap as expected changes in output minus actual changes in the CBO measure

of potential output. Although SPF forecasts data are provided for the next four quarters, since

we instrument ex-post average forecast errors using ex-ante average forecast revisions, we lose one

forecast horizon. Thus, we set J = 3.

We use four lags for the lags of instruments. The baseline sample period is 1972:Q1-2016:Q4, but

we check the robustness using only Post-Volcker period(1979:Q4-2016:Q4). The baseline inflation

measure we use is the annualized growth of GDP deflator. We use CPI data also for robustness

check although CPI forecasts data in SPF are only available after 1982:Q4.

3.5.2 Results

We estimate the equation (12) with non-linear GMM using instrumental variables. The null hy-

pothesis is that the coefficients {cj} on forward-looking terms are significantly different zero. It

is a noble characteristic that our DIPC has compared to other Phillips curves from sticky/noisy

information models. Table 1 shows the estimates of coefficients in our DIPC. First, the coefficients

on forward-looking terms, {cj}, are consistent to our theory: those are significantly different from

zero. This result holds when we use the sample of post-Volcker period or CPI inflation. Second,

the coefficient on backward-looking term in the DIPC is also significantly different from zero, and

is not statistically different from one, which is consistent to the model. Thus, we verify that the

US inflation dynamics is consistent to our DIPC and has the properties of the both forward- and

and backward-looking behavior. Third, we can also estimate a structural parameter of the model.

When we estimate using the entire sample, the degree of strategic complementarity is quite high,

α = 0.03. Post-Volcker period with CPI inflation gives the estimate of the low degree of strategic

complementarity, α = 0.28.

4 Forward Guidance under Rational Inattention

In this section, we study the effects of forward guidance policy in a general equilibrium model where

each firm is rationally inattentive.

4.1 Households

We assume that households are fully informed about prices and wages and maximize their life-time

utilities:

max
Ct,Lit,Bt

Ef0

[ ∞∑
t=0

βt

(
C1−σ
t

1− σ
−
∫ 1

0

(
LSit
)1+ψ

di

1 + ψ

)]
(13)

s.t. PtCt +Bt =

∫ 1

0
WitL

S
itdi+Rt−1Bt−1 + Tt
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where LSit is firm-specific labor supply, Rt−1 is nominal interest rate, Bt is nominal risk-less one-

period government bonds, and Tt is the aggregate profits of firms. The first-order optimal conditions

are:

C−σt = βRtEft
[
C−σt+1

Pt
Pt+1

]
(14)

Cσt
(
LSit
)ψ

=
Wit

Pt

4.2 Firms

Assume that there is a measure 1 of firms indexed by i ∈ [0, 1]. There is a price taking final good

producer that assembles the products of these firms to a single consumption good through a CES

aggregater.

There are intermediate good producers in the monopolistically competitive market. This implies

that the demand function of intermediate goods firm i is given by

Yit =

(
Pit
Pt

)−σ
Yt

where σ is the elasticity of substitution across goods, Yit is i’s output, Pi,t is its chosen price, Yt is

the aggregate output and Pt is the aggregate level of prices. Let each firm has a linear production

technology: Yit = LDit where LDit is labor demand of firm i. Firm’s (real) marginal cost is:

mcit =
Wit

Pt

Given the firm’s optimal information choice, the firm i maximizes its flow profit:

max
Pit

Eit [Π (Pit;Pt, Yt)] = Eit

[(
Pit
Pt
−mci,t

)(
Pit
Pt

)−ε
Yt

]

where Eit [·] = Et
[
· | Sit

]
given the history of signals Sit . The first-order optimal condition gives:

Pit =
ε

(ε− 1)
Eit [Ptmcit]

Using market clearing conditions, stated in Definition 3, we can rewrite firm i’s optimal price given

her information set as

P 1+εψ
it =

ε

(ε− 1)
Eit
[
P 1+εψ
t Y σ+ψ

t

]
A Taylor expansion of this first order condition around an optimal non-stochastic steady-states

gives

p∗t = pt + αyt

where small letters denote the log-deviation from the optimal non-stochastic point around which
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we have linearized the equation, and α = σ+ψ
1+εψ is the degree of strategic complementarity. Now,

define the function L (Pit;Pt, Yt) as the flow loss in the profit of firm i for any given price Pit:

L (Pi,t;Pt, Yt) = Π (P ∗t ;Pt, Yt)−Π (Pit;Pt, Yt) .

This loss function, up to a second order approximation, is proportional to the quadratic difference

between pit and p∗t

L(Pi,t;Pt, Yt) =
1

2
(pit − p∗t )

2 .

Thus, p∗t = pt +αyt is the firms’ fundamental, and given its process, the firm’s problem is the same

as the one in section 2.1.

4.3 Monetary Policy and General Equilibrium

We assume that monetary authority is fully rational and monetary policy is given by the standard

Taylor rule:

Rt = (Rt−1)ρ
((

Pt
Pt−1

)φπ (Yt
Ȳ

)φy)(1−ρ)

exp (ut−k) (15)

where ut−k is the k-periods ahead monetary news shock.

Let ut = (ut, ut−1, ut−2, · · · )′ be the vector of monetary policy shocks until time t. From 2.3, we

can define the random walk part of the shocks as ũt ≡ (I−M′)−1 ut. Let’s denote the perceived

covariance matrix as Σi
t|t−1 = Eit−1

{(
ũt − ũit|t−1

)(
ũt − ũit|t−1

)′}
.

Definition 3. A general equilibrium for the economy is an allocation for the household ΩH ={
Ct, Bt, (Lit)i∈I

}∞
t=0

, a optimal signal and allocation profile for firms given an initial set of signals,

ΩF =
{(

dyit ∈ ŜFt , pit, LDit
)∞
t=0

}
i∈I
×
{
S−1
i

}
i∈I , and a set of prices

{
Rt, Pt, (Wit)i∈I

}∞
t=0

such that

1. Households: given prices and ΩF , the household’s allocation solves their problem as specified

in Equation (13).

2. Firms: given ΩH , and the implied labor supply and output demand curves, {dyit}
∞
t=0solves

L0(Σi
t|t−1) = min

{dyit∈ŜFt }∞t=0

1

2

∞∑
j=0

βjdw′p∗Σ
i
t|tdwp∗

s.t. dy′itΣ
i
t|t−1dyit ≤ 1− 2−2κ

Σi
t|t = Σi

t|t−1 − Σi
t|t−1dyitdy′itΣ

i
t|t−1

Σi
t+1|t = (M + e1e

′
1)Σi

t|t(M
′ + e1e

′
1) + e1e

′
1

Σi
0|−1 = Σ given.

where p∗t = dw′p∗ũt, pit = Eit [p∗t ], and LDit = Yit =
(
Pit
Pt

)−σ
Yt.
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3. Monetary Policy: given ΩH and ΩF , the monetary authority follows the Taylor rule specified

in Equation (15).

4. Market clears: Ct = Yt, Bt = 0, Lit = LDit ∀i.

4.4 Solution Algorithm

The linearized version of IS equation (14) around non-stochastic steady-state, combined with the

market clearing conditions, gives:

yt = Eft yt+1 −
1

σ

(
it − Eft πt+1

)
. (16)

Also, the linearized version of Taylor rule (15) is given by:

R̂t = ρR̂t−1 + (1− ρ)φππt + φyyt + ut−k. (17)

Now, we guess πt = dw′πũt, yt = dw′yũt and R̂t = dw′Rũt. We guess all these three variables

are stationary so that the tails of (dwπ,dwy,dwR) all converge to zero. We truncate these vectors

with an arbitrary large length T . Then using state-space formulation, we can rewrite the equation

(16) and (17) as the following:

(I− ρM) dwi = (1− ρ)φπdwπ + (1− ρ)φydwy + (I−M)
(
M′)k e1

dwi = σ
(
M′

p − I
)
dwy + M′

pdwπ

where Mp = M + e1e
′
1 and e1 is the first column of the T ×T identity matrix. Now, by combining

the above two equations, we have

[
σ (I− ρM)

(
M′

p − I
)
− (1− ρ)φyI

]
dwy

=
[
(1− ρ)φπI− (I− ρM) M′

p

]
dwπ + (I−M)

(
M′)k e1.

We consider a symmetric steady-state rational inattention equilibrium to the model, where

dyit = dy and Σi
t|t−1 = Σ for every i and t. To solve the equilibrium, first, we start from guessing

the optimal pricing rule: p∗t = dw′p∗ũt . Second, given p∗t = dw′p∗ũt, each firm solves the rational

inattention problem and finds the optimal signal s∗i,t = dw′sũt+ei,t. Third, given the set of {pit}i∈I ,
where each pit is implied by the Kalman filtering of the sequence of the optimal signals, we find

that pt = dwp
′ũt. Note that πt = pt−pt−1 = dwp

′ (I−M′) ũt, thus dwπ = (I−M) dwp. Fourth,

using dwp and equation (8), find dwy and then calculate p∗t = pt +αyt ⇐⇒ dwp∗ = dwp +αdwy.

Finally, we update our guess dwp∗ and iterate until we have a convergence.
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4.5 Results

4.5.1 Parameterization

Table 2 contains numerical values we used for the parameters of the model. The parameteriza-

tion is standard. In the baseline, we use log preference (σ = 1) as well as a unit Frisch elastic-

ity of labor supply
(

1
ψ = 1

)
. The elasticity of substitution between goods is 6, which implies

about 20% of steady-state markup. The implied strategic complementarity is also standard in

literature(α = 0.29). We set the capacity of processing information κ = 0.5, which is consistent

with the estimate from Coibion and Gorodnichenko (2015a). For the monetary policy feedback

rule, we assume that there is no interest rate smoothing (ρ = 0), and set φπ = 1.2 and φy = 0.2.

4.5.2 Effects of the Forward Guidance Shock and Forward Guidance Puzzle

Impulse responses of variables to an expansionary monetary policy shock (of 1%) that will be

realized 4 quarters later are shown in Figure 10. Let’s first look at the impulse responses of

the myopic inattention model (β = 0). Unlike the previous exogenous nominal demand exercise

in Figure 7, even though firms are not forward-looking in their information acquisition, inflation

responds immediately to the forward guidance shock. This is because households are fully rational

and forward-looking, and thus they increase the demand for goods when the shock is announced.

Since the increased demand pushes marginal costs to increase, firms increase their prices, and

thus aggregate inflation increases. The nominal interest rate increases as well given the interest

rate feedback rule. When the news shock is actually realized at 4 quarters, the nominal interest

rate falls. Notice that in a standard Calvo sticky price model, output, inflation, and the short-

term rate all go back to steady-state immediately after the shock realization since the model is

completely forward-looking and the shock is transitory. In contrast, after the shock realization,

inflation slowly converges to the steady-state in the myopic inattention model. The intuition is

that the myopic inattention firms are backward-looking in their optimal price decisions because of

the noisy signals that they choose. In aggregate, this backward-looking nature is clearly shown

in the myopic Phillips curve in (10). Moreover, after the shock realization, output contracts for

a while, and converges to the steady-state. Since firms are rationally inattentive, they optimally

choose to observe noisy signal about the fundamentals, and increase their prices even after the shock

realization. Real interest rate goes up through the the interest rate feedback rule, and thus output

contract. Thus, unlike the standard New Keynesian sticky price model, the myopic inattention

model implies that the expansionary effect of forward guidance policy is not a free lunch: it comes

with output contractions which slowly converges to the steady-state as firms still increase their

prices due to the noisy signal that they optimally choose to observe.

For the dynamic inattention model where β = 0.99, the overall dynamics are similar to the

myopic inattention model. One notable difference is the large responses of inflation to the forward

guidance shock until the shock is actually realized. The intuition is clear: here, firms are forward-

looking in their optimal attention choices. In addition to the increased demand from the forward-
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looking households, firms expect that future fundamental (their marginal costs) will be large because

of the future expansionary shock. This expectation passes through their optimal price decisions, and

thus they increase their prices much more than the myopic inattention firms. The large response

of inflation generates output booms by less compared to the myopic inattention model.

Our model survives the forward guidance puzzle, established in Del Negro, Giannoni, and

Patterson (2012), in the standard New Keynesian models. The puzzle says the effectiveness of

forward guidance shock is increasing as the horizons of the forward guidance increase because of

the completely forward-looking behavior of households and firms. The literature proposes various

resolutions to this puzzle, by reducing this forward-looking behavior of households or firms.31 Our

model also weakens the forward-looking behavior of firms because firms are rationally inattentive

and choose to observe a noisy signal about their marginal costs. Figure 11 compares the initial

response of inflation to the forward guidance shocks of different horizons in three different models:

sticky price, myopic inattention, and dynamic inattention. The initial response of inflation is

decreasing in the horizon of the forward guidance in the myopic and dynamic inattention models,

while it is increasing in the Calvo sticky price model. In Figure 12, we find that initial output

response is also small in the inattention models compared to the standard sticky price model.

5 Conclusion

This paper proposes a new tractable method for solving dynamic rational inattention problems with

Gaussian fundamentals and shows that rationally inattentive agents manifest a forward-looking

behavior in choosing their information. This forward-looking behavior emerges due to a dynamic

trade-off for the agents: at each period not only the information structure of the agent serves

them by providing a posterior about their current fundamental, and hence their optimal decision,

but also by forming a prior about future states of the fundamental by shaping their future priors.

Faced by this trade-off, agents optimally choose to acquire information about both current and best

possible estimates of future fundamentals. Acting on such an information structure, agents’ actions

exhibit a forward-looking pattern: these actions respond to future expectations of fundamentals,

even though agents do not face any rigidity in choosing them.

We apply this result to the pricing theory, and show that a Phillips curve that emerges under

dynamic rational inattention relates current inflation to the future forecast errors about inflation

and output gap growth, a feature that been missing from other models of information rigidity

such as reduced-form noisy information and sticky information models. Also, since agents choose

their actions under imperfect information, this Phillips curve also replicates the inertial response

of inflation and output to monetary policy shocks. These two characteristics, the dependence of

current inflation to expected future inflation, and the inertial behavior of it through depending on its

31For example, McKay, Nakamura, and Steinsson (2016) introduce the incomplete market assumption for house-
holds, which make households are less forward-looking due to the self-insurance motive. Other papers introduce
some information frictions in the model, which generates backward-looking behavior of firms’ optimal decisions. (e.g.,
Angeletos and Lian (2016) for imperfect common knowledge, Gabaix (2016) for a behavioral model; and Carlstrom,
Fuerst, and Paustian (2015); Kiley (2016) for sticky information.)
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past realizations, have been shown to be necessary to match the observed pattern of it in the data.

However, current models of micro-founded pricing, such as sticky prices, menu costs, and sticky and

noisy inflation models fail to capture both of these features, with the former two missing the inertial

pattern of inflation, and the latter two by missing its forward-looking behavior. This has lead to

the use of hybrid Phillips curves, such as sticky prices with indexation, that has been criticized

for ignoring the underlying micro foundation. In this paper, we develop a micro foundation of

the hybrid Phillips curve from the rational inattention model with dynamic incentives of processing

information. Our empirical estimation of the dynamic inattention Phillips curve using the Survey of

Professional Forecasters as a proxy for firms’ expectations confirms that the US inflation dynamics

has both backward- and forward-looking behavior.

In order to demonstrate the forward-looking behavior that is micro-founded under our dynamic

inattention model, we implement a simple forward guidance exercise, in which shocks to aggregate

demand is announced before taking effect. We show that while sticky information and reduced-form

noisy information models fail to generate any response to these news shocks before they affect the

aggregate demand, rationally inattentive firms optimally choose to attend to these news shocks,

and respond to them before they take effect. In the general equilibrium model, we show that

this forward-looking behavior of firms’ information acquisition makes the forward guidance policy

effective by increasing inflation and booming output. However, the initial responses of inflation and

output decrease with the horizon of forward guidance because of the backward-looking term in the

Phillips curve, which is coming from the noisy information that firms optimally choose to acquire.

Thus, our model survives the forward guidance puzzle.

The huge interest in, and appeal to, forward guidance policies during the years after the Great

Recession, lead by the belief that economies respond to news about future policies has been damp-

ened by lack of adequate models to analyze the effects of such policies. Consequently, while other

models of information rigidity fail to incorporate the dynamic effects of forward guidance policies,

and therefore are incapable for any analysis of forward guidance policies, the dynamic rational

inattention model poses as the sole rigorously micro-founded information rigidity model that can

fill this void.
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6 Tables and Figures

Table 1: Estimation of Dynamic Inattention Phillips Curve

GDP deflator GDP deflator CPI
(72Q1:16Q4) Post-Volcker (79Q4:16Q4) (82Q4:16Q4)

(1) (2) (3) (4) (5) (6)

constant
-0.00 -0.03 0.81***

(0.04) (0.05) (0.15)

β
1.01*** 1.00*** 1.03*** 1.02*** 0.78*** 1.01***

(0.01) (0.00) (0.01) (0.01) (0.04) (0.02)

α
0.03*** 0.03*** 0.09*** 0.09*** 0.27*** 0.28***

(0.01) (0.01) (0.01) (0.01) (0.03) (0.03)

c0
1.06* 1.10** 0.90*** 0.94*** 0.86*** 0.69***

(0.61) (0.50) (0.14) (0.12) (0.14) (0.11)

c1
0.45*** 0.45*** 0.10*** 0.11*** 0.09*** 0.10***

(0.07) (0.07) (0.04) (0.04) (0.03) (0.03)

c2
0.17*** 0.17*** 0.18*** 0.18*** -0.33*** -0.34***

(0.06) (0.06) (0.03) (0.03) (0.04) (0.04)

c3
0.13*** 0.13*** 0.18*** 0.17*** -0.13*** -0.12***

(0.03) (0.03) (0.02) (0.02) (0.04) (0.04)

Over-identification 8.06 8.08 7.30 7.30 6.82 6.82
Test J − stat (p = 1.0) (p = 1.0) (p = 1.0) (p = 1.0) (p = 1.0) (p = 1.0)

N 172 172 146 146 134 134

Newey-West robust standard errors are in parentheses.
***, **, * denote statistical significance at 1, 5, and 10 percent levels.

Table 2: Parameterization of the Model

Parameter Calibrated Value Description

β 0.0 or 0.99 time preference

σ 1 log preference

ψ 1 inverse of elasticity of substitution for labor supply

ε 6 elasticity of substitution among goods

α σ+ψ
1+εψ strategic complementarity

λ 1− 2−2κ = 0.5 information processing capacity parameter

ρ 0.0 interest rate smoothing parameter

φπ 1.2 elasticity of interest rate to inflation

φy 0.2 elasticity of interest rate to output
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Figure 2: IRFs for example 4: The figure shows the impulse responses of output and inflation
to a 1% shock to the aggregate demand, for different levels of capacity of processing information.
Rational inattention creates endogenous real and persistent effects for monetary policy. See example
4 for details.

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1
Inflation

Growth of q

Inflation, α = 0.5

Inflation, α = 1.0

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

Output

Growth of q

Output, α = 0.5

Output, α = 1.0

Figure 3: IRFs for example 5: The figure shows impulse responses of output and inflation for a
capacity parameter of κ = 0.2. The red curves with circle markers are the IRFs of the model with
no strategic complementarity (α = 1), and the blue curves with star markers are the IRFs when
α = 0.5. Higher strategic complementarity introduces higher inertia in response of inflation, and
amplifies the response of the output. See example 5 for details.
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Figure 4: IRFs for example 5: the figure shows impulse responses of output and inflation for
different values of capacity. Higher capacity leads to less inertial response of inflation and a smaller
and less persistent response of output. When capacity is very large, inflation exactly follows the
AR(1) path of the growth of the aggregates demand, and output does not respond to monetary
policy at all. See example 5 for details.
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Figure 5: The figure depicts the iso-capacity (measured by λ ≡ 1 − 2−2κ ∈ [0, 1)) curves in blue
dashed lines, and iso-patience (measured by β ∈ [0, 1)) curves in red solid lines. Each intersection
gives an equilibrium pair of (γ, δ). Higher capacity or lower patience correspond to a less forward-
looking behavior in the information acquisition of the firms when there is forward guidance. See
example 6 for details.
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Figure 6: IRFs for example 6: the figure shows the impulse responses of output and inflation to
a 1% announced shock to the aggregate demand that will take effect in period one. When β = 0,
firms choose to ignore the news about future policy, and the news has no effects at the time of
announcement. However, when β is positive, firms include the news in their optimal signal, and
react to it immediately before the shock affects the aggregate demand.

0 2 4 6 8 10 12 14 16
0

0.2

0.4

Inflation

Dynamic Inattention: β=0.99

Myopic Inattention: β=0.0
Sticky Information

0 2 4 6 8 10 12 14 16

-0.4

-0.2

0

0.2

0.4

Output

Figure 7: The figure shows impulse responses of three different models to a 1% news shock about
aggregate demand that will take effect after three periods. Firms do not respond to this news
shock neither in the sticky information model nor in the reduced-form noisy information model
(myopic inattention), where firms only observe their current fundamental. However, under dynamic
inattention firms optimally choose to pay attention to the news shock and respond to it immediately.
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Figure 8: The figure shows impulse responses of three different models to a 1% news shock about
aggregate demand that will take effect after three periods. Firms with a larger capacity are more
confident that when the shock realizes, they will be able to recognize their fundamental and therefore
choose to ignore the news shock. Thus, inflation does not respond when the shocks are announced.
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Figure 9: The figure shows the coefficients on the forward-looking terms in the dynamic rational
inattention Phillips curve(left) and the coefficients on the forward-looking terms in the firms’ op-
timal signal. The shock follows ARIMA(1) process with different persistence. We find that the
coefficients quickly vanish to zero.
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Figure 10: The figure shows the impulse responses of variables to a 4-period ahead forward guidance
shock. We compare the IRFs of dynamic inattention model with those of myopic inattention model.
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Figure 11: The figure shows the initial responses of inflation to the forward guidance shocks of
different horizons. Unlike the Calvo sticky price model, the initial response of inflation in the
rational inattention models decreases with the horizons of forward guidance.
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Figure 12: The figure shows the initial responses of output to the forward guidance shocks of
different horizons. Compared to the Calvo sticky price mode, the initial response of output is small
in the rational inattention models.
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A Proofs

Proof of Theorem 1.

Proof. Recall that the agent’s problem is

L0(Σ0|−1) = min
{yt∈ŜFt ,κt}∞t=0

∞∑
t=0

βt
(
w′Σt|tw + λκt

)
s.t. Σt|t = Σt|t−1 − Σt|t−1yty

′
tΣt|t−1

Σt+1|t = MΣt|tM
′ + e1e

′
1

1

2
log2

1

1− y′tΣt|t−1yt
≤ κt

Σ0|−1 given.

To simplify the problem, combine the law of motions for Σt|t and Σt+1|t to get a single law of motion

for the priors:

Σt+1|t = M(Σt|t−1 − Σt|t−1yty
′
tΣt|t−1)M′ + e1e

′
1 , ∀t ≥ 0.

Notice that since the objective function is convex, the information flow constraint is binding. Finally,

as Σt|t−1 is a state variable at time t, we can consider the following change of variables: zt = Σt|t−1yt,

and let agent choose zt. Notice that zt is the covariance vector of agent’s signal with ut, and if

Σt|t−1 is invertible, choosing the covariance vector is equivalent to choosing a vector yt.
32

This is a standard constrained optimization problem, with a countable number of constraints,

that can be solved by maximizing the following Lagrangian: (for simplicity of notation, let Σt ≡
Σt|t−1 denote the agent’s prior at time t.)

L =
∞∑
t=0

βt
(
−w′Σtw + w′ztz

′
tw + λ

1

2
log2

(
1− z′tΣ

−1
t zt)

))

+

∞∑
t=0

βt

 T∑
j=1

η′j,t[Σt+1 −M(Σt − ztz
′
t)M

′ − e1e
′
1]ej


where ηj,t is the vector of multipliers on the j’th column of the matrix constraint, and ej is a vector

with 1 as its j’th element and zero elsewhere. We start with the first order condition with respect

32Assuming that the initial prior, Σ0|−1, is invertible, meaning that there is strictly positive entropy in agent’s
initial prior over the history of innovations, one can show that under finite capacity all future Σt’s are also invertible
for any set of signals. This is a direct implication of the fact that resolving all uncertainty about Gaussian variables
requires infinite capacity.
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to Σt+1:33

0 = −βt+1
[
2ww′ − diag(ww′)

]
+ βt+1λ

1

2 ln 2

1(
1− z′t+1Σ−1

t+1zt+1

) [2Σ−1
t+1zt+1z

′
t+1Σ−1

t+1 − diag
(
Σ−1
t+1zt+1z

′
t+1Σ−1

t+1

)]
+ βt

T∑
j=1

[
ηj,te

′
j + e′jηj,t − diag(ηj,te

′
j)
]

− βt+1
T∑
j=1

M′ [ηj,t+1e
′
j + e′jηj,t+1 − diag(ηj,t+1e

′
j)
]
M

L =

∞∑
t=0

βt
(
−w′Σtw + w′ztz

′
tw + λ

1

2
log2

(
1− z′tΣ

−1
t zt)

))

+
∞∑
t=0

βt

 T∑
j=1

η′j,t[Σt+1 −M(Σt − ztz
′
t)M

′ − e1e
′
1]ej


take the diagonal of this identity and see that the diag(.) terms sum up to zero, so after replacing

yt = Σ−1
t zt, we are left with

Xt = βM′ (ww′ − φt+1yt+1y
′
t+1 + Xt+1

)
M

where Xt ≡ 1
2

∑T
j=1 M′

[
ejη
′
j,t + ηj,te

′
j

]
M and φt+1 = 1

2 ln 2
λ

(1−y′t+1Σt+1yt+1)
.

Moreover, the first-order (necessary) condition with respect to zt is

(w′zt) w − λ 1
2 ln 2

1
(1−y′tΣtyt)

Σ−1
t zt + Xtzt = 0

⇒ (w′Σtyt)w − φtyt + XtΣtyt = 0

Hence the FOCs reduce to

φtyt = ww′Σtyt + XtΣtyt

Xt = βM′(ww′ + Xt+1 − φt+1yt+1y
′
t+1)M

Let X̂t = ww′ + Xt be a symmetric matrix. Then the FO(N)C for yt is

φtyt = X̂tΣtyt

Xt = βM′(ww′ + Xt+1 − φt+1yt+1y
′
t+1)M

Note that any φt satisfying the above equation is an eigenvalue of X̂tΣt and yt is the corresponding

eigenvector.

33For a guide to taking the derivative of symmetric matrices, see for example Petersen and Pedersen (2012).
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We want to find the (second-order) sufficient and necessary conditions for the optimal solutions

of the problem. First, we consider the necessary condition. Let Φt be the set of all eigenvalues

of X̂tΣt. Let y∗t be a maximizer for the problem and φ∗t be the corresponding eigenvalue which

satisfies the FOCs together with y∗t .
34 Then, φ∗t should satisfy the following second-order necessary

condition:

X̂tΣt − φ∗t I � 0

Thus, for every non-zero column vector s of T real numbers, φ∗t should satisfy

s′
(
X̂tΣt − φ∗t I

)
s = s′

(
VDV′ − φ∗t I

)
s

= s̃′ (D − φ∗t I) s̃

≤ 0

where D is a diagonal matrix formed from the eigenvalues of X̂tΣt
35, the columns of V are the

corresponding eigenvectors with VV′ = V′V = I and s̃ = V′s. Since φ∗t is an eigenvalue of X̂tΣt,

the last inequality holds when φ∗t = max{φjt∈Φt} φ
j
t . Thus, among the stationary points that satisfy

the FOCs, the optimal signal y∗t is the eigenvector which corresponds the largest eigenvalue φ∗t of

a symmetric matrix X̂tΣt.

Now, we show that this condition is sufficient for the optimal solution. It is enough to show

that and the largest eigenvalue φ∗t of X̂tΣt and the corresponding eigenvector y∗t satisfy the second-

order sufficient condition. Let S =
{

s 6= 0 | s′∇(yt=y∗t )

(
1− 2−2κt − y′tΣtyt

)
= s′Σty

∗
t = 0

}
. Then

for any s = S, we have

s′
(
∇2L∗

({
y∗t , φ

∗
t , {ηj,t}

∞
j=1

}∞
t=0

))
s = s′

(
X̂tΣt − φ∗t I

)
s

≤ 0

where the equality holds when s = y∗t due to the first-order condition. Note that y∗t /∈ S as

y∗
′
t Σty

∗
t 6= 0. Thus, y∗t and φ∗t satisfy the second-order sufficient condition.

Now, substituting Xt recursively in the second equation of the FOCs gives us

Xt =
∑∞

j=1 β
jM′j

(
ww′ − φt+jyt+jy′t+j

)
Mj

⇒ XtΣtyt =
∑∞

j=1 β
j
(
w′MjΣtyt

)
M′jw −

∑∞
j=1 β

j
(
y′t+jM

jΣtyt

)
M′j (φt+jyt+j)

34Since our objective function is continuous and the constraint is a compact set, the problem attains a maximum
by Weierstrass theorem.

35The matrix X̂tΣt is diagonalizable.
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Combining this with the first order condition for yt:

φtyt =
∞∑
j=0

βj
(
w′MjΣtyt

)
M′jw −

∞∑
j=1

βj
(
y′t+jM

jΣtyt
)
M′j (φt+jyt+j) .

Now guess that φt+jyt+j =
∑∞

k=0 β
kat+j,kM

′kw. Plugging in this guess in the above equation

2−2κtφtyt =
∞∑
j=0

βj
(
w′MjΣtyt

)
M′jw −

∞∑
j=0

∞∑
k=0

βj+kat+j,k
(
y′t+jM

jΣtyt
)
M′j+kw

=

∞∑
j=0

βj

[
w′MjΣtyt −

j∑
k=0

at+k,j−k

(
y′t+kM

kΣtyt

)]
M′jw

which verifies our guess and gives us a series of difference equations in terms of {(at,j)∞j=0}∞t=0 where

at,j = 22κt

[
w′MjΣtyt −

j∑
k=0

at+k,j−k(y
′
t+kM

kΣtyt)

]
.

Finally, assuming that φt > 0, let bt,j ≡ φ−1
t at,j , so that yt =

∑∞
j=0 β

jbt,jM
′jw. Now, the optimal

signal is

s∗t = y′tut + et

=
∞∑
j=0

βjbt,jw
′Mjut + et.

but notice that Mjut = E {ut+j |ut}, and w′Mjut = E {w′ut+j |ut} = E {xt+j |ut} = Eft {xt+j}.
Hence,

s∗t =
∞∑
j=0

βjbt,jEft {xt+j}+ et.

Q.E.D.

Proof of Corollary 1.

Proof. Recall

s∗t =

∞∑
j=0

βjbt,jEft {xt+j}+ et.

If xt follows an ARMA (p, q), then ∃
{(

αji

)p−1

i=0
,
(
γji

)q−1

i=0

}∞
j=0

such that

Eft {xt+j} =

p−1∑
i=0

αjixt−i +

q−1∑
i=0

γji ut−i
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so

∞∑
j=0

βjbt,jEft {xt+j} =
∞∑
j=0

βjbt,j

p−1∑
i=0

αjixt−i +
∞∑
j=0

βjbt,j

q−1∑
i=0

γji ut−i

=

p−1∑
i=0

 ∞∑
j=0

βjbt,jα
j
i

xt−i +

q−1∑
i=0

 ∞∑
j=0

βjbt,jγ
j
i

ut−i

Let ci,t =
∑∞

j=0 β
jbt,jα

j
i , ∀i ∈ {0, 1, . . . , p− 1} , ∀t ≥ 0 and di,t =

∑∞
j=0 β

jbt,jγ
j
i , ∀i ∈ {0, 1, . . . , q − 1},

∀t ≥ 0. Then

s∗t =

p−1∑
i=0

ci,txt−i +

q−1∑
i=0

di,tut−i + et.

Q.E.D.

Proof of example 2.

Proof. Letκt be the information flow that the agent chooses. Then we can write the optimal

information problem:

min
{yt∈ŜFt }∞t=0

∞∑
t=0

βt
(
w′
(
Σt|t−1 − Σt|t−1yty

′
tΣt|t−1

)
w + λκt

)
s.t. Σt+1|t = M

(
Σt|t−1 − Σt|t−1yty

′
tΣt|t−1

)
M′ + e1e

′
1

1

2
log2

(
1

1− y′tΣt|t−1yt

)
≤ κt

From Corollary 1 we know that the optimal signal is of the form st = αtxt+et, for αt ∈ R, meaning

that yt = αtw. Notice that at the optimum, the information flow constraint binds. Let’s define

zt =
(
Σt|t−1

) 1
2 w. Then the agent’s problem boils down to choose the optimal information flow, κt,

and zt+1:

max
κt,zt+1

∞∑
t=0

βt
(
−z′tzt2

−2κt − λκt
)

s.t. z′t+1zt+1 = ρ22−2κtz′tzt + 1

The Lagrangian is:

L (zt) =
∞∑
t=0

βt
(
−z′tzt2

−2κt − λκt + ψt
(
z′t+1zt+1 − ρ22−2κtz′tzt − 1

))
=

∞∑
t=0

βt
(
−z′tzt2

−2κt
(
1 + ρ2ψt

)
− λκt + ψt

(
z′t+1zt+1 − 1

))
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The first-order conditions give

λ

2 ln 2
= 2−2κtz′tzt

(
1 + ρ2ψt

)
ψt = β2−2κt+1

(
1 + ρ2ψt+1

)
= β

∞∑
j=1

(
βρ2
)j−1

2−2(
∑j
i=1 κt+i) + β lim

k→∞

(
βρ2
)k

2−2(
∑k
i=1 κt+i)ψt+k

= β
∞∑
j=1

(
βρ2
)j−1

2−2(
∑j
i=1 κt+i)

By combining two equations, we have ∞∑
j=0

(
βρ2
)j

2−2(
∑j
i=0 κt+i)

 =
λ

2 ln 2

(
1

w′Σt|t−1w

)
.

Consider the steady-state prior of the problem. Then the optimal information flows are constant

and this gives:
2−2κ

1− βρ22−2κ
=

λ

2 ln 2

(
1

w′Σw

)
.

κ =
1

2
log2

((
2 ln 2

λ

)
w′Σw + βρ2

)
Notice that now the optimal choice of information flows depends on the discount factor and the

persistence of the AR(1) shock process. Since 1− α2
tw
′Σt|t−1w = 2−2κ,

α2 =
1− 2−2κ

w′Σt|t−1w

=
1

w′Σt|t−1w

1−
λ

2 ln 2

(
1

w′Σt|t−1w

)
1 + βρ2 λ

2 ln 2

(
1

w′Σt|t−1w

)


Also, variance of et is given by the normalization that vart−1 (st) = 1⇒ 1
w′Σt|t−1w

1−
λ

2 ln 2

(
1

w′Σt|t−1w

)
1+βρ2 λ

2 ln 2

(
1

w′Σt|t−1w

)
 vart−1 (xt)+

var (et) = 1. Since vart−1 (xt) = w′Σt|t−1w, var (et) =

λ
2 ln 2

(
1

w′Σt|t−1w

)
1+βρ2 λ

2 ln 2

(
1

w′Σt|t−1w

) .

Moreover, by Σt+1|t = M
(
Σt|t−1 − Σt|t−1yty

′
tΣt|t−1

)
M′ + e1e

′
1, and by the fact that xt =
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ρxt−1 + ut implies w =
(
1, ρ, ρ2, . . .

)′ ⇒M′w = ρw, ∀t ≥ 1, we have

w′Σt|t−1w = w′M

(
Σt−1|t−2 −

Σt−1|t−2ww′Σt−1|t−2

w′Σt−1|t−2w

(
1− 2−2κ

))
M′w + 1

= 1 + ρ22−2κw′Σt−1|t−2w

=
1−

(
ρ22−2κ

)t
1− ρ22−2κ

+
(
ρ22−2κ

)t
w′Σ0|−1w

the last inequality holds with the steady-state prior at the optimum. Finally, to get the law of

motion for the optimal action, by Kalman filter

a∗t
(
st
)

= E
{
xt|st

}
= E

{
xt|st−1

}
+
cov

(
xt, st|st−1

)
var (st|st−1)

(
st − E

{
st|st−1

})
= ρE

{
xt−1|st−1

}
+ αtw

′Σt|t−1w
(
st − ραtE

{
xt−1|st−1

})
= ρ

(
1− α2

tw
′Σt|t−1w

)
a∗t−1

(
st−1

)
+ αtw

′Σt|t−1wst

= ρ

(
λ

2 ln 2

1

w′Σt|t−1w

)
a∗t−1

(
st−1

)
+

√
w′Σt|t−1w

(
1− λ

2 ln 2

1

w′Σt|t−1w

)
st

= 2−2κρa∗t−1

(
st−1

)
+
(
1− 2−2κ

)
xt +

(√
(1− 2−2κ) w′Σt|t−1w

)
et

where var
(
xt|st−1

)
≡ w′Σt|t−1w is the variance of xt conditional on time t information of the

agent.

Q.E.D.

Proof of Lemma 3.

Proof. Recall that the first-order conditions are

φtdyt =
(
dwdw′ + Xt

)
Σt|t−1dyt

Xt = β (M′ + e1e
′
1)
(
dwdw′ + Xt+1 − φt+1dyt+1dy′t+1

)
(M + e1e

′
1) .

Let Mp = M + e1e
′
1. The second equation of the FOCs gives us

Xt =
∑∞

j=1 β
j
(
M
′
p

)j (
dwdw′ − φt+jdyt+jdy′t+j

)
Mj

p

XtΣtdyt =
∑∞

j=1 β
j
(
M
′
p

)j (
dwdw′ − φt+jdyt+jdy′t+j

)
Mj

pΣtdyt

⇒ XtΣtdyt =
∑∞

j=1 β
j
(
dw′Mj

pΣtdyt

)(
M
′
p

)j
dw −

∑∞
j=1 β

j
(
dy′t+jM

j
pΣtdyt

)(
M
′
p

)j (
φt+jdyt+j

)
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Combining this with the first order condition for yt:

φtdyt =
∞∑
j=0

βj
(
dw′Mj

pΣtdyt
) (

M
′
p

)j
dw −

∞∑
j=1

βj
(
dy′t+jM

j
pΣtdyt

) (
M
′
p

)j (
φt+jdyt+j

)

Now guess that φt+jdyt+j =
∑∞

k=0 β
kat+j,k

(
M
′
p

)k
dw. Plugging in this guess in the above equa-

tion

(
1− dy′tΣtdyt

)
φtdyt =

∞∑
j=0

βj
(
dw′Mj

pΣtdyt
) (

M
′
p

)j
dw −

∞∑
j=0

βj
(
dy′t+jM

j
pΣtdyt

) (
M
′
p

)j (
φt+jdyt+j

)
=

∞∑
j=0

βj
(
dw′Mj

pΣtdyt
) (

M
′
p

)j
dw −

∞∑
j=0

∞∑
k=0

βj+kat+j,k
(
dy′t+jM

j
pΣtdyt

) (
M
′
p

)j+k
dw

=
∞∑
j=0

βj

[(
dw′Mj

pΣtdyt
)
−

j∑
k=0

at+k,j−k

(
dy′t+kM

k
pΣtdyt

)](
M
′
p

)j
dw

which verifies our guess and gives us a series of difference equations in terms of {(at,j)∞j=0}∞t=0 where

at,j = 22κt

[
dw′Mj

pΣtdyt −
j∑

k=0

at+k,j−k

(
dy′t+kM

k
pΣtdyt

)]
.

Finally, assuming that φt > 0, let bt,j ≡ φ−1
t at,j , so that dyt =

∑∞
j=0 β

jbt,j

(
M
′
p

)j
dw. Now, the

optimal signal is

s∗t = dy′tũt + et

=
∞∑
j=0

βjbt,jdw′
(
M + e1e

′
1

)j
ũt + et.

but notice that (M + e1e
′
1)j ũt = E {ũt+j |ũt}, and dw′ (M + e1e

′
1)j ũt = E

{
dw′ũt+j |ũt

}
=

E {xt+j |ũt} = Eft {xt+j}. Hence,

s∗t =

∞∑
j=0

βjbt,jEft {xt+j}+ et.

Q.E.D.

Proof of Corollary 2.

To be included. Basically the same as Corollary 1.

54



Proof of Lemma 4.

Proof. Let ũt be the random walk vector of shocks announced until time t, defined in section 2.3.

Moreover, let dwp∗ be the Wold decomposition of the stationary part of the p∗t in the equilibrium,

and dy =
∑∞

j=0 β
jbj (M′ + e1e

′
1)j dwp∗ be the representation of the optimal signal derived in that

section. Notice that by Kalman filter

ũt|t = ũt|t−1 + Σdydy′
(
ũt − ũt|t−1

)
⇒ ũt|t = ũt|t−1 +

(
I− Σdydy′

)−1
Σdydy′

(
ũt − ũt|t

)
Moreover,

(
I− Σdydy′

)−1
Σdydy′ = Σdydy′

∞∑
i=0

(
Σdydy′

)i
= Σdydy′

∞∑
i=0

(
1− 2−2κ

)i
= 22κΣdydy′

where the second line is derived from the capacity constraint, dy′Σdy = 1− 2−2κ. Thus,

ũt|t = ũt|t−1 + 22κΣdydy′
(
ũt − ũt|t

)
.

Also, by the fact that Eft {ũt+j} = (M + e1e
′
1)j ũt+j , observe that

dy′
(
ũt − ũt|t

)
=

∞∑
j=0

βjbjdw′p∗
(
M + e1e

′
1

)j (
ũt − ũt|t

)
=

∞∑
j=0

βjbj

(
Eft
{
p∗t+j

}
− Ẽt

{
p∗t+j

})
.

Therefore,

dw′p∗ũt|t = dw′p∗ũt|t−1 + 22κ
(
dw′p∗Σdy

)
dy′

(
ũt − ũt|t

)
⇒ pt = Ẽt−1 {p∗t }+ 22κδ0

∑∞
j=0 β

jbj

(
Eft
{
p∗t+j

}
− Ẽt

{
p∗t+j

})
where δ0 ≡ dw′p∗Σdy. Now, subtract pt−1 = Ẽt−1

{
p∗t−1

}
from both sides of this equation to get

πt = Ẽt−1 {πt + α∆yt}+ 22κδ0

∞∑
j=0

βjbj

(
Eft
{
p∗t+j

}
− Ẽt

{
p∗t+j

})
.
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Now, we re-write the forward-looking term as follows:

∞∑
j=0

βjbj(Eft {p∗t+j} − Ẽt{p∗t+j}) = b0αyt +
∞∑
j=1

βjbj(Eft {p∗t+j − p∗t+j−1} − Ẽt{p∗t+j − p∗t+j−1})

+
∞∑
j=1

βjbj(Eft {p∗t+j−1} − Ẽt{p∗t+j−1})

= b0αyt +

∞∑
j=1

βjbj(Eft {πt+j + α∆yt+j} − Ẽt{πt+j + α∆yt+j})

+ β

∞∑
j=0

βjbj+1(Eft {p∗t+j} − Ẽt{p∗t+j})

Thus, by iteration,

∞∑
j=0

βjbj(Eft {p∗t+j} − Ẽt{p∗t+j}) = (
∞∑
j=0

βjbj)αyt

+
∞∑
j=1

(
∞∑
k=j

βkbk)(Eft {πt+j + α∆yt+j} − Ẽt{πt+j + α∆yt+j})

+ lim
T→∞

βT
∞∑
j=0

βjbj+T (Eft {p∗t+j} − Ẽt{p∗t+j})

Since β < 1, bj+T depends on the stationary part of the process of the fundamental, and the process

for the difference of the expectations is stationary (they both are composed of a unit root and a

stationary part, so their difference is the difference of two stationary processes, which is a stationary

process36), the limit term is zero.

Let cj ≡ 22κδ0(
∑∞

k=j β
kbk), ∀j ≥ 0. The Phillips curve is then:

πt = Ẽt−1 [πt + α∆yt] + c0αyt +

∞∑
j=1

cj

(
Eft [πt+j + α∆yt+j ]− Ẽt [πt+j + α∆yt+j ]

)
.

Q.E.D.

Proof of example 4.

Proof. The fact that ∆qt = ut, implies that qt = e′1ũt, where ũt is a random walk vector as defined

in section 2.3. The fact that there is no strategic complementarity implies that firms’ optimal

price is the nominal GDP itself: dwp∗ = e1. Plugging this into the firms’ steady-state first order

36Proof: By Wold’s Theorem any stationary process is the inner product of a summable sequence and its i.i.d
innovations over time. Let `2 denote the space of summable sequences. We need to show that `2 is closed under
addition, to show that the sum of two stationary processes is also stationary. Suppose {u, v} ⊂ `2, then ||u+ v||22 =
〈u + v, u + v〉 ≤ ||u||22 + ||v||22 + 2|〈u, v〉|. By Cauchy-Shwarz inequality |〈u, v〉| ≤ ||u||.||v||. Thus, ||u + v||22 ≤
(||u||2 + ||v||2)2 <∞. Therefore, u+ v ∈ `2.
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condition for the attention problem, we have

φdy = (e′1Σdy) e1 + XΣdy

X = β (M′ + e1e
′
1)
(
e1e
′
1 − φdydy′ + X

)
(M + e1e

′
1)

We guess that dy = θe1, for some θ ∈ R. Intuitively, since the firms only care about the first

element of ũt, they choose to only see that element with the highest possible precision. To verify

this guess, guess also that X = ζe1e
′
1 for some ζ ∈ R. Plugging these guesses in the second equation

we have

X = β
(
1− φθ2 + ζ

) (
M′ + e1e

′
1

)
e1e
′
1

(
M + e1e

′
1

)
= β

(
1− φθ2 + ζ

)
e1e
′
1

Thus, ζ = β
1−β

(
1− φθ2

)
. Now, from the first equation

φdy =
(
e′1Σdy

)
e1 +

β

1− β
(
1− φθ2

) (
e′1Σdy

)
e1

= θe1

(
e′1Σe1

)(1− βφθ2

1− β

)
φ =

((
e′1Σe1

)( 1

1− β
− βφθ2

1− β

))
=

e′1Σe1

1− β + βθ2 (e′1Σe1)

This verifies our guess that dy is proportional to e1. With that in mind, we can get θ directly from

the capacity constraint, and the law of motion for the steady-state prior:

θ2e′1Σe1 = 1− 2−2κ ,

e′1Σe1 = e′1
(
Σ− θ2Σe1e

′
1Σ
)
e1 + 1

⇒ θ2 (e′1Σe1)2 = 1

where the κ = φ
λ2 ln 2. Thus, θ = 1− 2−2κ, and e′1Σe1 = 1

1−2−2κ . Thus, every firm i gets a signal

si,t =
(
1− 2−2κ

)
e′1ũt + eit

=
(
1− 2−2κ

)
qt + eit

meaning that they choose to see qt with the highest possible precision, and where eit is their rational

inattention error.
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Now, to get the evolution of prices and inflation, notice that

pt =

∫ 1

0
Eit {qt} di

= e′1

∫ 1

0
Eit {ũt} di

Let ũt|t =
∫ 1

0 Eit {ũt} di, and ũt|t−1 =
∫ 1

0 Eit−1 {ũt} di. By Kalman filtering,

ũt|t = ũt|t−1 + Σdydy′
(
ũt − ũt|t−1

)
.

Plugging in the solution for dy, we have

pt = e′1ũt|t

= 2−2κe′1ũt|t−1 +
(
1− 2−2κ

)
qt

Moreover, notice that since Eit−1 {ut} = 0,

e′1ũt|t−1 = e′1

∫ 1

0
Eit−1 {ũt} di

= e′1
(
M + e1e

′
1

) ∫ 1

0
Eit−1 {ũt−1} di

= e′1ũt−1|t−1 = pt−1

Thus,

pt = 2−2κpt−1 +
(
1− 2−2κ

)
qt

⇒ πt =
(
22κ − 1

)
yt

where πt ≡ pt − pt−1 and yt ≡ qt − pt. The law of motion for output is given by

∆yt = ∆qt − πt
= ut −

(
22κ − 1

)
yt

which implies

yt = 2−2κ (yt−1 + ut) .
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Also,

πt = (22κ − 1)yt

= (1− 2−2κ)(yt−1 + ut)

= (1− 2−2κ)
πt−1

22κ − 1
+ (1− 2−2κ)ut

= 2−2κπt−1 + (1− 2−2κ)ut.

Q.E.D.

Proof of example 5.

Proof. Let dwp∗ be the equilibrium Wold decomposition of the firms’ marginal cost, and consider

the first order conditions of the attention problem in the steady-state:

φdy =
(
dw′p∗Σdy

)
dwp∗ + XΣdy

X = β (M′ + e1e
′
1)
(
dwp∗dw′p∗ − φdydy′ + X

)
(M + e1e

′
1)

Notice that when β = 0, X is simply the zero matrix; thus,

dy = δdwp∗

where δ ≡ dw′p∗Σdy

φ ; meaning that firm’s optimal signal is to see their marginal cost at every period

with the highest possible precision allowed by their capacity:

s∗t = δdw′p∗ũt + et

= δp∗t + et

where et is the firm’s rational inattention error and δ is such that

dy′Σdy = 1− 2−2κ ⇒ δ =

√
1− 2−2κ

dw′p∗Σdwp∗
.

Now, similar to the previous example, by the Kalman filter:

ũt|t = ũt|t−1 + δ2Σdwp∗dw′p∗
(
ũt − ũt|t−1

)
⇒ dw′p∗ũt|t = dw′p∗ũt|t−1 + δ2dw′p∗Σdwp∗dw′p∗

(
ũt − ũt|t−1

)
⇒ pt = 2−2κẼt−1 {p∗t }+

(
1− 2−2κ

)
p∗t

⇒ πt = 2−2κẼt−1

{
p∗t − p∗t−1

}
+
(
1− 2−2κ

)
(p∗t − pt−1)

(
as pt−1 = Ẽt−1

{
p∗t−1

})
⇒ πt = Ẽt−1 {πt + α∆yt}+ α

(
22κ − 1

)
yt

where the last line is derived from p∗t = pt + αyt.
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Q.E.D.

Proof of example 6.

Proof. We start with the guess that the optimal signal has the following form

st = qt + γ∆qt+1 + et

where et is the firm’s rational inattention error and γ will be determined after the verification of

the guess, from the optimal behavior of the firm. The fact that the firm can gather information

about ∆qt+1 is due to the forward-guidance policy that ∆qt+1 = ut is announced at time t.

To translate this environment to our framework, notice that ∆qt = e′2ut, where e2 is the second

column of the identity matrix and ut is the vector of innovations at time t, with its first element

being the innovation that is going to take effect one period ahead. Our guess of the optimal signal

translates to

y = δ
[
(I−M)−1 e2 + γe1

]
dy = δ [(1− γ) e2 + γe1]

so that st = δ (y′ut + et) = δ (qt + γ∆qt+1 + et), with δ being a normalization such that vart−1 {st} =

1. To verify the guess, we have to show that this signal solves the firms’ first order conditions in

the steady-state:

φdy =
(
e′2Σ̂dy

)
e2 + X̂Σ̂dy

X̂ = β (M′ + e1e
′
1)
(
e2e
′
2 − φdydy′ + X̂

)
(M + e1e

′
1) .

where Σ̂ is such that

Σ̂ =
(
M + e1e

′
1

) (
Σ̂− Σ̂dydy′Σ̂

) (
M′ + e1e

′
1

)
+ e1e

′
1

and φ is such that dy′Σ̂dy = 1 − 2−2κ. To verify the guess for dy, guess also that X̂ = θe1e
′
1 for

some θ. Now, plug in both these guesses in the law of motion for X̂, and observe that

X̂ = β(M′ + e1e
′
1)((1− φδ2(1− γ)2)e2e

′
2 − φδ2γ2e1e

′
1

− φδ2γ(1− γ)(e1e
′
2 + e2e

′
1))(M + e1e

′
1)

+ β(M′ + e1e
′
1)(θe1e

′
1)(M + e1e

′
1)

= β(1− φδ2(1− γ)2)e1e
′
1 − 2βφδ2γ(1− γ)e1e

′
1 − βφδ2γ2e1e

′
1 + βθe1e

′
1

=
β

1− β
(1− φδ2)e1e

′
1
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Thus, θ = β
1−β (1− φδ2). Now, plug this into the first order condition for dy to get

φdy =
(
e′2Σ̂dy

)
e2 +

β

1− β
(
1− φδ2

) (
e′1Σ̂dy

)
e1.

which verifies our guess that dy is a linear combination of e1 and e2. Before finding γ and δ,

however, we need to find e′1Σ̂dy and e′2Σ̂dy. To do so we need to use the steady-state law of

motion for Σ̂:

Σ̂ = (M + e1e
′
1)
(

Σ̂− Σ̂dydy′Σ̂
)

(M′ + e1e
′
1) + e1e

′
1

⇒ e′1Σ̂e1 = e′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1 + 1

⇒ e′1Σ̂dy = 1

Also, using the guess for dy,

1 = e′1Σ̂dy

= δe′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1 + γδ,

which implies that δe′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1 = 1− γδ. Finally, notice that

e′2Σ̂dy = δ
[
(1− γ) e′2Σ̂e2 + γe′2Σ̂e1

]
= δe′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1

= 1− γδ

Thus,

φdy =
β

1− β
(
1− φδ2

)
e1 + (1− γδ) e2

= φδ [γe1 + (1− γ) e2]

where the second line was our guess. This implies

φδγ = β
1−β

(
1− φδ2

)
,

φδ (1− γ) = 1− γδ .

⇒ (1−β)γ+βδ
1−γ = β

1−γδ
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The final equation for characterizing the solution comes from the capacity constraint:

1− 2−2κ = dy′Σ̂dy

= δγe′1Σ̂dy + δ (1− γ) e′2Σ̂dy

= δγ + δ (1− γ) (1− γδ) .

These two equations pin down γ and δ and hence characterize the optimal signal.

Finally, to derive the Phillips curve, let ut|t =
∫ 1

0 Eit {ut} di, observe that

ut|t = ut|t−1 + Σyy′
(
ut − ut|t−1

)
⇒ (I−M′)−1 ut|t = (I−M′)−1 ut|t−1 + Σ̂dydy′ (I−M′)−1 (ut − ut|t−1

)
Multiply this once by e′1 and once by e′2 from left to get37

(
e′1 × .

)
: Ẽt {qt+1} = Ẽt−1 {qt+1}+ dy′ (I−M′)−1 (ut − ut|t−1

)(
e′2 × .

)
: pt = Ẽt−1 {qt}+ (1− γδ) dy′ (I−M′)−1 (ut − ut|t−1

)
where Ẽt {.} =

∫ 1
0 Eit {.} di. Now, notice that Ẽt−1 {qt+1} = Ẽt−1 {qt}, as ut is not realized at t− 1.

Moreover, observe that

dy′
(
I−M′)−1 (

ut − ut|t−1

)
= δ

(
qt + γut − Ẽt−1 {qt}

)
.

Thus,

Ẽt {∆qt+1} = (1− δ) Ẽt−1 {∆qt}+ δ (yt + γut)− (1− δ)πt
πt = Ẽt−1 {∆qt}+ (1−γδ)δ

1−δ(1−γδ) (yt + γut) (18)

Finally, substituting for Ẽt−1 {∆qt} in the the first equation using the second one we have

Ẽt {∆qt+1} = (1− δ)
(
πt −

(1− γδ) δ
1− δ (1− γδ)

(yt + γut)

)
+ δ (yt + γut)− (1− δ)πt

= γ
δ2

1− δ (1− γδ)
(yt + γut)

which implies that Ẽt−1 {∆qt} = γ δ2

1−δ(1−γδ) (yt−1 + γut−1). Plugging this into 18 we get the fol-

lowing Phillip’s curve:

πt = δ
γδ

1− δ (1− γδ)
(yt−1 + γ∆qt) + δ

1− γδ
1− δ (1− γδ)

(yt + γ∆qt+1)

37We use the results form before that e′1Σ̂dy = 1 and e′2Σ̂dy = 1− γδ.
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which implies

yt = (1− δ) (yt−1 + ut−1) + δ2γ (1− γ)ut−1 − γδ (1− γδ)ut

Using the fact that ut−1 = ∆qt and ut = ∆qt+1,we get the following laws of motion for inflation

and output:

yt = (1− δ) yt−1 + 2−2κ∆qt − γδ (1− γδ) ∆qt+1

πt = δyt−1 +
(
1− 2−2κ

)
∆qt + γδ (1− γδ) ∆qt+1

Q.E.D.
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