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Abstract

Detecting treatment effect heterogeneity among individuals plays a key role in any
successful evaluation of a social program using randomized experiments. In this paper,
we propose a permutation test for testing the null hypothesis that the distributions of the
treated and control groups are a constant shift apart. When the constant shift is known,
the permutation test is exact in finite samples. However, when it is unknown and thus
is a nuisance parameter, the permutation test based on the plug-in test statistic may fail
to control a Type 1 error. We overcome this so-called Durbin problem by implementing
the martingale transformation, as proposed by Khmaladze (1981). As a result, the trans-
formed test statistic becomes asymptotically pivotal and thus the permutation test based
on this transformed statistic will be asymptotically valid while still providing an exact
error control in finite samples when the average treatment effect is known. Moreover, our
method can be extended to testing the joint null hypothesis of constant treatment effects
within individual subgroups while allowing the treatment effects to vary across subgroups.
We contrast our procedure against other methods in this context using a Monte Carlo
simulation study.

Keywords: Heterogeneous Treatment Effect, Permutation Test, Empirical Process, Martingale
Transformation.

1 Introduction

Detecting treatment effect heterogeneity among individuals plays a key role in any successful
evaluation of a social program using randomized experiments. For example, a student may
benefit or suffer greatly from a policy intervention while another student may experience little
to no effect. Understanding heterogeneity in treatment effects might help researchers or policy
makers design or extend social programs better since the full treatment effect can be investigated
in a thorough and comprehensive way.

However, the original experiment is oftentimes not designed to assess the heterogeneity in
the treatment effect. This may occur either because of the complexity of the design, or simply
because it is not clear to the researchers what the channels are through which the treatment
affects the outcome.

TAll errors are our own.
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As a result, many applied researchers compare the average treatment effects conditional on
covariates, which has led to the development of nonparametric tests for the null hypothesis
that the average treatment effects, conditional on covariates, are zero (or identical) across
all subgroups (e.g., Hardle and Marron (1990), Neumeyer et al. (2003), Crump et al. (2008),
Imai et al. (2013)). Although these approaches will detect some forms of treatment effect
variation, their scope is limited in the sense that they only look at one aspect of the distribution,
namely the mean. Only accounting for constant average treatment effects across subgroups
while ignoring within-group heterogeneity can be misleading in understanding treatment effect
heterogeneity. (See Bitler et al. (2017) for details discussion.)

In this paper, we propose a permutation test for testing the null hypothesis that the distri-
butions of the treated and control groups are a constant shift apart. In other words, under the
null, the treatment effect is constant. Moreover, the proposed method can be extended to test-
ing the joint null hypothesis that treatment effects are constant within individual subgroups,
while allowing for varying average treatment effects across subgroups. This test will be able to
detect treatment effect heterogeneity within individual subgroups even if the average treatment
effects are identical across subgroups.

Permutation tests are known to have attractive properties under the randomization hy-
pothesis (Lehmann and Romano (2006)). As long as the permuted sample has the same joint
distribution as the original sample under the null, permutation tests control a Type 1 error in
finite samples: the rejection probability under the null is exactly the nominal level o. That is,
one does not need to rely on asymptotics when making inferences. Moreover, they are non-
parametric in the sense that they can be applied without any parametric assumptions of the
underlying distribution that generates the data. Also, the general construction of a permutation
test does not depend on the specific form of the test statistic, although some test statistics will
be more suitable for a specific null hypothesis for better power performance. These features
make them desirable for experimental studies, where the treatment is randomly assigned to
units in possibly complex designs.

In the case of a known constant shift (or the average treatment effect), the randomization
hypothesis holds, and thus, permutation tests offer a powerful approach to testing the null
hypothesis of a constant treatment effect. However, when the constant shift is unknown and
thus needs to be estimated, it becomes a nuisance parameter. The presence of a nuisance
parameter under the null renders a major drawback: naively plugging an estimate into the
test statistic makes the test statistic non-pivotal and the permutation test based on the plug-
in test statistic may fail to control the Type 1 error even asymptotically. In other words,
the asymptotic distribution depends on the unknown underlying distributions, offsetting their
usefulness in empirical work when testing for heterogeneous treatment effects.

To overcome this so-called Durbin problem (Durbin (1973)), this paper proposes a novel per-
mutation test by extending the martingale transformation of the empirical process introduced
by Khmaladze (1981) to the two-sample case. This procedure debugs the empirical process of
the nuisance parameters by decomposing the empirical process into two parts - a martingale
that has a standard Brownian motion behavior, and a second part that vanishes as the sample
size grows large. This strategy leaves us with a distribution-free Kolmogorov-Smirnov type
test. Therefore, the permutation distribution based on the transformed test statistic inherits a
pivotal limiting law, which restores the validity of the permutation test for the null hypothesis
of a constant treatment effect.

Papers that are closely related to our method,in regards to testing for treatment effect het-
erogeneity by comparing distributions in the presence of nuisance parameters, include Koenker
and Xiao (2002), Abadie (2002), Chernozhukov and Fernandez-Val (2005), Linton et al. (2005),
and Ding et al. (2015). Abadie (2002) compares the corresponding CDFs in the context of
instrumental variables, where he obtains the critical values via bootstrap. Koenker and Xiao



(2002), Linton et al. (2005) and Chernozhukov and Fernandez-Val (2005), on the other hand,
exploit the relationship between CDFs and quantiles, and test for treatment effect variation us-
ing the quantile process rather than the empirical process. Another point of divergence with the
theory presented here is that Linton et al. (2005) and Chernozhukov and Fernandez-Val (2005)
propose resampling methods to overcome the Durbin problem. Koenker and Xiao (2002), on
the other hand, use the Khmaladze decomposition to restore the asymptotically distribution
free nature of the test, an approach we are implementing here. Nevertheless, we are working
with a permutation test which is based on a test statistic that takes as input the empirical
process.

Perhaps the most related paper to ours is Ding et al. (2015), who used a Fisher random-
ization test based on the comparisons of CDFs using a Kolmogorov-Smirnov statistic. But,
there is one key distinction that fundamentally differentiates both tests. Our test relies on a
martingale decomposition of the empirical process that renders an asymptotically pivotal test.
Ding et al. (2015), on the other hand, yield valid inference by constructing a confidence interval
for the constant shift, repeating the test procedure pointwise over that interval, and taking
the maximum p-value. Hence, their method does not rely on asymptotic methods. However,
our Monte Carlo simulation results show that our methods outperform theirs in terms of size
control and power performance in finite samples.

The rest of the paper is organized as follows. Section 2 describes the testable hypothesis in
the context of the potential outcomes model. Section 3 briefly reviews the basics of permutation
tests. Section 4 studies asymptotic behavior of permutation distributions based on the two-
sample empirical process when 4 is known as well as when ¢ is unknown. Section 5 contains the
main theoretical results. Monte Carlo experiments are detailed in Section 6. A short discussion
on testing the null hypothesis of constant treatment effects within subgroups while allowing
the treatment effects to vary across subgroups can be found in Section 7. Section & concludes.
The proofs of the main results and the coupling construction are collected in Appendix A and

B.

2 Testable Hypothesis

2.1 Potential Outcomes

Consider the simplest model for a randomized experiment with subject i’s (continuous) response
Y; to a binary treatment D;. Assume we have a sample of size N and we randomly assign
treatment to m < N of them, while the remaining n = N —m subjects are not exposed to such
treatment. We will denote the m individuals in the first group as treatment group while the
second group of size n will be the control group.

For every subject i, there are two mutually exclusive potential outcomes - either subject
gets treated or not. If subject i were to receive the treatment (D; = 1), the potential outcome
that could be observed is denoted by Y;(1). Similarly, the potential outcome Y;(0) is defined
if the subject i were not to be exposed to the treatment. Given D;, one of them is observed
and the other is the counterfactual outcome we would have observed under the other treatment
level (1-D;). To put it in a more compact way, we say individual ¢’s observed outcome, Y;* is:

Y =Y;(0) + (Yi(1) = Yi(0))D; .

The treatment effect is defined by the difference between potential outcomes, i.e., individual
i’s treatment effect is ; = Y;(1) — Y;(0), for all i = 1,..., N. The treatment effect is constant
if 9; = 0 for all i, otherwise we say the treatment effect is heterogeneous in the sense that it



varies across subjects. As a result, the hypothesis of constant effect is
Hy:Y;(1)=Y;(0) =9 Vi forsome ¢ . (1)

This hypothesis, however, is not directly testable because we happen to observe at most one
potential outcome for each unit. An alternative testable hypothesis is available if we consider
the marginal distributions of the observed outcomes for each group. Specifically, let Fy(y) and
Fi(y) be the cumulative distribution functions (CDFs) of the control and treatment group,
respectively. Then, we can cast the constant treatment effect hypothesis as

Hy: Fi(y+90)=Fy(y) forsome 9. (2)

In other words, Fi(-) and Fy(-) are a constant shift apart.

2.2 Test Statistic

Given the aforementioned hypothesis (2), a natural candidate for a test statistic of the measure
of discrepancy is the Kolmogorov-Smirnov or Cramér-von Mises type test; we adopt the former.
Assume Y;(0),...,Y,(0) are i.i.d. according to a probability distribution Fj, the control group,
and independently Yi(1),...,Y,,(1) are i.i.d. F}, treatment group. Let N = n + m and write

Z=(Zi,....Zx) = (Vi(1),. .., Yin(1), Y1(0), ..., Y,(0)) .

The empirical CDFs are denoted Fy(y) and Fy(y), respectively. Thus, Fi(y) = m 'S, 1iz,<),
and similarly Fo(y) =n! Zfimﬂ 1¢z,<yy. Consider the (classical) two-sample empirical process

Vionl:0:2) = /"5 (Bily +8) = Foly) - 3

Except when it’s crucial to stress the dependency on data Z, we will drop Z from (3) to
ease notation. In practice, we rarely know o nonetheless. Instead, we estimate it by simply
computing the difference in sample means § = u(ﬁl) —u(ﬁo), where p(ﬁ’l) and M(Fo) are plug-in
estimators of p(F)) and u(Fy) respectively. This gives rise to the two-sample empirical process

Vm,n(yv 8) = @ (Fl(y + 5) - ﬁO(?/))

From the two-sample empirical process, we can define the “classical” Kolmogorov-Smirnov
test statistic

Kmm,é(z) = Slylp | Vm,n(y>5) | (4)

and the “shifted” Kolmogorov-Smirnov test statistic

A

K, .sZ) = sup | Vinn(y,0) || (5)

3 Permutation Test

Let Gy be the set of all permutations 7 of {1,..., N}, and Qy = {(P,Q) : P = @Q}, where
P and @) are probability distributions defined on a sample space X. Then if (Fy, Fy) € Qo,
then the joint distribution of (Z1,. .., Zy) is the same as (Z(1), .. ., Zx(v)) for any permutation



m(1),...,m(N). '. Thus, if F; = F, holds, then an exact level « test can be constructed by a
permutation test. To see how, consider any test statistic 7}, ,. Given the test statistics 75, p,
recompute 7, ,, for all permutations 7, i.e. calculate Tmm(zﬁ(l), . ,zW(N)) for all m € Gy.
Order these values

7O <« 7@ <. . < W)

and fix a nominal level a € (0, 1). Define k = N! — [ Nla| where |v] is the largest integer less
than or equal to v. Let MT(z) and M°(z) be the number of values Kr(g?nvé(z), j=1,...,NY
which are greater than T\(¥) (z) and equal to T\{¥) (z) respectively. Set

aN! — M*(2)
A T

Define the randomization test function ¢(z) as

1 Tn(z) > T (2)

)
o(z) = a(z) Tmn(z) = Tr(nk,gm(z)
0 Trun(2) < TW) (2) .

Then, under F; = Fp, the resulting permutation test is exact level v (see theorem 15.2.1 in
Lehmann and Romano (2006)). In other words, under F; = Fy,

Elp(Yi(1),...,Ym(1),Yi(0),...,Ya(0)] = a .

Moreover, define the randomization distribution based on the test statistic 7}, , as

RN(t) = ]\1“ Z ]{Tmm(zﬂ-(l), e ,ZW(N)) S t} (6)

TeG N

Hence, the permutation test rejects the null hypothesis (2) if 7}, ,(#) is bigger than the 1 — «
quantile of the randomization distribution (6).

It is important to emphasize that the construction of an ezxact level a test by a permutation
test heavily hinges on the fact that the underlying distributions F; and Fj are identical under
the null. In other words, if the null hypothesis of intest does not imply F} = Fjy, the rejection
probability under the null may not be a even asymptotically. We illustrate this point in the
following section.

4 Permutation Test based on the Empirical Process

4.1 Known Average Treatment Effect

In this subsection, we will assume that ¢ is known. If 6 were known, under the null hypothe-
sis (2), the shifted CDFs are the same and then samples are generated from the same probability
law, so we can i) invoke the randomization hypothesis, ii) calculate the test statistic (4) over
all possible permutations, and iii) construct an exact « level test.

Our goal in this section is to determine the limiting behavior of the randomization distri-
bution (6). Following the coupling argument in Chung and Romano (2013), it suffices to show

IThis is the so called randomization hypothesis (see chapter 15 in Lehmann and Romano (2006)), which
establishes that the null hypothesis parameter space 2y C () remains invariant under 7 € Gpy. Here Q
represents the class of all pairs (P, Q) of probability distributions defined on X. Under this randomization
hypothesis assumption, observations can be permuted and the resulting distribution is the same as that of the
original samples.



that the permutation distribution (6) behaves like the unconditional distribution of the test
statistic (4) when all N observations are iid from a mixture distribution P = pF; + (1 — p)Fy
where p = limm/N when m — oo”.
Let G be a Gaussian process whose marginal distributions are zero-mean with covariance
structure
EG(s)G(t) = Fo(s A t) — Fo(s)Fo(t)
In other words, G is an Fy—Brownian Bridge process. First, we present the standard conver-

gence result for the two-sample KS statistic in the following Proposition

Proposition 4.1. (Donsker). Assume Y1(0),...,Y,(0) are i.i.d. according to a probability
distribution Fo, and independently Yi(1),...,Y,(1) are i.i.d. Fy. Assume the CDFs F| and
Fy, as well as their densities, fi and fo respectively, are continuously differentiable with respect
to 6. Consider testing the hypothesis (2) for some § known based on the test statistic

Kons(2) = 500 || Vi (0 ) 1= 5500 || Fa(w:6) = Fofy) |
y y
Let n — 0o, m — oo, with N =n+m, p, =m/N, and p,, T € (0,1) with
pm —p=O(N?)
Then K, s converges weakly under the null hypothesis to

Jo(y) = sup | G(y) |

Remark 4.1. Ezploiting the fact that the underlying distributions are absolutely continuous,
it can be readily shown that the limiting distribution above is pivotal. The change of variable
y — F~Y(t;6) renders uniform empirical processes,

vman(t:8) = /5 (G (2.6) — Gol)

and
Vmn(t,8) = /== (G1(t,6) — Go(y)) (7)

where Gl(t,é) = m‘j S Lip (Zio)<t} Go(t) = n 'Y Lmyz<ey, and G’l(t,g) is él(t,é)
with § replaced with §. In other words, the empirical process defined in (3) is equivalent to a

process based on N i.i.d. uniform variables and its limiting distribution is a Brownian Bridge
B° on [0, 1].

Remark 4.2. Proposition /J.1 shows that a test based on the uniform empirical process is partic-
ularly attractive because it is asymptotically distribution-free i.e. when § is known, the limiting
distribution of the Kolmogorov-Smirnov test statistic is the same regardless of the underlying
distribution generating the data. Furthermore, it follows that if the null hypothesis holds, so
that Fy and Fy are independent empirical distribution functions from the same continuous dis-
tribution function, then the classical KS statistic converges weakly to the same limit distribution
as in the one-sample two-sided case.

In the next Proposition, the limiting behavior of the permutation distribution is obtained.

2See Appendix 8 for further discussion about this construction.



Proposition 4.2. (Bickel) Assume the premises of Proposition 4.1. Then the permutation
distribution based on K, s given by (6) is such that

sup | Ry (t) = Jolt) || =0,

where Jo(-) denotes the c.d.f. of sup || G ||.

Remark 4.3. As noted by Einmahl and Khmaladze (2001), Bickel (1969) was the first to
motivate and provide a methodology to systematically study permutation tests based on the two-
sample empirical process (3). See Raghavachari (1973) and DasGupta (2008), chapter 26, for
further discussion.

Remark 4.4. Under Hy given by (2) when ¢ is known, the permutation distribution behaves
asymptotically like the supremum of a Brownian Bridge given by G, as is the true unconditional
limiting distribution of the classical KS statistic.

4.2 Unknown Average Treatment Effect

When ¢ is unknown, it becomes a nuisance parameter. If one uses a plug-in test statistic given
by (5), what happens to the limit distribution of the permutation test?

We showed in Proposition 4.2 that when ¢ is known, the asymptotic distribution of the
two-sample empirical process converges weakly to the Brownian Bridge G, which does not
depend on the true underlying distribution Fy(y). However, when ¢ is unknown and we plug
in 0 for 8, the resulting limiting distribution differs from G and is no longer distribution-free.
The asymptotic behavior of the Kolmogorov’s goodness-of-fit test in the presence of nuisance
parameters dates back to Durbin (1973) and this situation of jeopardizing the distribution free
character is called the Durbin problem.

When § is unknown, we will show that the shifted KS statistic (5) converges weakly to the
supremum of the Brownian Bridge with drift, B. More formally, let £(-) be a Gaussian process
with mean 0 and covariance structure

C(&(),€(y)) = opfo(x) foly)

where 02 = 0?(Fp), and fy is the density of Fy. Then, the Brownian Bridge with drift is given
by

B(-) =G() +¢() (8)
with covariance structure
C(G(x),&(y)) = foly)Fo(z) (1 — Fo(z)) {E(Y (0)[Y(0) < =) — E(Y(0)[Y(0) > =)} .

It is because of this dependency between G and £ that the asymptotic distribution is no longer
asymptotically independent of the hypothetical Fy. This is formally established in the following
Proposition.

Proposition 4.3. (Ding, Feller, Miratriz). Assume Y1(0),...,Y,(0) are i.i.d. according to a
probability distribution Fy, and independently Y1(1),...,Y,,(1) are i.i.d. Fy. Assume the CDFs
Fy and Fy, as well as their densities, f1 and fy respectively, are continuously differentiable with
respect to 0. Consider testing the hypothesis (2) for some § based on the test statistic

A mn N N N
K, .5Z) = sup | Vi (y,0) ||= e sup | Fi(y +0) — Foy) |



Let n — oo, m — oo, with N =n+m, p, = m/N, and p,, T € (0,1) with
Pm —p=0O(N"?)
Then K, , 5 converges weakly under the null to

Ji(y) = sup | B(y) ||

where B(-) is given by (8).

The following proposition shows that the limiting behavior of the permutation distribution
based on the shifted K-S statistic given by (5) is different from that of the unconditional true
sampling distribution.

Proposition 4.4. Assume the premises of Proposition /.3. Then the permutation distribution
(6) based on K, , s satisfies

sup || R(6) = o) || 50,
where Jy(-) denotes the c.d.f. of sup || G ||.

Remark 4.5. Under the hypothesis (2), the true unconditional sampling distribution of Kons
is given by Jy1(+) in Proposition j.3, which does not equal Jo(+) in general. Then, the permutation
distribution and the true unconditional sampling distribution behave differently asymptotically
in the presence of nuisance parameters. Hence, the permutation test for the hypothesis (2) fails
to control the size.

5 Martingale Transformation

We concluded in Section 4.2 that the consequence of the drift term implied the test statistic
based on the shifted empirical process is no longer distribution-free. Khmaladze (1981) pro-
posed an approach to this problem in the one sample case, which boils down to a Doob-Meyer
decomposition of the uniform empirical process. We're going to extend Khmaladze’s result to
the two-sample case and work with the two sample uniform empirical process (7).

More specifically, let the real-valued function g(s) = (s, fo(s))" on [0, 1] be bounded and
continuous in its arguments, and §(s) = (1, fo(s))’, where ¢ is the derivative of g. Define C(s) =
ILg(t)g(t)dt, and assume it is invertible for s € [0,1). Then the Khmaladze transformation of
the parametric empirical process (7) is given by

A A

Srn(ts8) = Van(t, 8) — /0 ! [g(s)’Cl(s) / () v, 5)} ds (9)

Khmaladze (1981) showed that (9) converges weakly to a Brownian motion process, effec-
tively nullifying the effect of the estimated nuisance parameter. Define the map ¢, : D[0, 1] —
D[0, 1] such that

6a(0) = [ [osrc ) [ ar1an)] s (10)

where this is defined as the compensator of h (see Parker (2013)). Moreover, as noted in Bai
(2003), ¢, is a linear mapping and ¢4(cg) = cg for a constant or random variable c. This allows
us to write (9) as

A

Tmn(t,0) = Umn(t, S) — ¢g(Umn(l, 8)) = Umn(t,0) = @g(Umn(t,9)) +op(1) .

The following proposition shows the Khmaladze transformation removes the effect of 5 on
the limiting process.



Proposition 5.1. (Khmaladze) Assume Y1(0),...,Y,(0) are i.i.d. according to a probability
distribution Fo, and independently Yi(1),...,Y, (1) are i.i.d. Fy. Assume the CDFs Fy and
Fy, as well as their densities, fi and fo respectively, are continuously differentiable with respect
to 6. Consider testing the hypothesis (2) for some § known based on the test statistic

Km,n,g(z) = Slip || ﬂmﬂ’b(t?é) ||
where Ty, p(t,0) is the Khmaladze transformation in (9). Letn — oo, m — oo, with N = n-+m,
pm =m/N, and p,, T € (0,1) with
pm—p=O(N""?)
Then the limiting distribution of [N(m’wg 18

Jo(y) = sup || BM(?) |
where BM (+) = B%(-) — ¢,(B"(+)) is the standard Brownian Motion.

5.1 Khmaladze Transformation as a Continuous-time Detrending
Operation

To gain further insight as to why the transformation works, we follow Bai (2003) and Parker
(2013), and we consider (9) with y taking discrete values, replacing integral with sums. For
instance, suppose 0 = tg < t; < -+ < t;, < t;up1 = 1 is a partition of the interval [0,1] and
that y takes on values on ti, s, ..., t,,,. Write (9) in differentiation form

Ay (£, 0) = dUpn(L,0) — §(t)'C7L(1) /t 1 G(r)dvp o (r, ) dt (11)
let

Yi = dvm,n(ti7 8)
m+1
Ct;) = > ),
k=1

m+1

1 .
/ g(r)dvm,n(ra 5) - Z LYk
Y k=i

then the right hand side of (11) can be interpreted as the recursive residuals:
m+1 “Lmt1 .
Yi — (Z wk%) > weye = yi — 3B (12)
k=i k=i

where BAZ is the OLS estimator based on the last m — ¢ + 2 observations. The cumulative sum
(integration from [0,%;)) of above expression gives rise to a Brownian motion process.

5.2 Numerical Computation of the Khmaladze Transformation

Computationally, we will integrate numerically so we typically assume the partition {¢;}; is
evenly spaced, with the accuracy of the method depending on the number of points m. Stack



y; and x; in the following manner

\/% \/gf()(tm-&-l) vm Um,n(tmﬂvg) - Um:n(tm’g
X — % \/gf()(tm+1> _ VI (Vo (tm; 0) — Umn(tm-1,0

P =

VE VR VI CRUL EUNE)

then the OLS estimator based on the last m — ¢ + 2 observations described on right hand side
of (12) can be written as

Bi = (XQXz')_l Xlyi
which implies that the Khmaladze transformation of the empirical process in (9) can be obtained
by numerically integrating from [0, ¢;), i.e.

. 1 s
Um,n(tia 5) - % Z x;/BJ
j=1

and therefore the test statistic can be calculated as

R 1 ., s
ax [V n(ti,0) — m;xjﬁj

5.3 Main Result

The following proposition shows that the permutation test based on the Khmaladze transformed
test statistic leads to an asymptotically valid test.

Proposition 5.2. Assume Y1(0),...,Y,(0) are i.i.d. according to a probability distribution Fy,
and independently Yi(1),...,Y,(1) are i.i.d. Fy. Assume the CDFs Fy and Fy, as well as their
densities, fi and fo respectively, are continuously differentiable with respect to 6. Consider
testing the hypothesis (2) based on the test statistic

B pog(2) = 510 || Ga(t.0) |

where O p(t,0) is the Khmaladze transformation in (9). Then the permutation distribution
(6) based on the Khmaladze transformed statistic K, , 5(Z)

sup || Ry(t) = L(t) || =0,

where Jo(+) denotes the c.d.f. of sup || BM ||, where BM is a Brownian motion on [0, 1].

6 Monte Carlo

6.1 Implementation

The martingale transformation described in 5 uses the true density and score functions. In
the Monte Carlo experiments of section 6.1.1, both functions were estimated employing the
univariate adaptive kernel density estimation (e.g. Portnoy and Koenker, 1989; Koenker and
Xiao, 2002), and the results were obtained directly from the R package quantreg (Koenker
(2016)). Simulation results using the true density and score functions were similar in magnitude
and therefore not shown in here, though available upon request.

10



6.1.1 Validity of Permutation Test

We are interested in comparing the rejection probabilities of a size permutation tests based
on different test statistics: classic Kolmogorov-Smirnov (9 is known), the shifted Kolmogorov-
Smirnov (a naive approach where we calculate the usual KS p-value assuming that the estimated
treatment is in fact the true treatment effect), and the Khmaladze martingale transformation
of the empirical process based on Kolmogorov-Smirnov test. Moreover, we consider three
additional methods against which we compare our approach: the Fisher Randomization Tests
(FRT) in Ding et al. (2015), and the subsampling and bootstrap methods from Chernozhukov
and Ferndndez-Val (2005).

Table 1 contains the rejection probability results of the Monte Carlo simulations. We
generated samples from three different distributions: standard normal, lognormal, and student’s
t distribution with 5 degrees of freedom. In this experiment sample sizes vary between groups®.
We considered the sequence of total sample size N € {13, 50, 80,200}, and for each sample size
and distribution, a constant treatment effect § = 1 was assigned*. We ran these simulations
with 5000 replications across Monte Carlo Experiments.

3In the context of test for the ATE, Caughey et al. (2016) pointed out the dominance of the permutation
test compared to the t-test when sample sizes between groups differ mightily (1000 vs 30) and the distributions
are skewed. In this paper we worked with less accentuated differences. Simulations with alternative choices of
samples sizes are also available though not included in this text.

4Similar results were obtained when we allow for different treatment effects.
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Table 1: Size of a = 0.05 tests Hp : Constant (6 = 1) Treat-
ment Effect Effect.

Distributions
N Method Normal Lognormal t5
Classic KS 0.0494  0.0482 0.0522
N =13 Naive KS 0.0000  0.0298 0.0002
n= FRTI CI 0.0000  0.0004 0.0000
m=2>5 Subsampling 0.0004  0.0050 0.0016
Bootstrap 0.0742  0.0314 0.0658
Khmaladze  0.0000 0.0472 0.0118
Classic KS 0.0528  0.0506 0.0460
N =50 Naive KS 0.0002 0.3116 0.0014
n =30 FRTI CI 0.0064  0.0222 0.0062
m =20  Subsampling 0.0062 0.0108 0.0102
Bootstrap 0.0330  0.0480 0.0360
Khmaladze  0.0266  0.0354 0.0472
Classic KS 0.0452  0.0516 0.0510
N =80 Naive KS 0.0000  0.3244 0.0016
n =50 FRTI CI 0.0122  0.0280 0.0148
m =30  Subsampling 0.0206 0.0062 0.0066
Bootstrap 0.0818  0.0414 0.0894
Khmaladze  0.0236  0.0590 0.0354
Classic KS 0.0472  0.0548 0.0486
N =200 Naive KS 0.0004 0.3912 0.0032
n =120 FRTI CI 0.0290  0.0334 0.0250
m =80  Subsampling 0.0344  0.0062 0.0124
Bootstrap 0.0926  0.0622 0.0864
Khmaladze  0.0236  0.0354 0.0428

For the FRT CI we used 99.99% CI, for 7. We followed the
suggested subsampling size is b = 20 4+ n'/4.

The permutation test based on the martingale transformation a la Khmaladze is yielding
considerably correct rejection rates in all cases regardless of the skewness of the distribution
or the sample size. It is worth mentioning that our method outperforms all the others (except
when ¢ is known) in terms of controlling the Type 1 error when sample sizes are small despite
the fact that we estimate the ATE, and the density and score functions are also estimated
nonparametrically.

Moreover, these experiments confirm the story of the theoretical results in section 4: the
permutation test based on the (naive) shifted KS statistic fails to control the type I error,
even in large samples. We argued that the permutation distribution based on the shifted KS
statistic depends on the underlying law that generates the data and therefore, the permutation
distribution is no longer asymptotically distribution free. Despite Ding et al. (2015) did not
compute the permutation distribution using this naive KS statistic, the conclusions of their
naive approach are similar to those found in here®. As shown in Table 1, the permutation test
is either too conservative (normal and student’s ¢) or it fails to control the size (lognormal). In
the case of skewed distributions, the size of the test increases with the sample size.

5Their Monte Carlo experiment for the naive approach does not calculate the p-value that arises from the
permutation distribution, but the p-value from the KS distribution.
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Both the confidence interval FRT (FRT CI) by Ding et al. (2015) and subsampling by Cher-
nozhukov and Fernandez-Val (2005) control the rejection probabilities across different sample
sizes and data generating processes, but in a rather conservative fashion nonetheless. For in-
stance, when the total sample size is either 50 or 13, FRT CI test is hyper-conservative. We
also show a similar conclusion regarding the bootstrap. More specifically, the Bootstrap is not
valid across distributions for N > 50. This is not surprising since the bootstrap does not have
the same generality as, say, subsampling.

6.1.2 Power of the test

To illustrate the power of the test, we adhere to the design shown in Koenker and Xiao
(2002), which serves as the benchmark for the Monte Carlo experiments in Chernozhukov
and Fernandez-Val (2005) and Ding et al. (2015):

Yi(0) =&, 6 =0+ 05Yi(0)
Yi(1) = 6; + Y;(0)

where o5 denotes the different levels of heterogeneity. Effects that vary from person to person
in this manner are broadly discussed in Rosenbaum (2002), although is worth mentioning the
proposed test allows us to work under more general forms of heterogeneity.

We generate data according to this rule and we calculate the empirical rejection probabilities
for 5% level our permutation test for the null hypothesis of constant treatment effect. For the
sake of comparison, Table 2 also includes the performance of the FRT CI and Subsampling.

In this spirit, we consider the same data generating processes (g; follows a lognormal distri-
bution) and several choices of heterogeneity (o5 € {0,0.2,0.5}). Since it is part of our interest
to show the performance in small sample as well, we consider N = 50 in addition to the ones
found in the papers mentioned above. These quantities are based on 5000 experiments.

Table 2: Power of o = 0.05 tests for several levels of heterogeneity o5, and § = 1

N Results for Khmaladze Results for FRT CI Results for Subsampling

n=m (7520 0520.2 0520.5 0520 0520.2 0520.5 0520 0520.2 0520.5

Lognormal Outcomes

50 0.0118 0.0354  0.1084  0.0194 0.0508 0.0218  0.0120 0.0318  0.0108
100 0.0120  0.0900 0.2320 0.0272  0.0550 0.1526 0.0124 0.0178  0.0590
400 0.0511 0.2910 0.8520 0.0438 0.1880 0.6616 0.0060 0.0340  0.3136
800 0.0440 0.6105 0.9901 0.0332 0.3522 0.9382 0.0064 0.0806  0.7172

For the FRT CI we used 99.99% CI, for 7. We followed the suggested subsampling size is b = 20 + nl/4,

The power performance of our test illustrates that for the lognormal case, both our test and
the FRT CI have greater rejection rates than subsampling, even in large samples. It is worth
mentioning that FRT CI has higher rejection rates than the Khmaladze test presented here in
small samples (N = 50), but this situation is reverse when the sample size increases, a situation
where the asymptotic approximation works better.

7 Within-group Treatment Effect Heterogeneity
The permutation test proposed in the paper can be extended to testing the joint null hypothesis

of constant treatment effects within individual subgroups while allowing the treatment effects
to vary across subgroups. As Bitler et al. (2017) point out, only accounting for constant average
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treatment effects across subgroups while ignoring within-group heterogeneity can be misleading
to truly understand treatment effect heterogeneity.

In this section, we propose a test method for jointly testing null hypotheses that treatment
effects are constant across mutually exclusive subgroups while the average treatment effects can
vary across subgroups. Formally, the null hypothesis of interest is now

H§ : F{(y+6,) = Fi(y) , for all mutually exclusive subgroup ¢

where F§(y) and F}(y) are the cumulative distribution functions (CDFs) of the control and
treatment group, respectively, for subgroup g. Note that the nuisance parameter d, for subgroup
g can vary across subgroups.

To this end, as will be explained in Algorithm 7.1, we will be testing as many multiple
hypotheses simultaneously as the number of subgroups G. If one ignores the multiplicity issue
and tests each hypothesis at level a, the probability of one or more false rejections may be much
greater than a. Thus, we carefully conduct our test while controlling the familywise error rate
(FWER) at level a using a Bonferroni method.

Following our results on the permutation test based on the Khmaladze transformation, an
algorithm for testing the null hypothesis Hj is given by the following.

Algorithm 7.1. (Testing Treatment Effect Heterogeneity Across Subgroups)

1. For each subgroup g, perform the permutation test based on the Khmaladze transformed
K — S statistic at level /G, where G is the number of subgroups.

2. Reject the null HY if any one null for a subgroup is rejected. In other words, reject
the joint null hypothesis HY if the observed test statistic ¥y, is greater than® the lower
(1 — a/QG) quantile of the permutation distribution for any subgroup g.

8 Conclusions

Heterogeneity in the treatment effect in randomized experiments is of paramount importance
to correctly evaluate a policy or clinical trial. While this task is oftentimes carried out by com-
paring the average treatment effects conditional on covariates, we propose a test procedure that
allows one to compare the entire distributions of the control and treatment groups within indi-
vidual subgroups. This can done by performing permutation tests that render asymptotically
valid inference using the martingale decomposition of the empirical process d la Khmaladze.
More specifically, the transformed test statistic becomes asymptotically pivotal and thus the
permutation test based on this transformed statistic will be asymptotically valid in general
while still providing an exact error control in finite samples when the average treatment effect
is known. Furthermore, we confirm in a series of Monte Carlo experiments that the test displays
not only a good size control relative to other tests proposed in the literature, but also fairly
good power in certain scenarios.

5To be more precise, one can use randomization explained in the permutation construction described in
Section 3.
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Appendix

Appendix A: Coupling Construction

Assume Y7(0),...,Y,(0) are i.i.d. according to a probability distribution Fj, the control group,
and independently Y;(1),...,Y,,(1) are i.i.d. Fj, treatment group. Let N = n + m and write

Z=(Zy,....,72n) = (Y1(1),...,Y,(1),Y1(0),...,Y,(0)) (13)
Moreover, suppose lim,, o, n/N = p € (0,1) in such a way that

L ~1/2
p=y =OWTT)
The main idea behind the coupling argument in Chung and Romano (2013) is that the limiting
distribution of the the permutation distribution based on Z should behave approximately like
the limit law of the permutation distribution based on a sample of N iid observations Z =
(Z1,...,Zy) from the mixture distribution P = pFy 4 (1 — p)F,.
We would wish to compare

Z=(Zy,--,Zn) vs Z=Y1(1),...,Y,(1),Y1(0),...,Y,(0))

The basic intuition stems from the following. Since the permutation distribution considers
the empirical distribution of a statistic evaluated at all possible permutations of the data, it
clearly does not depend on the ordering of the observations.

Remark 8.1. The elements of Z can be thought as the outcome of a compound lottery. First,
draw a random index j from {0,1} with probability P(j = 0) = p. Then, conditionally on the
outcome being j, sample Z; from Fy if 5 =0, and from Fy otherwise.

Except for the fact that the ordering in Z is such that the first n observations are com-
ing from Fy, and the last m are coming from Fj, the original sampling scheme is still only
approximately like that of sampling from P.

Remark 8.2. Recall the binomial distribution is used to model the number of successes m when
sampling with replacement from a population of size N. Hence, the number of observations Z;
out of N which are from population Fy follows the Binomial distribution with parameters N
and p. This number has mean Np = n, whereas the exact number of observations from Fy in
Z isn.

Let m = (w(1),...,7(N)) be a random permutation of {1,..., N}. Then, if we consider a
random permutation of Z and Z, the number of observations in the first n entries of Z which
were Y (0)s has the hypergeometric distribution, while the number of observations in the first
n entries of Z which were Y (0)s still has the binomial distribution.

8.0.1 The algorithm

First draw an index j from {0, 1} with probability P(j = 0) = p. Then, conditionally on the
outcome being j, set Z; = Y;(j). Next, draw another index i from {0,1} at random with
probability P(i = 0) = p. If i = j, set Zy = Y3(j), otherwise Z, = Y1(i). Keep repeating this
process, noting that there will probably be a point in which you exhaust all the n observations
from the control group governed by Fy. If this happens and another index 7 = 1 is drawn
again, then just sample a new observation Y,,,1(0) from Fp, and analogously if the observations
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you've exhausted are from population F;. Continue this way so that as many as possible of
the original Z; observations are used in the construction of Z. After this, you will end up with
Z and Z, with many of their coordinates in common (and this is why this method is called
“coupling,” because we couple Z with Z ). The number of observations which differs, say D, is
the (random) number of added observations required to fill up Z. You can acces this R file to
see how this algorithm works.

8.0.2 Reordering according to 7

Furthermore, we can reorder the observations in Z by a permutation 7y so that Z; and Z
agree for all i except for some hopefully small (random) number D. Recall that Z has the
observations in order, that is, the first n observations arose from F{, while the last m obser-
vations are distributed according to Fy. Thus, to couple Z with Z, put all observation in Z
that came from Fj in the first up to n. If the number of observations from Fy is greater or
equal to n (recall that this is a possibility), then Zr(i) for: =1,...,n are filled according to the
observations in Z which came from Fy, and if the number is greater, put them aside for now.
On the other hand, if the number of observations in Z which came from Fy is less than n, fill
up as many of Z from Fj as possible, and leave the rest of the blank spots for now.

Next, move onto the observations in Z that came from F; and repeat the above procedure
forn+1,n+2,...,n+ m spots in order to complete the observations in Zw(i); simply fill up
the empty spots with the remaining observations which were put aside (at this point the order
does not matter, but chronological order is an option). This permutation of the observations in
Z corresponds to a permutation 7, and satisfies Z; = Zm(i) for indices 7 except for D of them.

8.0.3 Why does coupling work?
The number of observations D where Z and Z,, differs is random and it can be shown that
E(D/N) < N~1/2

Therefore, if the randomization distribution is based on the shifted Kolmogorov-Smirnov statis-
tic in eq (4), Kma(Z), such that the difference between K, ,(Z) — Kppn(Zx,) is small in some
sense whenever Z and Z,TO mostly agree, then one should be able to deduce the behavior of
the permutation distribution under samples from Fjy, F} from the behavior of the permutation
distribution when all N observations come from the same distribution P.

Suppose m and 7’ are independent random permutations, and independent of the Z; and
Z;. Suppose we can show that

(K (Ze), Komn(Z)) < (T, T) (14)

where T and 7" are independent with common cdf R(-). Then by theorem 5.1 in Chung and
Romano (2013), the randomization distribution based on K,,, converges in probability to R(-)
when all observations are iid according to P. But since 7m (meaning 7 composed with 7, so
7o is applied first) and 7'my are also independent random permutations. Then it also implies
that

(Km,n(Zmro)a Km,n(ZW’ﬂoD £> (T> T/)

Using the coupling construction, suppose it can be shown that
Km,n(Zmro) - Km,n(Zﬂ) £> O (15)

then it also follows that


https://drive.google.com/open?id=0B5pT8ub8sGRrZUxaemtzY3RsY2s

and by Slutsky’s theorem

= ; )a Kmm(ZTr’)) + (Kmm(Zmro)a Km,n(Zw’no)>
- (Km,n( ﬂo)va,n(Zﬂ’fro)>
= _(Km,n(zﬂ) - Km,n(Zmro)a Km,n(ZTr’ﬂo) - Kmm(ZW’))

(Km,n(ZW)va,n(Zn/)) Km n(Z
Z

m
s

Zo 5o

+ (Km,n(Zmro) s Konn(Zaimy >>

NG

we can conclude that (K., ,.(Zx), Kpn(Za)) N (T,T"). Another application of Theorem 5.1
allows us to conclude that the randomization distribution also converges in probability to R(-)
under the original model of two samples from possibly different distributions.

Appendix B: Proofs

8.1 Proofs of section 4.1

Proof of Proposition 417, Assume the premises of the proposition, and write Fi(y+6) — Fy(y)
as (Fi(y +0) — Fi(y +9)) — (Fo(y) — Fo(y)). Then

Umn(y,0) = \/T <F1(y +0) — ﬁo(y)) = V1 =P — /Dm0

where vy = /n(Ey(y) — Fo(y)) and vy = /m(Fy(y+6)— Fi(y+6)) are two independent empirical
processes. By Donsker’s theorem (Theorem 19.3 in Van der Vaart (2000)), both sequences vg
and v, can be approximated by two independent Fj and F} Brownian bridge processes, Gy and
Gy respectively. We can take these Brownian bridges to be independent because the empirical
processes are. Therefore, V,, ,(y, ) converges weakly to

V1=pGi(y) — vpGo(y)

which is another Brownian Bridge. Therefore, by the usual continuous mapping theorem, the
sequences of “classical” KS statistic Ky,ns = sup, || Via(y,0) || converge under the null
hypothesis to

Jo(y) = Sup | G(y) |

U

The outline of the proof of Proposition 4.2 is the following. From Hoeffding’s Condition
(See Theorem 5.1 of Chung and Romano (2013)), we must verify

(Vm,n@a(s; Zﬂ)),me(y,(S; Zxr))) (16)

converges weakly to a tight process (G, G’), where G and G’ are independent Brownian bridges,
each with identically distributed marginals having mean zero and covariance structure

EG(s)G(t) = Fo(s At) — Fo(s)Fo(t)
"See also theorem 19.3 in Van der Vaart (2000).
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Proof of Proposition 4.2.
Throughout this proof we suppose 0 is known, so let us recenter the m observations coming
from Fj as follows .
Y:(1)=Y;(1)—=¢ forall i=1,....m
then Y;(1) ~ F,. Since this is an affine transformation of the continuously distributed Y'(1)

with density function fi, we have that Y (1) has probability density function f; given by fi(y)
fi(y +6). Write

Z=(Zy,...,Zy) = (Y1(1),...,Yn(1),Y1(0),...,Y,(0))

Thus under the null hypothesis 71, ..., Zy are iid Fj, implying that the mixture distribution
is essentially Fpy. Independent of the Zs, let (w(1),...,7(N)) and (7'(1),...,7'(N)) be two
independent random permutations of {1,..., N}. We will denote Z, = (Zzq), ..., Zx(n)); Znr
is defined with 7 replaced by =’.

Assume the premises of Proposition 4.1. By applying Theorem 1.5.4 in Wellner and Van der
Vaart (2013), the proof comes down to showing the marginals

(Vm,n(tl? 57 Zﬂ'))? ey Vm,n<tk7 57 Zﬂ'))7 Vm,n(tlv 57 Zﬂ/))7 S Vm,n(tka 67 ZTI'/)))
converge weakly to the marginals
(G(t1)7 s 7G<tk)7 G,(tl)a st 7G/<tk)))

for all £ € N, and t,...,t. € R. For the sake of exposition, we first restrict our attention to
the scalar y. Under Hy, we observe that

N N
(Vm,n(y7 57 Zw))7 vm,n(ya 6a Zﬂ"))) - (]' - pm)1/2m_1/2 (Z XlWZ’ Z X,W;)

i=1 =1

N N
i=1 i=1
where X; = 1yz,<,y — Fo(y), and W; = 1if w(i) € I = {1,...,m}, W; = —m/n otherwise, for
all 7. Analogously, W/ is defined with 7 replaced by 7’. It is easy to check E(W;) = 1P(7 (i) €
5L) —m/nP(r(i) ¢ I;) = 0, and E((1z,,,<y — Fo(y))W;) = 0 since 7 is independent of Z.
Same is true for W/.
Notice that under the null,

E (Voo (y, 05 Zx)) = 0

wwmw%ngwﬂwg;mm+ﬂwm;mm

)=%@ﬂ—%@)

We claim the asymptotic normality of
N N
i=1 i=1

To do this, we use the Cramér-Wold device (Theorem 11.2.3 of Lehmann and Romano (2006)).
Then, for any any a and b, we must verify the limiting distribution of
N N
K(m) > (aX;W; +bX; W) => CrnpiXi (17)

i=1 i=1
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where

Cni = K(m)(aW,; + bW))

Condition on W; and W/, then (17) is a conditionally independent sum of linear combination
of independent variables:

m N m n

Z Cm,n,iXi + Z Cm,n,ij = Z Cm,n,i (1{)71(1)39} - FO(y)) + Z Cm,n,m+j (1{Y](O)§y} - FO(y))

i=1 j=m+1 i=1 j=1

By the arguments in Example 15.2.5 of Lehmann and Romano (2006), we conclude that

{\il an,n,]
and so
m n d ,
Z Crnni (l{ﬁu)gy} - FO(?/>) + Z Crnnmtj (1{Yj(0)§y} - FO(?/)) —aG +bG
i=1 j=1
therefore

Vi (05 Z2))s Vinon (45 65 Za))) % (G (), G' ()

where G(y) and G'(y) follow the same zero-mean Gaussian process with covariance function
Fo(y)(1 — Fp). Finally, conditionally on W', we have

™=
M=

I
_

C (Vi (9. 8 Zx)): V(9 6: Zw))) = K(m) 32 - C (X, Wi, X, W)

-
I
_

J

™=
M=

= K*(m) )Y E (XWX, W) =0

.
I
—

1

J

because 7, 7" are independent of Z, and mutually independent from each other. It follows that
G(y) and G'(y) are independent, as desired. The same reasoning and the multivariate CLT
apply for arbitrary tuples t1,...,tx € R.

It now follows that (K, n.6(Zr), Kimns(Zx)) are asymptotically independent. By the regular
the continuous mapping theorem,

(Km,n,é(zﬂ)a Km,n,&(Zﬂ/))

converges in distribution to the (Jy, Jj)) process with independent, identically distributed marginals
as described in Proposition 4.1. Then by Hoeffding’s Condition (Theorem 5.1 of Chung and

Romano (2013)),

sup || () = Jo(t) | 50

8.2 Proofs of section 4.2

Proof of Proposition 4.3

See Ding et al. (2015), Theorem /4, page 21. We include the proof here for the sake of
completeness. The discussion and results in examples V.15 and V.23 in Pollard (2012) will be
useful.
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Under the null hypothesis (2), we know that for some 6, 6 = p(F) — u(Fy), o*(Fy) =
0?(Fy) = 0% and fi(y +6) = fo(y). Then we develop V,,.,.(y,0) as

mn ¢ ~ S ~ mn ~ m

TR By + ) - B} = 5 (Bl +0) - By} + )5 (Rl +8) - By + )
= [Ry +0)~ Fi(y+9))

+/ (P +8) - Fi(y+ )} -
= [T B+ 0) = Bo)} + [ {Fuly +8) = Faly +9)} + 0,(1)

mn

=

N

due to the fact the last two summands

W

(Fi(y+9) = Fily +0)) = (Fi(y +6)) — Fily + )} = 0,(1) (18)

by stochastic equicontinuity of the indicator function. Now expand F} (y—i—g) around ¢ to obtain

= S - aF) - - Y (0) - m)))
i=1 i=m+1
3 (X ) - 7 (1”; i(0) - M(Fo)))
therefore
Vina(1,8) = [ { By +0) = Bo(w)} + 5 (£o)G = ) +0,(1)

s
I
—

—/Pn ( | > {1{1@(0)3,} — Fo(y) + fo(y) (Yi(0) — M(Fo))}) + 0p(1)

since both terms have the same limit distribution as shifted Brownian Bridges in Proposition 4.3,
we have

N mn ¢ ~ ~ N
Vina(y,0) =/ 57 {Foly) = Bily +9)} > Gly) — &(w)
and the final statement follows from the symmetry of the Brownian Bridge with drift, and the

usual Continuous Mapping Theorem applied to it. O

Sketch of the proof of Proposition 4./: Since we don’t know ¢, we cannot shift the observa-
tions as we did in the case of  known. As a result, the general strategy must be based on the
auxiliary results in section 5 of Chung and Romano (2013). In particular
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(i) Let Z;,Z,..., be iid from the mixture distribition P. Stack in Z = (Z,,..., Zy). Then
show

(a)
(Vi (9,85 Z2)), Vinn (9, 0: Z20)) ) (G, G') (19)

with G and G’ independent with common CDF. Independence will follow from the
zero-covariance argument, since the limits are Gaussian.

(b)
Vm,n<ya 8; Zme) - Vm,n(ya 8; Zﬂ') 3} 0 (20)
(ii) Invoke Lemma 5.1 of Chung and Romano (2013) to conclude

(Vinn (1,05 Z2)), Viun (4,0 Zwr)) ) (G, @)

(iii) Apply Hoeffding’s Condition (Theorem 5.1 of Chung and Romano (2013)) to conclude
sup | B (t) = Jo(#) || 0

Proof of Proposition 4.3. Let § = u(Fy) — u(Fy) and recenter the m observations coming from

F as follows ) A
Yi(1)=Y;(1) =6 forall i=1,....,m

where }7;(1) ~ F;. Write
Z=(Zy,....Zxy) = (Yi(1),...,Yn(1),Y1(0),...,Y,(0))

Independent of the Zs, let (7(1),...,7(N)) be an independent random permutation of {1,..., N'}.
Let Z and mg be constructed by the coupling method of Chung and Romano (2013). We want
to show Condition (20) first, i.e.

Vm,n(?/; 37 Zﬂ',rr(]) - Vm,n(ya 57 er) E} 0

Everything stated below is implicitly conditioned on 7y, but we omit it to ease notation. For a

given T,
mn\ —1/2 o . 1 m _
<N) (Vm,n(ya 03 Zrmy)) — Vm,n(ya d; Zﬂ)) = m Z(I{Zﬂﬂo(i) <y}-— I{Zﬂ(i) <y})
i=1
1 X _
= 2 H{Zemy) < wb = HZey < wh)
j=m+1

and observe that the way we constructed Z, we have that Z; = Zro(,-) for indeces i except for
at most D entries. This is so because Z,, is either of the form

(Zﬂo(l), ey Z,TO(N)) = (Yi(1),...,Yi(m),Y1(0),...,Y,_p(0),Y,11(1), ..., Y,ip(1))
or it is of the form
(Zno(ys -+ s Zagvy) = (Y1(1), ., Yoo p(1), Y1 (0), . ., Yo p(0), Yo (1), . . ., Yo(n))
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Then all the above sums are zero except for at most D places. For all the indices such that
the differences I{Z;r,i) < y} — I{Zzp) < y} and I{Zr5) < y} — I{Zr;) < y} are not zero,
observe that
E (I{Zan) < ¥} = I{Zetiy < 9}) = —E (I{Zeny(s) < v} — {Zny) < 0})
=pFi(y) + (1 = p)Foy) — Fo(y)
=pFi(y +0) + (1 —p)Fo(y) — Fo(y)

Expand F(y 4 ) around 4 to obtain

E (I{Zano(i) < y} = H{Zatyy < y}) = p (Fi(y+0) + faly +6)(0 — 6))
+ (1 = p)Fo(y) — Fo(y) + op(1) = 0p(1)

under the null hypothesis. Hence, conditionally on D and 7,

E (Vm,n(ya 8? Z)) - Vm,n(ya S? Z)) < % (mm{?nn}) E (I{Zmro < y} ]{Z < y})
mn [ O(N'?)

<5 () o0 = oy

Furthermore, any nonzero term like 1{Z,,jy < y} — I{Zx(jy < y} has variance bounded above
by

V (I{Zarots) < v} = H{Zaisy < 0}) =V (IH{Znryy) < 0}) + V (I{Zej) < 0})
= E (I{Zﬂ'ﬂ'o(]) S y}) 1-— E (]{Zmro(] S ))
+E (I{Z) < }) (1— E (I{Zesy < w})) < ;
Similarly, V ([ {Zroity <y} — I{Znis) y}) < 1/2. Conditioning on D and m, the variance is

bounded above in the sense:

5. 7 S mn 1 1 mn (n? +m?

m n n2m?

and therefore the unconditional variance is bounded above by

N n2?m?2 m n

2 2
mn (n +m > O(NI/Q) _ (n + m) (’)(N_I/Q) = O(N~ 1/2) o(1)
and therefore condition (20) follows by convergence is quadratic mean.

In order to show (19), let Z:l, Zy, ..., beiid. P =pE + (1 —p)F,, and stack the first N
elements of the sequence into Z such that

Z=(Zy,....,2Zyn)

Independent of the Zs, let (7(1),...,7(N)) and (7(1),...,7'(N)) be two independent random
permutations of {1,...,N}. A direct application of Theorem 1.5.4 in Wellner and Van der
Vaart (2013) implies we need to show the marginals

(Vi (81,65 Z2)), - Vinn (b, 65 Z2), Vi (81,05 Ze)), - Vi (i, 0 Z0)))
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converge weakly to the marginals
G(h), . G(t), G (h), ..., G (1))

for all k£ € N, and tq,...,¢ € R. Just like we did in the proof of Proposition (4.4), we first
restrict our attention to the scalar y. Under H,, we observe that

N N
(Vm,n(ya 8; Zw))a Vm,n(ya S; Zw’))) = (1 - pm)1/2m—1/2 (Z XlW“ Z XZWZI>

i=1 i=1
N N
i=1 i=1

where X; = 17,y — Fo(y), and W; = 1if n(i) € I, = {1,...,m}, W; = —m/n otherwise, for
all i. Analogously, W/ is defined with 7 replaced by 7’. It is easy to check E(W;) = 1P(7(i) €
L) —m/nP(n(i) ¢ L) = 0, and E((1;z — Fy(y))W;) = 0 since 7 is independent of Z.
Same is true for W/.

Notice that under the null,

E (Voun(y, 0 Zx)) = pFi(y) + (1 —p) Fy — Fy
= fo®) (6 = 6) + 0y(1) = Rynn

(Va8 20)) = S (PO =200 PAZPODY — 1 - py

Fo(y) 1 _FO )) +Rmn(1 _Rmn _QFO(y))

(%) }<y

We claim the asymptotic normality of
N N
m) (Z X; Wi, Z XiVVi,>
i=1 i=1

To do this, we use the Cramér-Wold device (Theorem 11.2.3 of Lehmann and Romano (2006)).
Then, for any any a and b, we must verify the limiting distribution of

N N
i=1

=1

where

Crni = K(m)(aW; + bW))

Condition on W; and W/, then (21) is a conditionally independent sum of linear combination
of independent variables:

B2 ConiXit 35 Connss = 3O (14~ ) + 35 O (15,0~ i)

=1 j=m+1

By the arguments in Example 15.2.5 of Lehmann and Romano (2006), we conclude that

maxi—1,.. N Cmni P
ez —0, as m,n — oo
=1 m,n,)
and so
m n d /
> Couni Lz = Fo@)) + 3 Counanti (Liz,2y = Foly)) = aG + G
i=1 j=1
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therefore
(Vi (0,6 Z2)), Vinon (4, 6; Z1))) = (G(y), G (1))

where G(y) and G'(y) follow the same zero-mean Gaussian process with covariance function
Fy(y)(1 — Fp). Finally, conditionally on W, we have

C (Vm,n<y7 85 Zﬂ)) an( 5 Zn ))) = K2<m) :

M=
M=

I
—

C (X,W;, X;W7)

@
I
—

J

™=
M=

= K*(m)Y_ Y E (XWX, W) =0

@
Il
—

1

J

because 7, 7’ are independent of Z, and mutually independent from each other. It follows that
G(y) and G'(y) are independent, as desired. The same reasoning and the multivariate CLT
apply for arbitrary tuples t1,...,tx € R.

It now follows that (Kmm’S(ZW), Km,n,8<ZW/)) are asymptotically independent. By the reg-
ular the continuous mapping theorem,

(Kppn(Ze), K 5(Z0))

converges in distribution to the (Jy, Jj)) process with independent, identically distributed marginals
as described in Proposition (4.3). Then by Hoeffding’s Condition (Theorem 5.1 of Chung and
Romano (2013)),

sup | Ry (t) = Jo(t) || =0

where Ry is the permutation distribution (8) based on K, 5 as desired.

8.3 Proofs of section 5

Proof of Proposition 5.1 Assume the premises of Proposition 5.1. Consider the asymptotic
representation

A

Una(t,8) = /5= (Ga(t,6) = Goly >) (fo (B (9) (6= 8)) + 0,(1)
N

= Ul )+ 5 (o (B(0) 6 = 8) + 0,(1)

Using g(r) = (r, fo)', the Khmaladze transformation based on vp, ,(y,d) is

E

Bmn(t,8) = U n(t,8) — /0 t [g(s)lc_l(s) / L () dvgn(r, 8)] ds
= Um,n(t7 8) - ¢g(vm,n(ta S))

From the properties of the map ¢, we have ¢,(cg) = cg for a constant or random variable c.
Then, for g(t) = (¢, fo(t))" we have ¢,4(cfo) = cfo. Replace

c:ﬁ(s_a)

Vmn(,8) = Bg(Vmn(t,8)) = Vimn(t,8) + cfo (F5 (1)) = by (Wmn(t,8)) = dy(cfo (Fy (1)) + 0p(1)
= Vnn(£,0) = By (Umn(t,6)) + 0,(1)

therefore
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Weak convergence of vy, ,(t,0) to B® was established in Remark 4.1. Thus, O, (, 3) weakly
converges to the Brownian motion B°(t) — ¢,(B°(¢)), by 4.3 of Khmaladze (1981).
]

Sketch of the proof of Proposition 5.2: In a similar spirit as in the proof of Proposition 4.4
and the results in section 5 of Chung and Romano (2013),

(i) Let Z1,Z..., be iid from the mixture distribution P. Stack in Z = (Z,,..., Zy). Then
show

(a)
(Omn(t, 05 Z2)), Omn(t, 85 Zo)) ) (BM, BM') (22)

with BM and BM' independent with common CDF. Independence will follow from
the zero-covariance argument, since the limits are Gaussian.

(b)
Do (£, 03 Zz o) — Ty (t,0: Z) =0 (23)

(ii) Invoke Lemma 5.1 of Chung and Romano (2013) to conclude

A

(Bmn(t, 0 Z2)), (£, 0 Zo0)) ) (BM, BM')

(iii) Apply Hoeffding’s Condition (Theorem 5.1 of Chung and Romano (2013)) to conclude

sup | Ry(t) = Jo(t) || 50

Proof of Proposition 5.2 Write
Z=(Z1,...,7Zn) = (Y1(1),...,Yu(1),Y1(0),...,Y,(0))

Independent of the Zs, let (7(1),...,7(N)) be an independent random permutation of {1,..., N'}.
Let Z and 7y be constructed by the coupling method of Chung and Romano (2013). We want
to show Condition (23) first, i.e.

7:}m,n<t» S; ZT(,TI’O) - 7J?’n,n(ta 87 Z?T) 3} O

Everything stated below is implicitly conditioned on 7y, but we omit it to ease notation. Fix
7 and use the asymptotic representation in proof of Proposition (5.1)

Oy (b, 0 Zpm) — Oy (503 Ze) = Unn(t, 05 Zig20) — U (t, 8; Zig ) —
(@5 (vmn(t: 3 Ze0)) = 6y (Vmn(t,6: Z2)) ) + 0,(1)

We need to guarantee that the remainder, defined in eq (18) in the proof of Proposition 4.3,
is still 0,(1) under Z;. We will use the contiguity result of Chung and Romano (2013); let
Vi, Va, ..., beiid from the mixture distribution P = pF} + (1 — p) Fy, and observe the remainder
satisfies

mn [ 1 A mn [ 1 p
\/N{mzl{wgy+8}_F1(y+5)}— N{mzl{%<y+6}—ﬂ(y+5)}—>0
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by stochastic equicontinuity of the indicator function. Then, by Lemma 5.3 of Chung and
Romano (2013),

mn mn

1 & A 1 & p
N {mzl{znmﬁ?ﬁs} N Fl(y+5)} VN {mz Yz, <oy — Fiy + 5>} —0

as desired. Furthermore, by the arguments of Proposition 4.2 and Slutsky theorem with the
change of variable described in Remark 4.1,

Um,n(ya 5; Zﬂ',ﬂ'o) - Umm,(y? 5) Zﬂ') - Op(l)

The linear operator ¢, is also a Fredholm operator (Koenker and Xiao (2002)) on a Banch
space, therefore it is a bounded operator. But an operator between normed spaces is bounded
if and only if it is a continuous operator (Abramovich and Aliprantis (2002)). Therefore, by
the Continuous Mapping Theorem,

bg (Umm(t, 0; Zmro)) — ¢y (Umm(t, 0; Zﬁ) = 0,(1)

then

as desired.

Joint Gaussianity in Condition (22) follows from the discussion in Condition E of Romano
(1989). More specifically, the differentiability condition needed in order to verify Condition
E holds for the present case, since testing the null hypothesis (2) is essentially a two-sample
test of homogeneity (see example 4 of Romano (1989)). Having shown the limits are Gaussian,
zero-covariance renders independence. Then, it needs to be shown that

C (Omn(t, 85 Z2)), Dron(t, 8 Z2r))) = 0
Notice that

@m,n(ta 8? er) = Um,n(t: 9; Zfr) — Oy (Um,n(tv J; ZW)) + Op(l)
by exploiting the linearity of the map ¢4. Therefore

C <@m,n(t, 3; Zz))s Omonl(t, 8; Z,r/))) = C (Uimn(t,0; Zy), Uy (t, 0; Znr))

+ C (g (Vmn(t, 05 Zx)) s bg (Umn(t, 65 Zwr)))
-C (Um,n(ta 8; Zr), Gg (Um,n(t> 05 Znr)))

— C(vmnlt, 6 Zw), g (Umn(l, 63 Z1))) + 0p(1)

It follows from the arguments in the proof of Proposition 4.2 that

N
Vinn(, 03 Zz)) = K (m) 3 X;Wi
i=1

(C (Vm,n(ya 55 Z7r)7 Vm,n(y7 67 ZW')) = 0

Use linearity of the map ¢, once again,

00 Vo 165 22))) = 0 () X0 ) = K o) 3 ()
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Therefore, conditionally on W',

C (6 (Vi1 22)) b (V9.5 Z2) = K @(Z¢g (XD 30, (47

C (Vi y, 6; Zwr), ¢g( Vinn (Y, 05 Z7))) =

f: E (¢ (XiWi) &g (X;W))) =0

=1 j=1

€ (36, (X ZXW’)

=1

.

%ZNjE(% XiW;) X;W)) =0

i=1j5=1

because 7, 7’ are independent of Z, and mutually independent from each other. Once again,
Slutsky theorem with the change of variable described in Remark 4.1 implies

C (Omn(t,0; Z2)), Omn(t, 03 Za)) ) = 0,(1)

and by Hoeffding’s Condition (Theorem 5.1 of Chung and Romano (2013)), we conclude

sup | Ry(t) -
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Jo(t) || =0
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