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Abstract 
 

This paper extends endogenous regime switching volatility models by incorporating a predetermined 
and observable factor, which determines the regimes with an endogenous autoregressive latent factor. 
The bivalued state process is dependent upon whether the latent factor takes a value above or below 
time-varying threshold which is a linear function of the predetermined and observable factor. By 
allowing the threshold to vary over time, the state process becomes partially observable to 
econometrician as it is determined by both latent and observable factors. Using this property, I can 
extract the information from the observed time series more effectively, and find that the presence of state 
observability and endogeneity feedback effect should be considered together when estimating volatility 
models and conducting state inference. 
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1 Introduction 
 
A number of studies have researched regime switching models. Most of these models have the state 

process which has two regimes, high and low, to determine one of the regimes of an economy. The 
binary state process is typically modeled as a Markov chain. Hamilton (1989) first introduced the 
autoregressive model with this type of Markov switching in the mean to explain business cycle. Kim 
(1994) further analyzed this model which has the fixed transition probabilities. Numerous authors 
analyzed Markov switching to model a broader set of regression models such as the mean and volatility 
models. Furthermore, Goldfeld and Quandt (1973), Diebold et al. (1994), and Filardo (1994) considered 
time-varying transition probabilities in regime switching model. Kim (2004, 2009) has introduced 
Markov-switching models with endogenous explanatory variables. This paper is closely related to Chang 
et al. (2017). In this paper, they introduced a regime switching model whose regime is determined by an 
endogenous autoregressive latent factor. 

This paper argues that an endogenous regime switching volatility model with time-varying 
threshold (TVT) can characterize the dynamics of volatility regimes better than the conventional Markov 
switching model with time-varying transition probabilities (TVTP) (Diebold et al. 1994 and Filardo 1994) 
and the endogenous regime switching model with constant threshold (ERS) (Chang et al. 2017). This is 
because these previous models have some shortcomings. In case of TVTP models, the transition of the 
state process is exogenously determined. In other words, the Markov chain determining the state process 
is assumed to be entirely independent from all other parts of the model. This sounds particularly 
unrealistic in some cases. In addition, the state process itself takes only discrete values and cannot be 
inferred or extracted out from the model as continuous time series. The ERS models, however, have 
overcome these drawbacks, except that the state process is assumed to be fully unobservable to 
econometrician so that precise inference of state process is difficult. 

In this paper, I present a regime switching volatility model which incorporates an endogenous 
autoregressive latent factor and a time-varying threshold (TVT). The volatility process is switching 
between two volatility regimes, high or low, depending upon the value of state process. The state process 
is determined by both the latent factor and the TVT, taking value of 1 or 0 if the latent factor is greater 
or less than the TVT. The TVT is a linear function of predetermined and observable factor, which enables 
me to partially observe the state process since the state process is determined by both latent and 
observable factors. The presence of state observability through the TVT allows me to more effectively 
extract the information about the state process from the observed time series compared to conventional 
Markov switching models with TVTP and endogenous regime switching model with constant threshold. 
In addition, the autoregressive latent factor is assumed to be endogenously correlated with the observed 
time series. The regime switching in the next period is affected by a current shock to the observed time 
series since the innovation of the latent factor is modeled to be correlated with the previous model 
innovation. This type of endogeneity in regime switching is introduced by Chang et al. (2017) and will 
be called endogeneity feedback effect throughout this paper to explain the leverage effect in volatility 
model. 

My model encompasses a broad set of regime switching models including conventional Markov 
switching models and endogenous regime switching models. If the time-varying threshold is replaced 
with a constant threshold, the regime switching in my approach reduces to the endogenous regime 
switching with constant threshold considered by Chang et al. (2017). Thus, one can regard my model as 
a generalized version of endogenous regime switching model. Furthermore, my model turns into 
conventional Markov switching models with TVTP if the autoregressive latent factor is exogenous and 
stationary. If these two restrictions are combined in my model, then it becomes the conventional Markov 
switching model with fixed transition probabilities.  
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To empirically illustrate my approach, I analyze the NYSE/AMEX index returns for my volatility 
switching model. Throughout the results the presence of both endogeneity feedback effect and state 
observability is strong and clear. The estimated coefficient of slope term of time-varying threshold and 
correlations between the current shock to the observed time series and the latent factor determining the 
state in the next period are all significantly different from zero. This implies that the threshold varies 
over time rather than remains constant over time, and therefore, allows the state process to be partially 
observable to econometrician by the state observability. The correlation is estimated to be very close to 
minus unity, -0.999, for both models I consider. This implies that there is an inverse relation between 
current shock to stock return and volatility. For example, if there is a negative shock to stock returns in 
the current period, then it will cause a rise in volatility in the next period. This provides a strong evidence 
of strong leverage effects which is one of the stylized facts of financial time series.   

I conduct a comprehensive set of simulations to assess the performance of my model compared to 
conventional Markov switching models with TVTP and endogenous regime switching model with 
constant threshold. The simulation results suggest the following points. First, if either the endogeneity 
feedback effect or the state observability is ignored in regime switching, a considerable amount of bias 
and efficiency loss occurs when estimating the parameters. Second, the likelihood ratio tests for the state 
observability perform well in every case I consider. Finally, the confusion matrices computed from the 
simulations show that my model infers the state process more accurately compared to endogenous 
regime switching model with constant threshold. 

 The structure of this paper is as follows. In section 2, I introduce my model and compare it with 
the conventional Markov switching models and endogenous regime switching model. Section 3 explains 
the estimation procedure of my model. Section 4 illustrates the empirical results of my model. In section 
5, simulation results are presented. Section 6 concludes the paper.  

 

2 Regime Switching Models with Time-Varying Threshold 
 
In this section, I introduce an extended version of endogenous regime switching volatility model 

with time-varying threshold (TVT) and compare it with the previous approaches used in the conventional 
and endogenous Markov switching models.  
 

2.  Models with Endogenous Regime Switching 
 

In my model, as in the conventional two state Markov switching models, I let a binary state process 
(𝑠௧) to be determined by a latent factor (𝑤௧) and a predetermined and observable factor (𝑥௧) 

 
 𝑠௧ = 𝑠(𝑤௧ , 𝑥௧) = 1{𝑤௧ ≥ 𝜏(𝑥௧)} (1) 

 
for 𝑡 = 1,2, …, with time-varying threshold 𝜏(𝑥௧), and 1{⋅} is the indicator function. The state process 
(𝑠௧) takes either 0 or 1 referred respectively to as low and high regimes. I let the latent factor (𝑤௧) be 
generated as an autoregressive process 

 
 𝑤௧ = 𝛼𝑤௧ିଵ + 𝑣௧ (2) 

 
with parameter 𝛼 ∈ (−1,1] and i.i.d. standard normal innovations (𝑣௧). The time-varying threshold 
𝜏(𝑥௧) is assumed to be a linear function of a predetermined and observable factor (𝑥௧) 

 
 𝜏(𝑥௧) = 𝜏௧ = 𝜏௖ − 𝜏௦𝑥௧ (3) 
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with parameters 𝜏 = (𝜏௖ , 𝜏௦).  

In order to compare my model with the conventional and endogenous Markov switching models, I 
use (𝜋௧) as a general notation which denotes a state dependent parameter as follows: 
 

 𝜋௧ = 𝜋(𝑤௧ , 𝑥௧) = 𝜋1{𝑤௧ < 𝜏(𝑥௧)} + 𝜋1{𝑤௧ ≥ 𝜏(𝑥௧)},  (4) 

 
or equivalently, 
 

 𝜋௧ = 𝜋(𝑠௧) = 𝜋(1 − 𝑠௧) + 𝜋𝑠௧ , (5) 

 
where (𝜋, 𝜋) are parameters and 𝜋 > 𝜋. The endogenous regime switching model simply assumes that 

the threshold 𝜏 is constant, whereas my model introduces a time-varying threshold (𝜏௧) to define the 
state process (𝑠௧). This approach allows the model to be more flexible since it is more realistic to think 
that the level of threshold varies over time. Moreover, while the state process (𝑠௧) is assumed to be 
Markov chain in the conventional models, my approach introduces an autoregressive latent factor (𝑤௧) 
and observable factor (𝑥௧) to define the state process (𝑠௧). This allows my model to encompass the 
conventional time-varying transition probabilities (TVTP). 

The state process given in (1) can also be understood as follows: 
 

𝑠௧ = 1{𝑤௧ ≥ 𝜏௖ − 𝜏௦𝑥௧} = 1{𝑤௧ + 𝜏௦𝑥௧ ≥ 𝜏௖} = 1{𝑤௧
∗ ≥ 𝜏௖}, 

 
where 𝑤௧

∗ = 𝑤௧ + 𝜏௦𝑥௧ . In this case, one can understand that this model has a partially observable state 
process (𝑠௧). That is, the partially observable factor (𝑤௧

∗) governs the state process (𝑠௧) and is composed 
of both latent (𝑤௧)  and observable (𝑥௧)  factors. The state process (𝑠௧)  is therefore determined by 
whether the partially observable factor (𝑤௧

∗) is greater than time-invariant (or constant) threshold 𝜏௖ or 
not. This implies that if I ignore the presence of observability of state process (𝑠௧) with predetermined 
and observable factor (𝑥௧) (i.e.  𝜏௦ = 0 ), this model reduces to endogenous regime switching volatility 
model discussed in Chang et al. (2017).  

The interpretation of the slope parameter of the observable factor 𝜏௦ is nothing but the strength of 
the observable factor (𝑥௧) in determining the state at time 𝑡. If 𝜏௦ is very close to 0, the time-varying 
threshold (𝜏௧) does not vary much over time. In this case, the state process (𝑠௧) is mainly driven by the 
latent factor (𝑤௧). On the other hand, if 𝜏௦ is not close to 0, then the time-varying threshold (𝜏௧) varies 
more sensitively as the observable factor (𝑥௧) changes over time.  

A regime switching volatility model is given by 
 
   𝑦௧ = 𝜎(𝑤௧ , 𝑥௧)𝑢௧ 

= 𝜎(𝑠௧)𝑢௧  (6) 
 

where the state dependent process (𝑦௧) is defined to be determined by state process (𝑠௧) and the state 
dependent volatility (𝜎(𝑠௧)) with parameters 𝜎 and 𝜎. The innovations (𝑢௧) and (𝑣௧) in (2) are jointly 

i.i.d. and distributed as 
 

 
ቀ

𝑢௧

𝑣௧ାଵ
ቁ =ௗ ℕ ቆቀ

0
0

ቁ , ൬
0 𝜌
𝜌 0

൰ቇ 
(7) 

 
with unknown parameter 𝜌. For the brevity of notation, I write 
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 𝜎௧ = 𝜎(𝑠௧) = 𝜎(1 − 𝑠௧) + 𝜎𝑠௧. (8) 

 
The endogeneity parameter 𝜌 plays an important role in my model. First, the sign of 𝜌 explains 

whether the innovation 𝑢௧  of 𝑦௧  at time 𝑡 is negatively or positively correlated with the state dependent 
volatility 𝜎௧ାଵ of 𝑦௧ାଵ at time 𝑡 + 1. If 𝜌 < 0, this implies that there exists the leverage effect between 
the innovations: a negative shock to (𝑦௧) in the present period causes an increase in volatility in the next 
period as (𝑦௧) represents returns of a financial asset. If 𝜌 > 0, then this means the opposite, anti-leverage 
effect. In subsequent discussions of my model, this specific role of the parameter 𝜌 will be called the 
endogeneity feedback effect. Second, therefore, if I ignore the presence of the endogeneity feedback 
channel, 𝜌 = 0, my model reduces to the conventional Markov switching model with time-varying 
transition probabilities. This will be further discussed in my simulations and empirical illustrations.  

 

2.  Relationship with Previous Markov Switching Models 
 
My model (6) encompasses virtually all models discussed in the literature except the fact it only 

considers a special case, a volatility model, of general regime switching models. Therefore, one can 
easily see that it is a generalized version of the endogenous Markov switching model considered by 
Chang et al. (2017), which particularly allows for the endogeneity feedback effect 𝜌 and nonstationarity 
(𝛼 = 1) in regime changes.  

Therefore, I pose some restriction to my model to make my models clearly comparable to the 
previous Markov switching models. First, I assume 

 
 𝜌 = 0 and |𝛼| < 1, (9) 

 
to make my model reduced to the conventional Markov switching model with TVTP. The above 
assumptions let the model be stationary and have no endogenous feedback effect but the TVT. In my 
approach, the transition probabilities of the Markovian state process (𝑠௧) defined in (1) are obtained as 
follows: 

 
 ℙ{𝑠௧ = 0|𝑤௧ିଵ} = ℙ{𝑤௧ < 𝜏௧|𝑤௧ିଵ} = 𝛷(𝜏௧ − 𝛼𝑤௧ିଵ), (10) 
 ℙ{𝑠௧ = 1|𝑤௧ିଵ} = ℙ{𝑤௧ ≥ 𝜏௧|𝑤௧ିଵ} = 1 − 𝛷(𝜏௧ − 𝛼𝑤௧ିଵ), (11) 

 
where 𝛷(⋅) denotes the distribution function of standard normal distribution. Note that if the transition 
probabilities of the state process (𝑠௧) from the low to the low state (𝑎௧) and from the high to the high 
state (𝑏௧) are defined as 

 
 𝑎௧ = 𝑎(𝑥௧; 𝛼, 𝜏) = ℙ{𝑠௧ = 0|𝑠௧ = 0} 

 

𝑎௧ =
∫ 𝛷 ൬𝜏௧ −

𝛼𝑧

√1 − 𝛼ଶ
൰ 𝜑(𝑧)𝑑𝑧

ఛ೟షభඥଵିఈమ

ିஶ

𝛷൫𝜏௧ିଵ√1 − 𝛼ଶ൯
, 

 
 

(12) 

 𝑏௧ = 𝑏(𝑥௧; 𝛼, 𝜏) = ℙ{𝑠௧ = 1|𝑠௧ = 1} 
 

(13) 
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𝑏௧ = 1 −
∫ 𝛷 ൬𝜏௧ −

𝛼𝑧

√1 − 𝛼ଶ
൰ 𝜑(𝑧)𝑑𝑧

ஶ

ఛ೟షభඥଵିఈమ

1 − 𝛷൫𝜏௧ିଵ√1 − 𝛼ଶ൯
, 

 
where 𝜑(⋅) denotes the density function of standard normal distribution, then the time-varying transition 
matrix 𝑃௧ is given by 

 
 

𝑃௧ = ൬
𝑎௧ 1 − 𝑎௧

1 − 𝑏௧ 𝑏௧
൰. 

(14) 

 
Since the state process (𝑠௧) is a Markov chain on a binary state space {0,1}, it has a transition 

density given by  
 

  𝑝(𝑠௧|𝑠௧ିଵ) = (1 − 𝑠௧)𝜔(𝑠௧ିଵ) + 𝑠௧[1 − 𝜔(𝑠௧ିଵ)], (15) 
 

where 𝜔(𝑠௧ିଵ) denotes transition probability from (𝑠௧ିଵ) to the low state (𝑠௧ = 0) as 
 

 𝜔(𝑠௧ିଵ) = (1 − 𝑠௧ିଵ)𝑎௧ + 𝑠௧ିଵ(1 − 𝑏௧) 

𝜔(𝑠௧ିଵ) =

[(1 − 𝑠௧ିଵ) ∫ +𝑠௧ିଵ ∫ ]𝛷 ൬𝜏௧ −
𝛼𝑧

√1 − 𝛼ଶ
൰ 𝜑(𝑧)𝑑𝑧

ஶ

ఛ೟షభ

ఛ೟షభඥଵିఈమ

ିஶ

(1 − 𝑠௧ିଵ)𝛷൫𝜏௧ିଵ√1 − 𝛼ଶ൯ + 𝑠௧ିଵ[1 − 𝛷൫𝜏௧ିଵ√1 − 𝛼ଶ൯]
. 

(16) 
 
By the assumption (9) in my model (6), it is clear to see that the transition of the state process (𝑠௧) 

evolves with the predetermined and observable factor (𝑥௧) and the pair (𝛼, 𝜏) of parameters. This allows 
my model to have the time-varying transition probabilities (TVTP) as the one considered in Diebold et 
al. (1994) and Filardo (1994). The difference between my model and theirs, however, is that while my 
model assumes the model innovations to be standard normal distribution so that the transition 
probabilities are calculated from standard normal density function, theirs define the transition 
probabilities (𝑎௧ , 𝑏௧) as the logistic functional form.2 

Furthermore, I also additionally let  
 

 𝜏௦ = 0, (17) 
 

i.e. ignoring the presence of the observability of the state process (𝑠௧)  with predetermined and 
observable factor (𝑥௧) . In this case, the time-varying threshold (𝜏௧)  reduces to the time-invariant 
threshold 𝜏௖, 𝜏௧ = 𝜏௖. This makes my model (6) to be the conventional Markov switching model with 
the fixed transition probabilities (FTP)3 considered in Hamilton (1989). See Chang et al. (2017) for more 

                                                 
2In their model, transition probabilities are presented as 
 

𝑎௧ = 𝑎(x୲; 𝜃௔) =
𝑒𝑥𝑝൫𝜃௔଴ + ∑ 𝜃௔௝𝑥௧ି௝

௃భ
௝ୀଵ ൯

1 + 𝑒𝑥𝑝 ቀ𝜃௔଴ + ∑ 𝜃௔௝𝑥௧ି௝
௃భ

௝ୀଵ
ቁ

, 𝑏௧ = 𝑏(x୲; 𝜃௕) =
exp൫𝜃௕଴ + ∑ 𝜃௕௝𝑥௧ି௝

௃మ
௝ୀଵ ൯

1 + exp ቀ𝜃௕଴ + ∑ 𝜃௕௝𝑥௧ି௝
௃మ

௝ୀଵ
ቁ

, 

 
where x୲ = (𝑥௧ , 𝑥௧ିଵ, … ) is the history of predetermined and observable variables with parameters 𝜃௔ = (𝜃௔଴, 𝜃௔ଵ, … , 𝜃௔௃భ

) and 

𝜃௕ = (𝜃௕଴, 𝜃௕ଵ, … , 𝜃௔௃మ
).  

3 𝑎(𝛼, 𝜏) = 𝑎(𝛼, 𝜏௖) =
∫ ః൬ఛ೎ି

ഀ೥

ඥభషഀమ
൰ఝ(௭)ௗ௭

ഓ೎ඥభషഀమ

షಮ

ః൫ఛ೎√ଵିఈమ൯
,  𝑏(𝛼, 𝜏) = 𝑏(𝛼, 𝜏௖) = 1 −

∫ ః൬ఛ೎ି
ഀ೥

ඥభషഀమ
൰ఝ(௭)ௗ௭

ಮ

ഓ೎ඥభషഀమ

ଵିః൫ఛ೎√ଵିఈమ൯
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discussion on observational equivalence between the regime switching model with autoregressive latent 
factor and any given conventional Markov switching model. 

Now if I release the assumption (9) and leave only (17), that is, 
 

 |𝜌| ≤ 1, 𝛼 ∈ (−1,1], and 𝜏௦ = 0,  
 

then my model (6) becomes the same as the endogenous regime switching volatility model considered 
in Chang et al. (2017). This is an obvious consequence since my model is a generalized version of their 
model. Therefore, it is trivial to show that they are equivalent. 

 

3 Estimation 
 
My endogenous regime switching model with time-varying threshold (6) can be estimated by the 

maximum likelihood method. The log-likelihood function of the maximum likelihood estimation can be 
written as 

 
 

𝑙(𝑦ଵ, 𝑦ଶ, … , 𝑦௡) = log 𝑝(𝑦ଵ) + ෍ log 𝑝(𝑦௧|ℱ௧ିଵ)

௡

௧ୀଶ

 (18) 

 
where ℱ௧ = 𝜎(𝑥௧ , (𝑦௦)௦ஸ௧), which is the information given by 𝑥௧ , 𝑦ଵ, 𝑦ଶ, … , 𝑦௧  for each 𝑡 = 1, … , 𝑛. A 
vector of the unknown parameters 𝜃 ∈ 𝛩 is included in the log-likelihood function, but is omitted for 

the brevity. The vector of unknown parameters consists of state dependent volatility parameters ൫𝜎, 𝜎൯, 

the autoregressive coefficient 𝛼 of the latent factor, the endogeneity feedback effect coefficient 𝜌, and 
the parameters of the TVT function (𝜏௖ , 𝜏௦). 

 The predetermined and observable factor (𝑥௧) is obtained by the natural logarithm of lagged 
indicator variable (𝑋௧ିଵ) 

 
 𝑥௧ = log 𝑋௧ିଵ. (19) 

  

The maximum likelihood estimator 𝜃෠ெ௅ of 𝜃 can be obtained by 
 

 𝜃෠ெ௅ = argmax
ఏ ∈ ஀

𝑙(𝑦ଵ, … , 𝑦௡).   

 
To estimate my endogenous regime switching model using maximum likelihood method, I adopt the 
modified Markov switching filter (MMSF) developed by Chang et al. (2017). The process is similar to 
theirs except that my model has the TVT instead of the constant threshold. To begin with, I let 𝛷ఘ(𝑧) =

𝛷൫𝑧/ඥ1 − 𝜌ଶ൯ for |𝜌| < 1 and 𝑢௧ = 𝑦௧/𝜎௧ .  

When the Markov switching model allows the endogenous feedback effect (𝜌 ≠ 0) , the state 
process (𝑠௧) itself is no longer a Markov chain. Instead, the bivariate process (𝑠௧ , 𝑦௧) on {0,1} × ℝ is a 
1st order Markov process with probability density  
 

 𝑝(𝑠௧ , 𝑦௧|𝑠௧ିଵ, 𝑦௧ିଵ) = 𝑝(𝑦௧|𝑠௧ , 𝑦௧ିଵ)𝑝(𝑠௧|𝑠௧ିଵ, 𝑦௧ିଵ) (20) 
 
where  
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 𝑝(𝑦௧|𝑠௧ , 𝑦௧ିଵ) = ℕ(0, 𝜎௧
ଶ) (21) 

 
and 
 

 𝑝(𝑠௧|𝑠௧ିଵ, 𝑦௧ିଵ) = (1 − 𝑠௧)𝜔ఘ(𝑥௧ , 𝑠௧ିଵ, 𝑦௧ିଵ) + 𝑠௧(1 − 𝜔ఘ(𝑥௧ , 𝑠௧ିଵ, 𝑦௧ିଵ)) (22) 

 
with the transition probability 𝜔ఘ(𝑠௧ିଵ, 𝑦௧ିଵ) of state process (𝑠௧) to the low state conditional on the 

previous state and the past value of state dependent variable. For |𝛼| < 1, 
 

 𝜔ఘ(𝑥௧ , 𝑠௧ିଵ, 𝑦௧ିଵ) 

=

[(1 − 𝑠௧ିଵ) ∫ +𝑠௧ିଵ ∫ ]𝛷ఘ ൬𝜏௧ − 𝜌𝑢௧ିଵ −
𝛼𝑧

√1 − 𝛼ଶ
൰ 𝜑(𝑧)𝑑𝑧

ஶ

ఛିଵ

ఛ೟షభඥଵିఈమ

ିஶ

(1 − 𝑠௧ିଵ)𝛷൫𝜏௧ିଵ√1 − 𝛼ଶ൯ + 𝑠௧ିଵ[1 − 𝛷൫𝜏௧ିଵ√1 − 𝛼ଶ൯]
. 

(23) 

 
The modified Markov switching filter consists of the prediction and updating steps, which are 

iterated to compute the log-likelihood function in (18). To obtain the modified Markov switching filter, 
I have the conditional probability density of (𝑦௧) on past information on observed time series ℱ௧ିଵ by 
marginalizing the state process 𝑠௧ from (20) 
 

 𝑝(𝑦௧|ℱ௧ିଵ) = ෍ 𝑝(𝑠௧ , 𝑦௧|ℱ௧ିଵ)

௦೟

𝑝(𝑠௧|ℱ௧ିଵ) 

𝑝(𝑦௧|ℱ௧ିଵ) = ෍ 𝑝(𝑦௧|𝑠௧ , ℱ௧ିଵ)

௦೟

𝑝(𝑠௧|ℱ௧ିଵ). 
(24) 

 
While 𝑝(𝑦௧|𝑠௧ , ℱ௧ିଵ) = 𝑝(𝑦௧|𝑠௧ , 𝑦௧ିଵ) is the state dependent probability density of (𝑦௧) given by (21), 
𝑝(𝑠௧|ℱ௧ିଵ) should be computed to obtain the log-likelihood function in (18). This can be calculated in 
the prediction step by marginalizing the state process 𝑠௧ିଵ from the joint density of 𝑠௧ and 𝑠௧ିଵ given 
ℱ௧ିଵ. So, I have 
 

 𝑝(𝑠௧|ℱ௧ିଵ) = ෍ 𝑝(𝑠௧ , 𝑠௧ିଵ|ℱ௧ିଵ)

௦೟షభ

𝑝(𝑠௧|ℱ௧ିଵ  𝐴) 

𝑝(𝑦௧|ℱ௧ିଵ) = ෍ 𝑝(𝑠௧ିଵ|ℱ௧ିଵ)

௦೟షభ

𝑝(𝑠௧|𝑠௧ିଵ, ℱ௧ିଵ), 
(25) 

 
where 𝑝(𝑠௧|𝑠௧ିଵ, ℱ௧ିଵ) = 𝑝(𝑠௧|𝑠௧ିଵ, 𝑦௧ିଵ) is the transition probability given in (22). Therefore, I can 
calculate 𝑝(𝑠௧|ℱ௧ିଵ) from (25), once I obtain 𝑝(𝑠௧ିଵ|ℱ௧ିଵ) from the previous updating step. For the 
updating step, I write 
 

 𝑝(𝑠௧ିଵ|ℱ௧ିଵ) = 𝑝(𝑠௧ିଵ|𝑦௧ିଵ, ℱ௧ିଶ) 

𝑝(𝑠௧ିଵ|ℱ௧ିଵ) =
𝑝(𝑠௧ିଵ, 𝑦௧ିଵ|ℱ௧ିଶ)

𝑝(𝑦௧ିଵ|ℱ௧ିଶ)
 

𝑝(𝑠௧ିଵ|ℱ௧ିଵ) =
𝑝(𝑦௧ିଵ|𝑠௧ିଵ, ℱ௧ିଶ)𝑝(𝑠௧ିଵ|ℱ௧ିଶ)

𝑝(𝑦௧ିଵ|ℱ௧ିଶ)
, 

(26) 
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where 𝑝(𝑦௧ିଵ|𝑠௧ିଵ, ℱ௧ିଶ) is given by (21), and 𝑝(𝑠௧ିଵ|ℱ௧ିଶ) and 𝑝(𝑦௧ିଵ|ℱ௧ିଶ) can be obtained in the 
prediction step (25) given ℱ௧ିଶ.  

I can also extract the latent factor (𝑤௧) using the modified Markov switching filter. This can be 
easily done through the steps described in (25) and (26). For the prediction step, I write 

 
 𝑝(𝑤௧|ℱ௧ିଵ) = ෍ 𝑝(𝑤௧|𝑠௧ିଵ, ℱ௧ିଵ)𝑝(𝑠௧ିଵ|ℱ௧ିଵ)

௦೟షభ

. (27) 

 
Having already obtained 𝑝(𝑠௧ିଵ|ℱ௧ିଵ) from the updating step in (26), I may easily obtain 𝑝(𝑤௧|ℱ௧ିଵ) 
once I define the conditional probability density of latent factor (𝑤௧)  on previous state and past 
information on the observed time series. To derive this, I assume |𝛼| < 1 and |𝜌| < 1, then I have as 
follows: 
 

 𝑝(𝑤௧|𝑠௧ିଵ = 0, ℱ௧ିଵ) 

=

ః൮ඨ
భషഐమశഀమഐమ

భషഐమ ൬ఛ೟షభି
ഀ(ೢ೟షഐೠ೟షభ)

భషഐమశഀమഐమ ൰൲

ఃቀఛ೟షభඥଵିఈమቁ
× ℕ ቀ𝜌𝑢௧ିଵ,

ଵିఘమାఈమఘమ

ଵିఘమ ቁ,  
(28) 

 
 𝑝(𝑤௧|𝑠௧ିଵ = 1, ℱ௧ିଵ) 

=

ଵିః൮ඨ
భషഐమశഀమഐమ

భషഐమ ൬ఛ೟షభି
ഀ(ೢ೟షഐೠ೟షభ)

భషഐమశഀమഐమ ൰൲

ଵିఃቀఛ೟షభඥଵିఈమቁ
× ℕ ቀ𝜌𝑢௧ିଵ,

ଵିఘమାఈమఘమ

ଵିఘమ ቁ.  
(29) 

 
Now I may obtain  
 
 

𝑝(𝑤௧ିଵ|ℱ௧ିଵ) =
𝑝(𝑦௧ିଵ|𝑤௧ିଵ, ℱ௧ିଶ)𝑝(𝑤௧ିଵ|ℱ௧ିଶ)

𝑝(𝑦௧ିଵ|ℱ௧ିଶ)
, (30) 

 
in the updating step. Once this is done, the inferred factor (𝑤௧ෞ) is given as 

 
 

𝑤௧ෞ = 𝔼(𝑤௧|ℱ௧) = න 𝑤௧𝑝(𝑤௧|ℱ௧)𝑑𝑤௧ 
(31) 

 
Furthermore, I may easily obtain the inferred states (𝑠௧ෝ) 

 
 𝑠௧ෝ = 1{𝑤௧ෞ ≥ 𝜏௧ෝ } = 1{𝑤௧ෞ ≥ 𝜏௖ෝ − 𝜏௦ෝ 𝑥௧}. (32) 

 
for all 𝑡 = 1,2, …. Therefore, I may extract not only the inferred factor but also the inferred states, once 
the maximum likelihood estimates of 𝑝(𝑤௧|ℱ௧), 1 ≤ 𝑡 ≤ 𝑛, are obtained.  

 

4 Empirical Illustrations 
 
To empirically illustrate my model, the US excess stock market returns are analyzed using the 

regime switching volatility model. To define the excess returns, I used the monthly series of value 
weighted returns including dividends on the NYSE/AMEX index as stock market returns. For risk free  
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 rate of return, monthly risk-free rates are imputed from the daily observations of three months T-
bill rates. Both NYSE/AMEX index returns and T-bill rates are obtained from the Center for Research 
in Security Prices (CRSP) for the period of January 1990-December 2015.5 By subtracting the risk free 
returns from the NYSE/AMEX index returns, I obtained the demeaned excess market returns (𝑦௧) to fit 
the volatility model in (6). For the candidates of the indicator variable (𝑋௧), I used the Chicago Board 
Options Exchange (CBOE) Volatility Index (VIX) and the realized volatility (RV)6 of daily returns on 
NYSE/AMEX index from CRSP. Thus, the predetermined and observable factor (𝑥௧) is derived as in 
(19). Since the VIX is only available from January 1990, I analyze my model with a sample period 
January 1990-December 2015. Both the VIX and RV are in monthly format as well. 

To estimate the volatility switching model by the maximum likelihood method using the MMSF, 
the numerical optimization method including the generally used BFGS (Broyden-Fletcher-Goldfarb-
Shanno) algorithm is implemented. The estimation results are reported in Table 1.7 To compare my 

                                                 
4 In fact, the endogenous regime switching volatility model (Chang et al. 2017) also has the time-varying transition probability as 
the transition probabilities vary over time. However, as they do not depend upon the history predetermined and observable factors, 
but depend upon the lagged value of the excess market return 𝑦௧ିଵ, the ERS is distinguished from the conventional Markov-
switching models with TVTP.  
5 To compute monthly excess return, I followed the steps provided by Chang et al. (2017). First, I obtain monthly risk-free rate of 
return by continuously compounding daily risk free rate between the quotation dates. The range of the number of days between 
quotation dates is from 28 to 33.  Monthly series of annualized yield to maturity (TMYTM), constructed from nominal price of 
three-month treasury bill, are provided by CRSP. Hence, by the conversion formula provided by CRSP, 𝑇𝑀𝑌𝐿𝐷௧ =

ଵ

ଷ଺ହ

ଵ

ଵ଴଴
𝑇𝑀𝑌𝑇𝑀௧ , I can obtain the yield to maturity at monthly frequency by first converting the annual yield to maturity to daily 

(TMYLD). To obtain the monthly yield, this daily yield is then continuously compounded as exp(𝑇𝑀𝑌𝐿𝐷௧ିଵ × 𝑁௧) − 1, where 
𝑁௧ is the number of days between the quote date for the current month and the quote date, 𝑀𝐶𝐴𝐿𝐷𝑇௧ିଵ for the previous month. 
Lastly, monthly excess market returns (𝑦௧) are obtained by subtracting the above monthly risk-free rate from the market return. 
6 The realized volatility refers to the annualized monthly volatility calculated as the square root of sum of squared daily returns 
of NYSE/AMEX index. 
7 The standard errors are presented in parenthesis. 

Table 1: Estimation Results 

 Model  ERS4  TVTP  TVT  

Time-Varying Threshold (𝜏௧)  Ignored  Allowed  Allowed  

Endogeneity (𝜌)  Allowed  Ignored  Allowed  

Observable Factor (𝑥௧)  −  VIX RV  VIX RV  
 𝜎  0.028  0.024 0.025  0.024 0.025  
    (0.003) 

 
(0.002) (0.002) 

 
(0.002) (0.002)  

 𝜎  0.059  0.052 0.055  0.053 0.055  
    (0.007) 

 
(0.004) (0.005) 

 
(0.003) (0.008)  

 𝛼  0.950  0.900 0.030  0.861 0.700  
    (0.052) 

 
(0.352) (1.115) 

 
(0.136) (0.139)  

 𝜏௖   1.531  70.75 -16.53  80.49 -19.66  
    (0.961) 

 
(39.80) (5.892) 

 
(31.57 (3.580)  

 𝜏௦     24.09 5.10  27.68 6.03  
     

 
(14.22) (1.753) 

 
(10.76) (1.077)  

 𝜌  -0.999     -0.999 -0.999  
    (0.009) 

 
  

 
(0.008) (0.000)  

 log-likelihood 585.76  594.08 588.21  596.28 591.69  
 p-value (LR test for 𝜏௦=0)      0.00 0.00  
 p-value (LR test for 𝜌=0)       0.04 0.01  
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model (6) with the conventional Markov switching model with time-varying transition probabilities 
(TVTP) and the endogenous regime switching model (ERS), the estimates from these models are also 
presented in Table 1. For the models with observable factor (𝑥௧), results using the VIX and RV are given, 
respectively. 

The reason why these variables are chosen as an observable factor is clearly shown in Figure 1. I 
compare the sample paths of the extracted latent factor from the endogenous regime switching volatility 
model which is presented in Change et al. (2017) and that of VIX and RV. The latent factor stayed 
relatively high during 1998-2004 and 2008-2012 periods showing that the volatility was high during 
these periods. The VIX and RV were also relatively high during these periods and seem to move closely 
together with the extracted latent factor. This is an evidence that these variables can be utilized to 
partially explain the state process (𝑠௧) which is assumed to be fully unobservable to econometrician in 
previous models. 

An analysis with the simple ordinary least square (OLS) linear regression model using the latent 
factor and one of indicators as dependent and independent variables, respectively, shows that the 
coefficient of determination (𝑅ଶ) is 0.54 and 0.48 for each VIX and RV as dependent variable. Since 
these factors play a role as a measure of market expectations of volatility, or a gauge for fear factor, it is 
reasonable to incorporate them into my model (6) to explain volatility regimes.  

The estimates for the slope of the observable factor 𝜏௦ are quite considerable both in TVTP and 
TVT models using either of indicators as an observable factor (𝑥௧), 24.09 (14.22) and 5.1 (1.75), and 
27.68 (10.76) and 6.03 (1.08) for VIX and RV models, respectively. This provides a significant evidence 

Notes: Figure 1 presents the sample path of the latent factor extracted from the endogenous volatility switching model (red dashed 
line) presented in Change et al. (2017) along with that of CBOE VIX (solid blue line) and RV (solid green line) for the period of 
1990-2015, respectively, on the left and right vertical axis. 

Figure 1: Extracted Latent Factor from ERS (Chang et al. 2017), VIX, and RV 
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that allowing for the presence of the observability of state process (𝑠௧) with observable factor (𝑥௧) is 
crucial in regime switching volatility models when explaining the state process (𝑠௧). In addition, the null  
hypothesis of zero constant threshold (𝜏௖ = 0) is rejected at 1% significance level in my TVT model, 
whereas the same null cannot be rejected in ERS model. This implies that the state process (𝑠௧) in the 
ERS model may not be accurately estimated as they were solely determined by imprecise time-invariant 
threshold 𝜏௖. 

The estimates of the endogeneity feedback effect 𝜌 in both the ERS and TVT are very close to 
minus unity, which implies that there exists the leverage effect between model innovation (𝑢௧) and 
innovation of latent factor (𝑣௧ାଵ). In addition, the standard errors of the estimates of the endogenous 
feedback effect 𝜌 in my TVT models are smaller than that of ERS. This shows that the endogeneity 
feedback effect is more precisely realized when considering the state observability rather than ignoring 
it. 

Furthermore, to test for the presence of observability of the state process with predetermined and 
observable factor 𝜏௦ and endogeneity feedback effect 𝜌, the likelihood ratio test was conducted, which 
is given by 

 
 2(κ൫𝜃෠൯ − κ(𝜃෨)), (33) 

 
where κ represents the log-likelihood function and the parameter 𝜃  with tilde and hat signify their 
maximum likelihood estimates with and without either one of the restrictions, no observability of state 

Notes: Top panel plots the extracted latent factor (blue solid line), time-varying threshold (blue dashed line), and inferred high 
volatility states (shaded blue area) obtained from the TVT model, while the bottom panel plots those from ERS model with 
red line and shaded area. 

Figure 2: Extracted Latent Factor and Threshold 
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process with observable factor 𝜏௦ = 0, or no endogeneity feedback effect 𝜌 = 0. The likelihood ratio 
test has a chi-square distribution with one degree of freedom (𝜒ଵ

ଶ). The p-values from each test are also 
shown in Table 1. For the presence of the observability of the state process, the null of no observability 
between ERS and TVT model is rejected at 1% significance level in both VIX and RV modes. In case 
of the presence of the endogeneity feedback effect, the null of no endogeneity between the TVTP and 
TVT model is rejected at 5% significance level in both VIX and RV models. This result suggests an 
important result as my TVT model incorporates both effects, the observability and endogeneity, to 
explain the regime switching volatility. 

The effect of the observability of state process with observable factor can be clearly seen from 
Figure 2, which shows the sample paths of the extracted latent factor (𝑤௧ෞ), the estimated threshold (𝜏௧ෝ ), 
and inferred states (𝑠௧ෝ  ) from the TVT (VIX) and ERS models. The estimated threshold of the state 
process (𝑠௧)  from the ERS is constant over the entire sample period, whereas the corresponding 
threshold from the TVT varies much over time, and depend upon the predetermined and observable 
factor (𝑥௧). This results in the difference between the number of inferred high states (𝑠௧ෝ = 1) from each 
model, 70 (22%) and 126 (40%) from the ERS and TVT out of 312 months, respectively. 

The observability of the state process in regime switching does not simply increase the number of 
the inferred high states, but also enables the model to capture historically high volatility regimes more 
precisely than when ignored. The shaded areas in Figure 3 and 4 indicate some of the examples of high 

Figure 3: Bond Market Massacre in 1994 and 2013 

Notes: 10-year treasury note yield rates in 1994 (top right) and 2013 (bottom left) are presented on left hand side column of the 
panel of Figure 3. On the right-hand side of the panel are the sample paths of extracted latent factor, estimated threshold, and 
NYSE/AMEX indices presented. The blue solid and dashed line signify the extracted latent factor and time-varying threshold 
obtained from the TVT, whereas the red solid and dashed line represent those from the ERS. The shaded blue areas refer to the 
inferred high volatility states from the TVT. 
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volatility regimes which are inferred to be high volatility states (𝑠௧ෝ = 1) not by the ERS but by the TVT 
(VIX).  

The U.S. 10-year treasury note yield rates are presented on the left-hand side column of Figure 3, 
and the NYSE/AMEX indices are on the right-hand side along with the extracted latent factor and 
estimated threshold. The shaded blue area indicates the period which is inferred to be high volatility state 
only from the TVT model. The top two panels show what happened in March and April 1994 in U.S. 
stock market as the interest rates spiked. During that period, the interest rates experienced a 31% increase 
in 98 calendar days while the NYSE/AMEX index dropped more than 4%. The role of the time-varying 
threshold is clearly seen from top-right of the Figure 3. Whereas the extracted latent factor from the ERS 
(solid red line) stays below the constant threshold (dashed red line) during the period, that from the TVT 
(solid blue line) exceeds the time-varying threshold (dashed blue line) as it varies over time with the 
VIX. That is, the observability of the state process by the VIX pushes the threshold downward so that 
the state can be transitioned to be high. 

A similar situation happened in June 2013 is described in bottom panels, during which the interest 
rates have increased about 30% in just 39 calendar days. The NYSE/AMEX index declined about 2.7% 
in one day as the interest rates spiked more than 5% at the same time. Again, the state during this period 
is inferred to be high from the TVT while it is not from the ERS.  

The inferred high volatility states from my TVT model also captures the Chinese stock market 
bubble happened in 2007, which is presented in Figure 4. It was the global stock market plunge of 
February 27, and November 2007. After the rumors of government economic authorities introducing 
varying policies that would restrict foreign investment, the SSEC Index tumbled 9%, the largest drop in 
10 years. The U.S. stock market experienced a rapid drop during the same period, the NYSE/AMEX 
index dropping down more than 3% in one day. This period seems to be unarguably high volatility 
regime, in which the inferred state from the ERS in Figure 4, however, is still zero referring low volatility 
state, whereas that from the TVT correctly indicate the high volatility states as the estimated time-
varying threshold falls as VIX increases.  
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Figure 4: Chinese Stock Market Bubble 
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Notes: The red solid line in the left panel signifies the Shanghai Stock Exchange Composite (SSEC) Index in 2007 during which 
the Chinese stock market bubble occurred. On the right-hand side of the panel, the extracted latent factor, estimated threshold, and 
NYSE/AMEX index are presented. The blue solid and dashed lines signify the extracted latent factor and estimated time-varying 
threshold from the TVT, respectively, whereas the red solid and dashed lines represent the extracted latent factor and estimated 
constant threshold from the ERS. The shaded blue areas in both panels are the inferred high volatility states from the TVT.  
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In addition to historical events that caused high volatility regimes, the overall performance of 
inference of the high volatility states by each model is presented in Figure 5 and Table 2. By comparing  
the inferred high volatility states (𝑠௧ෝ = 1)  from ERS and TVT(VIX) with periods in which the 
annualized monthly realized volatility of NYSE/AMEX index was higher than median from 1990-2015, 
I can clearly measure the true positive rates. In Table 2, the results are presented from above 5 percentiles 
to above median for inferred high states from ERS and TVT. What can be clearly seen from the results 
is that the accuracy rate of TVT is higher than that of ERS regardless of the percentile. Moreover, for 
quite high volatility periods such as above 20 percentiles, the ERS only captures 73% of them, whereas 
the TVT contain all of them. This can be an obvious result since the TVT infers more high volatility 
states than the ERS, and the TVT model utilizes the VIX as an observable factor (𝑥௧) which moves very 
close to the RV. Nevertheless, this result shows the importance of incorporating the observable factor 
when modelling the regime switching models.  
 

Table 2: Accuracy of Inferred States 
Percentile  Above 5%  Above 10%  Above 20% 

Jan.1990~Dec.2015 (312 Obs.)  Obs. 𝑠௧
ாோௌ 𝑠௧

்௏்  Obs. 𝑠௧
ாோௌ 𝑠௧

்௏்  Obs. 𝑠௧
ாோௌ 𝑠௧

்௏் 

Number of High States  16 70 126  31 70 126  62 70 126 

% of High States  5% 23% 41%  10% 23% 41%  20% 23% 41% 

True Positive Rate  - 94% 100%  - 84% 100%  - 73% 100% 
             

Percentile  Above 30%  Above 40%  Above 50% 

Jan.1990~Dec.2015 (312 Obs.)  Obs. 𝑠௧
ாோௌ 𝑠௧

்௏்  Obs. 𝑠௧
ாோௌ 𝑠௧

்௏்  Obs. 𝑠௧
ாோௌ 𝑠௧

்௏் 

Number of High States  93 70 126  124 70 126  155 70 126 

% of High States  30% 23% 41%  40% 23% 41%  50% 23% 41% 

True Positive Rate  - 56% 98%  - 47% 89%  - 41% 79% 

 
Notes: Table 2 present the accuracy of inferred states from the endogenous regime switching model with constant threshold (ERS) 
and with time-varying threshold (TVT). True high states are assumed to be determined by the realized volatility above arbitrary 
percentiles. The number of high states refers to the number of high volatility regimes from each model (ERS, TVT) and underlying 
assumption. The percentage of high states indicates the rate of high volatility regimes out of 312 months. The true positive rate 
refers to the rate of inferred high states that match with the true high regimes derived from the periods when the realized volatility 
was above a certain percentile. 

 
 

Figure 5: Realized Volatility and Volatile Period 
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5  Simulations  
 
In this section, I conduct a broad set of simulations to evaluate the performance of my model and 

estimation procedure. In what follows I will present my simulation models and results in two parts. In 
part one, I compare the endogenous regime switching with time-varying threshold (TVT) with the 
endogenous regime switching volatility model with constant threshold (ERS). The aim of this part is to 
see the effect of the state observability in regime switching. In part two, I compare the TVT with 
conventional Markov switching volatility model with time-varying transition probabilities (TVTP). In 
this case, the effect of endogenous feedback channel is expected to be observed. 

 

5.1 Simulation Models 

Notes: On the left panel, the bias in ML estimates of 𝜎ො and  𝜎෡ of 𝜎 and 𝜎 from the volatility regime switching models from 

part one is presented respectively in the upper and lower parts, for three persistency level of latent factor 𝛼 = 0.8, 0.85, 0.9, in 
each of three columns. Each of the six individual graphs plots the bias from TVT models (red solid line) and ERS models (blue 
dashed line) across different levels of strength of state observability parameter 𝜏௦ on the horizontal axis. Presented in the same 
manner on the right panel are the bias in the ML estimates for part two, for three persistency level of latent factor 𝛼 =

0.8, 0.83, 0.87. Each of the six individual graphs plots the bias from TVT models (red solid line) and TVTP models (green dashed 
line) across different levels of endogeneity parameter 𝜌 on the horizontal axis. 
 

0.002

0.003

0.004

0.005

-0.80 -0.84 -0.88 -0.92 -0.96 -0.99
0.002

0.003

0.004

0.005

-0.80 -0.84 -0.88 -0.92 -0.96 -0.99
0.002

0.003

0.004

0.005

-0.80 -0.84 -0.88 -0.92 -0.96 -0.99

0.000

0.001

0.002

0.003

-0.80 -0.84 -0.88 -0.92 -0.96 -0.99
0.000

0.001

0.002

0.003

-0.80 -0.84 -0.88 -0.92 -0.96 -0.99
0.000

0.001

0.002

0.003

-0.80 -0.84 -0.88 -0.92 -0.96 -0.99

𝜎෡: 𝛼 = 0.83 

𝜎ො: 𝛼 = 0.83

𝜌 

𝜎෡: 𝛼 = 0.8 

𝜎ො: 𝛼 = 0.8 

𝜌 

𝜎෡: 𝛼 = 0.87 

𝜎ො: 𝛼 = 0.87 

𝜌 

𝜎෡: 𝛼 = 0.85 

𝜎ො: 𝛼 = 0.85 

𝜏௦ 

𝜎෡: 𝛼 = 0.8 

𝜎ො: 𝛼 = 0.8 

𝜏௦

𝜎෡: 𝛼 = 0.9 

𝜎ො: 𝛼 = 0.9 

𝜏௦

0.000

0.001

0.002

0.7 0.8 0.9 1 1.1 1.2

0.002

0.003

0.004

0.005

0.7 0.8 0.9 1 1.1 1.2

0.000

0.001

0.002

0.7 0.8 0.9 1 1.1 1.2

0.002

0.003

0.004

0.005

0.7 0.8 0.9 1 1.1 1.2

0.000

0.001

0.002

0.7 0.8 0.9 1 1.1 1.2

0.002

0.003

0.004

0.005

0.7 0.8 0.9 1 1.1 1.2

Figure 7: Efficiency Loss 
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Figure 6: Bias 
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In my simulations, my volatility model is defined as 
 

 𝑦௧ = 𝜎(𝑠௧)𝑢௧,     𝜎(𝑠௧) = 𝜎(1 − 𝑠௧) + 𝜎ത𝑠௧. (34) 
 
 I set the parameters 𝜎 and 𝜎ത at 𝜎 = 0.025 and 𝜎ത = 0.055, which are approximately the same as my 

estimates for the endogenous regime switching volatility model with time-varying threshold(TVT) for 
the endogenous regime switching model with time-varying threshold(TVT) for the stock returns I 
analyze in the previous section. In addition, I assume that the predetermined and observable factor is 
generated as autoregressive of order one 
 

𝑥௧ = 𝑐 + 𝛾𝑥௧ିଵ + 𝜀௧ 
 
with i.i.d. standard normal innovation (𝜀௧) . I set the parameters at 𝑐 = 0  and 𝛾 = 0.85 , which are 
roughly the same as the estimates from AR(1) model for monthly VIX. For both part one and two, the 
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Notes: Figure 8 presents the power function of the likelihood ratio test computed from the volatility models for three different 
levels of persistency in the latent factor measured by its AR coefficient 𝛼 = 0.8, 0.85, 0.9. 
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Figure 9: Accuracy and True Positive Rate of Inferred States 

Figure 9: Power Function of Likelihood Ratio Test for State Observability 
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state process (𝑠௧) and the model innovation (𝑢௧) are generated as specified in (1), (2) and (7) for the 
samples of size 500, and iterated 700 times. 

For part one, the strength of the state observability 𝜏௦ is set to be positive, as in most of my empirical 
results reported in the previous section. I allow 𝜏௦ to vary from 0 to 1.2 in increment of 0.1 to more 
effectively investigate the effect of state observability on the estimation of my model parameters. The 
correlation coefficient 𝜌 between the current model innovation 𝑢௧  and the next period innovation 𝑣௧ାଵ 
of the latent autoregressive factor is fixed as -0.99, which is also the same as empirical results. On the 
other hand, I consider three pairs of the autoregressive coefficient 𝛼 of the latent factor and the constant 
term 𝜏௖ of time-varying threshold given by (𝛼, 𝜏௖) = (0.8,0.7), (0.85,0.82), (0.9,0.94). In part two, the 
strength of the state observability 𝜏௦ is fixed as 1. Instead, to more thoroughly study the impact of the 
endogeneity feedback effect, I allow the correlation coefficient 𝜌 to vary from -0.8 to -0.99 in increment 
of 0.04. In this part, I also consider three pairs of 𝛼 and 𝜏௖ given by (𝛼, 𝜏௖) = (0.8,0.7), (0.83,0.75),

(0.87,0.91). 
If 𝜌 = 0 and 𝜏௦ = 0, my model reduces to conventional Markov switching model with the fixed 

transition probabilities(FTP), as discussed earlier. Then, as proven by Chang et al. (2017), there exists a 
one-to-one correspondence between the (𝛼, 𝜏௖) pair and the pair (𝑎, 𝑏) of transition probabilities of state 
process, where 𝑎 and 𝑏 denote respectively the transition probabilities from the low state to the low state 
and from the high state to the high state. All the pairs of (𝛼, 𝜏௖) considered in above have the same 
equilibrium distribution given by (𝑎∗, 𝑏∗) = (2/3, 1/3), which also becomes the common invariant 
distribution.8  
 
5.2 Simulation Results 

 
First, I examine the bias from part one and two. In part one, the estimators of parameters in my 

models are expected to be biased if the presence of the state observability in the time-varying threshold 
is ignored. To check the amount of bias caused from ignoring the state observability in TVT, I set 𝜏௦ =

0 for the endogenous regime switching model with constant threshold (ERS). In this case, my TVT 
model reduces to the endogenous regime switching model with constant threshold. In part two, if the 
presence of the endogeneity feedback effect in regime switching is neglected, the estimators of 
parameters are also likely to be biased. Once again, to see the magnitude of bias resulting from the 
ignored endogeneity feedback effect, I let 𝜌 = 0. This makes my TVT model become the conventional 
Markov switching model with time-varying transition probabilities(TVTP). 

My simulation results are summarized in Figure 6Figure 7: Efficiency Loss 
. On the left panel of Figure 6are the bias in the maximum likelihood estimates of 𝜎ො and  𝜎෡  of 𝜎 and 𝜎 
from part one, whereas the estimates from part two are presented on the right panel of Figure 6Figure 

7: Efficiency Loss 
. For the upper and the lower part of the panel for both parts present the bias in the estimates of 𝜎ො 

and  𝜎෡ for three different levels of 𝛼 in each column in the panel. For the part one (the left panel), each 
graph shows the bias of the estimates from the TVT (red solid line) models and the ERS (blue dashed 
line) models across different levels of the state observability 𝜏௦ on the horizontal axis. Likewise, the 
right panel presents the bias from the TVT (red solid line) models and the TVTP (green dashed line) 
models in part two across different levels of the endogeneity feedback effect 𝜌. 

Both the state observability and the endogeneity feedback effect in regime switching, even if one 
of them is ignored, may cause a significant amount of bias in the estimates of model parameters. First, 

                                                 
8 Note that the invariant distribution of the binary state Markov transition given by a 2×2 transition matrix 𝑃 is defied by 𝜋∗ =

(𝑎∗ , 𝑏∗) such that 𝜋∗ = 𝜋∗𝑃. 
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the gap of the magnitude of bias between the TVT and the ERS in part one grows larger as the strength 
of the state observability increases in part one. This implies that there are more chances to improve the 
bias problem in the estimates of the model parameters when there exists a strong state observability. On 
average, if one considers the presence of the state observability in the model to estimate the parameters, 

then the magnitude of bias in 𝜎ො and  𝜎෡ can improve by 76% and 79% compared to ignoring it. On the 

other hand, the amount of bias from the TVT and the TVTP models in part two seems to be almost 
invariant across different values of 𝜌. Even though the bias does not heavily depend on the level of 
endogeneity, the amount of bias caused from ignorance of endogeneity feedback effect is substantial. 

Therefore, if one considers it rather than neglects it, then the magnitude of bias in 𝜎ො and  𝜎෡ can improve 

by 73% and 88% on average. 
The presence of state observability and endogeneity feedback effect can lead to a severe amount of 

bias in parameter estimates if they are not properly adopted in regime switching models. In other words, 
if they are accounted for appropriately as in my TVT models, one can obtain a chance to improve the 
precision of parameter estimates. Indeed, in the TVT models, the state process (𝑠௧) is determined not by 
either the autoregressive latent factor (𝑤௧) or the predetermined and observable factor (𝑥௧) but by both 
of them, and thus I have an additional channel for the information in (𝑦௧) to be reflected in the likelihood 
function compared to ERS and TVTP models which ignores the state observability (𝜏௦ = 0) and the 
endogeneity feedback effect (𝜌 = 0) , respectively. The simulation results in Figure 7 presents the 
efficiency loss of parameter estimates from ignoring one of the channels of information to determine the 
state process. The standard errors of maximum likelihood estimates of 𝜎 and 𝜎 are shown in the left and 

right panel of Figure 7 for part one and two, respectively, in the same manner as in Figure 6. 
Figure 7 presents the efficiency loss from neglecting the presence of state observability or 

endogeneity feedback effect in the analysis of regime switching models. Although there is a little 
difference in level of the amount of efficiency loss, it is equally substantial for part one and two. In other 
words, I can improve the efficiency of parameter estimates by correctly accounting for 𝜏௦  or 𝜌. For 

example, if I set 𝛼 = 0.8, the standard deviations of the estimators 𝜎ො  and  𝜎෡  from my TVT models 

improve by 16.6% and 9.8%, respectively, if compared with the ERS models with 𝜏௦ = 0. On average, 
the standard deviations can improve by 11.8% and 7.3% for part one, and 18.2% and 14.8% for part two 
by incorporating 𝜏௦ or 𝜌 properly in regime switching models. 

Next, I consider testing for the presence of state observability in regime switching models by the 
likelihood ratio test shown above in (33). In this case, the parameter 𝜃 with tilde and hat refers to their 
maximum likelihood estimates with (ERS) and without (TVT) the no state observability restriction, 𝜏௦ =

0, respectively. The power functions of the likelihood ratio test obtained from the simulated volatility 
switching models for three different levels of autoregressive coefficient of latent factor 𝛼 =

0.8, 0.85, 0.9 are shown in Figure 8. The power of the test gradually increases as the strength of state 
observability 𝜏௦ grows for all levels of 𝛼. For instance, 𝛼 = 0.85, which is similar as in my empirical 
results, the power reaches 90% when the strength of state observability is above 0.7. As the persistency 
of the autoregressive latent factor gets larger, the overall power of the test grows weaker. This is because 
the autoregressive latent factor becomes more persistent and nonstationary as 𝛼 gets close to 1. But the 
power of the test is powerful enough to reach 90% if there exists a certain amount of state observability 
which is about 1. 

Finally, to see whether my TVT models estimate the state process better than ERS models, I 
compute the accuracy and the true positive rate of inferred states from simulation part one and the results 
are shown in Figure 9. To measure these rates, I constructed a confusion matrix for volatility regimes. 
True conditions are obtained from simulation models as in (1), referring each high (𝑠௧ = 1) and low 
(𝑠௧ = 0) volatility regime as positive and negative condition. Predicted conditions are determined in the 
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same manner except that the inferred high  (𝑠௧ෝ = 1) and low (𝑠௧ෝ = 0) states from the TVT and ERS 
models are used. As shown in (32), I can obtain the inferred states from regime switching models.  

On the right panel of Figure 9 are the true positive rates from simulation part one for three different 
levels of autoregressive coefficient of latent factor 𝛼 = 0.8, 0.85, 0.9. While the true positive rates from 
the TVT models (solid lines) increase as the strength of state observability grows, those from the ERS 
(dashed lines) decrease. This implies that if I ignore the presence of state observability, i.e. with 
restriction 𝜏௦ = 0, it has a deleterious impact on the precision of estimated high volatility regimes. 
Likewise, the accuracy of inference of volatility states is shown on the left panel of Figure 9. In this case, 
only the accuracy of ERS models decrease while that of TVT models is stable as the strength of state 
observability varies. This result implies the same result as in case of true positive rates except that the 
accuracy measures the overall performance of inferred states from each model. 

 

6 Conclusion 
 
This paper introduces a regime switching model whose state process is determine by two important 

factors: the autoregressive latent factor and the predetermined and observable factor. My approach has 
numerous distinct advantages over the conventional Markov switching model and endogenous regime 
switching model with constant threshold. Above all, I may allow for two channels of information to 
affect the change in volatility regime. First, the latent factor creates a link between the observed time 
series and latent part of the state process. This makes the transition of the state process be endogenously 
determined, and therefore the regime switching becomes endogenous. Second, the predetermined and 
observable factor affects the value of threshold, making the threshold vary over time. This is acceptable 
assumption as it is more reasonable and realistic to believe that the level of threshold does not remain 
constant over time. These two links are referred as the endogeneity feedback effect and the state 
observability. In my volatility model, the endogeneity feedback effect implies the presence of leverage 
effect, and the state observability enables the precise inference of state process. Finally, my regime 
switching volatility model becomes observationally equivalent to the conventional Markov switching 
model with time-varying transition probabilities or the endogenous regime switching model with 
constant threshold if there is no endogeneity or no state observability. 

The empirical evidence for the presence of both the endogeneity feedback effect and the state 
observability in volatility regime switching seems to be clear and strong. Especially, my empirical results 
show that ignoring the presence of the state observability can cause a severe loss in precision of state 
inference in endogenous regime switching models. This is because the predetermined and observable 
factor creates a crucial additional link to partially observe the state process to econometrician, which 
would otherwise be fully unobservable. My simulations clearly show that the presence of endogeneity 
and state observability in regime switching is so convincing and unmistakable that neglecting even one 
of them can cause not only a crucial amount of bias, but also a substantial information loss. If I do not 
consider the time-varying threshold by incorporating the observable factor, then the state observability 
is ignored, and therefore, a loss in the accuracy and true positive rate of inferred states occurs. Therefore, 
the additional information that enters through the time-varying threshold is very crucial in regime 
switching since the state process which plays important roles in the model is otherwise latent to 
econometrician and cannot be accurately inferred out if the presence of the state observability is ignored. 
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