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Abstract

For linear panel data models with endogenous selectivity, the popular pooled ordinary least squares

with bias correction and its minimum distance variant can suffer from severe efficiency loss in the pres-

ence of large random effects. To resolve this problem, we algebraically derive an efficient estimator based

on the moment restrictions used by the pooled ordinary least squares and make the estimator feasible un-

der the conventional error-component assumption. The efficient estimation involves heavy computation,

and we propose a convenient suboptimal estimator based on a novel common weighting transformation.

We also consider partial and full aggregation of information in pairwise differences, where unobserved

fixed effects are completely eliminated. Efficient estimation based on pairwise differences is discussed,

and a computationally affordable method of estimating nuisance higher-order moments is proposed. An-

alytic standard errors are provided for all considered estimators. Simulations suggest that a convenient

suboptimal estimator and the fully-aggregated pairwise-differencing estimator exhibit remarkable perfor-

mances. The methods are applied to estimating earnings equation for married women using the Korean

Labor and Income Panel Study data.
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1 Introduction

Bias due to sample selection has been an important research consideration in various fields of economic

applications. To take some recent examples, Machado (2017) deals with selection bias in gender wage gap

estimation by examining women who are always employed; Balleer, Gehrke, Lechthaler and Merkl (2016)

estimate models with selectivity in analyzing the role of publicly subsidized working time reduction as a

fiscal stabilizer; Vossmeyer (2016) studies the effectiveness of lender of last resort policies in a framework

for estimating multivariate treatment effect models in the presence of sample selection; Chen and Flores

(2015) address sample selection and noncompliance in assessing the wage effects of a job training program

for disadvantaged youth in the United States; Rupert and Zanella (2015) consider sample selection when they

investigate life cycle profiles of wage rates and hours of market work; Alva, Gray, Mihaylova and Clarke

(2014) estimate sample selection models to account for possibly endogenous nonresponses in an analysis of

the effect of diabetes complications on health-related quality of life; Jiménez, Ongena, Peydró and Saurina

(2014) use a panel-data version of the sample-selection model to identify the effects of monetary policy

on credit risk-taking; Revelli (2013) considers endogenous selection in a study on the local tax mix deter-

mination. Selectivity is also an area of ongoing theoretical research. Hoonhout and Ridder (2017) examine

attrition in panels with refreshment samples by proposing the sequentially additive nonignorable attrition

model; Semykina and Wooldridge (2017) consider estimation of binary-response panel data models with se-

lection; Malikov, Kumbhakar and Sun (2016) extend Kyriazidou’s (1997) framework to varying coefficient

panel data models; Jochmans (2015) considers sample selection in models with multiplicative errors; Sasaki

(2015) studies nonparametric identification for dynamic panel data models with selection.

The present paper revisits the selectivity issue in linear panel data models with an emphasis on efficiency.

In particular, we address in depth the issues introduced by the presence of unobservable individual effects.

The extant approaches can be classified into two categories with regard to handling the fixed-effects. One

approach, developed by Wooldridge (1995), deals with the fixed effects by using the convenient correlated

random effects (CRE) framework originating from Chamberlain (1980) and Mundlak (1978). The other,

taken by Kyriazidou (1997) and Rochina-Barrachina (1999), accounts for the unobservable fixed effects by

comparing two periods in pairs. Malikov et al. (2016) extend Kyriazidou’s (1997) methodology to varying

coefficient panel data models. The present paper contributes to the literature on both of the approaches.

In Wooldridge’s CRE approach, fixed effects are decomposed into the component correlated with the

exogenous regressors and the remainder term assumed to be independent of the regressors. Unlike the case

2



with balanced panel data, however, the unobservable individual effects are not fully controlled for by the

Chamberlain-Mundlak device even for linear models if the sample is partially observed due to sample se-

lection. As a result, the pooled ordinary least squares (POLS) and the minimum distance estimation (MDE)

of the equation augmented with bias-correction terms may suffer from substantial efficiency loss, especially

when the variance of the individual effects are large (see Examples 1 and 2 later). We address this issue

by deriving an efficient estimator based on the moment restrictions used by Wooldridge’s POLS. The effi-

cient estimation is computational heavy, however, and we propose a convenient suboptimal estimator as an

alternative.

The second approach to accounting for fixed effects, which is called the pairwise differencing (PD)

method, is bias-correction applied to differences, simply put. Although PD completely eliminates the fixed

effects, it involves estimating nuisance covariances of selection equation errors for implementation, as ex-

plained in detail in Section 3. There are two flavors available at present for handling those nuisance param-

eters. Kyriazidou (1997) and Malikov et al. (2016) consider the case where the covariance parameters are

irrelevant under the assumption that the difference in the exogenous regressors is uncorrelated with the differ-

ence in the errors if the propensity to selection is the same at the two considered periods. Rochina-Barrachina

(1999) does not make such an assumption and discusses methods of directly estimating the nuisance param-

eters.

Our contribution to the PD literature relates to Rochina-Barrachina’s (1999) parametric estimationmethod.

We propose an intuitive and approachable way of pooling information over all available periods as a simpler

alternative to the MDE suggested by Rochina-Barrachina (1999). The resulting “full-aggregation” estima-

tor is a weighted within-group estimator with bias-correction terms, where the right weighting is crucial for

consistent estimation. Remarkably, both the full-aggregation estimator and the MDE are inefficient, and we

derive an efficient estimator, although the advantage we get from the efficient estimation is limited once

the fixed effects are already eliminated by pairwise differencing. We also provide a practically convenient

fail-proof method of estimating serial correlation in the selection equation error, which plays a pivotal role

in the implementation of bias correction.

All the estimators discussed in this paper are multi-step estimators, so that calculating valid standard

errors is highly involved due to the generated-regressors problem (Pagan, 1984). We provide with general

analytic formulae that can be used for constructing valid confidence intervals for all the estimators considered

in the present paper. All the claims are verified by simulations.

The rest of the paper is organized as follows. In Section 2, we consider efficient estimation of the CRE
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model and present a simple suboptimal estimator that practically solves the large individual-effects problem.

Section 3 discusses the PD approach and proposes a convenient pooling (“weightedwithin-group”) estimator.

Section 4 presents the simulation results and an application to earnings equation for married women using

the Korean Labor and Income Panel Study data. The last section concludes this paper. For all the estimation

methods considered in this paper, we provide analytical formulae of standard errors in the appendix.

2 Estimation of the CRE Model

In this section we consider the linear panel data model

yit = xit β + ziγ + uit, i = 1, . . . , n, t = 1, . . . ,T, (1)

where xit is the 1 × k vector of strictly exogenous time-varying regressors, and zi is a row vector of time-

invariant exogenous variables that contain xi1, . . . , xiT and possibly other time-invariant variables including

a constant term. This model can be derived from the conventional panel data model with fixed effects yit =

xit β + α0
i + ε0it by applying the Chamberlain-Mundlak device α0

i = ziγ + ai, where ai and zi are assumed

to be independent. We then obtain (1) by letting uit = ai + ε0it . The error term uit has a zero mean, contains

random effects, and is arbitrarily correlated over t. For the analysis in this section, xit needs not be strictly

exogenous and may in fact include predetermined variables as long as zi is properly modified to contain

only exogenous variables (see Dustmann and Rochina-Barrachina, 2007, and Semykina and Wooldridge,

2010). We assume that the regressors are strictly exogenous for simplicity and for direct comparison to the

PD approach in Section 3.

The indicator of yit being observed is denoted by sit . The covariates xit and zi are observed regardless

of the value of sit . Wooldridge (1995) suggests that

sit = 1[ziπt + vit > 0], vit ∼ N(0, 1) (2)

for every t, where zi contains (xi1, . . . , xiT ). Following Heckman (1976, 1979) and Wooldridge (1995), we

let uit = δtvit + εit , where εit is independent of vit conditional on zi, so that

E(yit |zi, sit = 1) = xit β + ziγ + δt E(vit |zi, sit = 1) = xit β + ziγ + δtλit . (3)

Above, λit is the inverse Mills ratio λit = λ(ziπt) = ϕ(ziπt)/Φ(ziπt), where ϕ(·) and Φ(·) are respectively

the density function and distribution function of the standard normal distribution. Note that εit need not be

normal if it is independent of vit as Wooldridge (1995) points out.
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The moment restrictions considered in this section are that E(eit |zi, sit = 1) = 0 for every t, where

eit = yit − xit β − ziγ − δtλit . The model described by (2) and (3) specifies an average characteristic of yit
over the observed population. It is thus a population-averaged model.

2.1 Pooled OLS and Minimum Distance Estimation

For consistent estimation of the parameters in (3), Wooldridge (1995) proposes a two-step procedure. In

the first step, λit is estimated by the probit regression of sit on zi for each t. In the second step, β, γ and

δ1, . . . , δT are estimated by the pooled OLS (POLS) regression of yit on xit , zi and λ̂it = λ(zi π̂t) properly

interacted with time dummies, using observations with sit = 1, where π̂t are the first-step probit estimators.

For formality and future use, let ŵit = (xit, zi, 0, . . . , 0, λ̂it, 0, . . . , 0) and θ = (β′, γ′, δ1, . . . , δT )′. Letting

yi = (yi1, . . . , yiT )
′, Si = diag(si1, . . . , siT ) and Ŵi = (ŵ′

i1, . . . , ŵ
′
iT )

′, Wooldridge’s POLS estimator is

written as

θ̂pols =

(
n∑

i=1

Ŵ ′
i SiŴi

)−1 n∑
i=1

Ŵ ′
i Siyi .

Note that all the elements of Siyi are observed even though some elements of yi are not. Obtaining valid

standard errors for θ̂pols is involved because of the “generated regressors” problem (Pagan, 1984).Wooldridge

(1995) presents a way of calculating standard errors for POLS. We address this issue in Appendix A.3 in a

more general manner applicable to all the estimators considered in the present paper.

Although zi contains xi1, . . . , xiT , the fixed effects are not eliminated and the POLS estimator is different

from the within-group estimator when the dependent variable is only partially observed. For example, if yit

is observed for only one t for some i, then the individual effect remains for that i. As a result, the performance

of θ̂pols can deteriorate seriously if the random effects in the error term have a large variance. The following

example is illustrative.

Example 1. Consider the two-period panel data model yit = α + βt + µi + εit for t = 0, 1. We are

interested in the β parameter. The dependent variable is observed for all units in the initial period (t = 0),

but yi1 is observed only for selected observations. Let si be the dummy variable indicating the selection.

Let si = I(ziπ + vi > 0) for some exogenous zi and vi ∼ N(0, 1), where vi is assumed to be independent

of zi, µi and εit for simplicity. Let π be known for simplicity so that the inverse Mills ratio λi is directly

observed. The POLS estimator of α and β is obtained by regressing Siyi on SiWi, where Si = diag(1, si),
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yi = (yi0, yi1)
′, and

Wi =
©­«
1 0 0

1 1 λi

ª®¬ .
We have

1

n

n∑
i=1

W ′
i SiWi =

©­­­­­«
1 + s̄ s̄ sλ

s̄ s̄ sλ

sλ sλ sλ2

ª®®®®®¬
,

1

n

n∑
i=1

W ′
i Siyi =

©­­­­­«
ȳ0 + sy1

sy1

sλy1

ª®®®®®¬
,

where

s̄ =
1

n

n∑
i=1

si, sλ =
1

n

n∑
i=1

siλi, sλ2 =
1

n

n∑
i=1

siλ2i ,

ȳ0 =
1

n

n∑
i=1

yi0, sy1 =
1

n

n∑
i=1

siyi1, sλy1 =
1

n

n∑
i=1

siλiyi1.

Let QWW = n−1
∑n

i=1 W ′
i SiWi and QWy = n−1

∑n
i=1 WiSiyi, both of which are observed. We have

(HQWW H ′)−1 =

©­­­­­«
1 0 0

0 s̄ sλ

0 sλ sλ2

ª®®®®®¬

−1

=
1

d

©­­­­­«
d 0 0

0 sλ2 −sλ

0 −sλ s̄

ª®®®®®¬
,

where d = s̄ · sλ2 − sλ
2, and

H =

©­­­­­«
1 −1 0

0 1 0

0 0 1

ª®®®®®¬
.

Thus, β̂ is the second element of H ′(HQWW H ′)−1HQWy , i.e.,

β̂ = d−1(−1, 1, 0)
©­­­­­«
d 0 0

0 sλ2 −sλ

0 −sλ s̄

ª®®®®®¬
©­­­­­«

ȳ0

sy1

sλy1

ª®®®®®¬
= −ȳ0 +

(
sλ2

d

)
sy1 −

(
sλ
d

)
sλy1

=
1

n

n∑
i=1

(qisiyi1 − yi0), qi = d−1(sλ2 − sλλi).

By plugging in yit = α + βt + µi + εit , we have

β̂ = β +
1

n

n∑
i=1

(qisi − 1)µi +
1

n

n∑
i=1

(qisiεi1 − εi0).

Note that n−1
∑n

i=1(qisi − 1) = 0 but n−1
∑n

i=1(qisi − 1)µi , 0 in general when µi is present. The variance

of µi does matter even when µi and si are independent. If the variance of µi is large, the performance of β̂

can be poor. For example, if the standard deviation of µi is of order
√

n, then β̂ is not even consistent.
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MDE is available as an alternative to pooled regression (Wooldridge, 1995). For example, after yit is

regressed on xi1, . . . , xiT and λit for each t using the observations with sit = 1, the structural parameters β

and γ can be recovered by a minimum distance procedure based on the relationship τtr = βI(t = r) + γr ,

where τtr is the coefficient of xir for period t. Importantly, the issue in Example 1 is not resolved by this

MDE. See the following example.

Example 2. Under the same settings as in Example 1, the MDE after fitting a model for each t does not

provide a solution. Let the structural parameters be α, β and δ, where δ is the the coefficient of λi. The

“reduced-form” equations are yi0 = α0 + ui0 and yi1 = α1 + δ1λi + ei1, where ui0 = µi + εi0 and

ei1 = µi + εi1 − δ1λi. Then,

©­­­­­«
α0

α1

δ1

ª®®®®®¬
=

©­­­­­«
1 0 0

1 1 0

0 0 1

ª®®®®®¬
©­­­­­«
α

β

δ

ª®®®®®¬
, and the MDE is

©­­­­­«
α̂mde

β̂mde

δ̂mde

ª®®®®®¬
=

©­­­­­«
1 0 0

1 1 0

0 0 1

ª®®®®®¬

−1 ©­­­­­«
α̂0

α̂1

δ̂1,

ª®®®®®¬
,

where α̂0, α̂1 and δ̂1 are the OLS reduced-form estimators. We have β̂mde = α̂1 − α̂0, which is identical to

the pooled OLS estimator.

Example 2 illustrates that MDE does not solve the problem manifested in Example 1. This phenomenon

is not limited to this particular example, but also occurs for more general models and more general T . In the

presence of observation-wise heteroskedasticity and serial correlation, it is natural to expect that substantial

efficiency gain can come only by observation-wise transformation, not by a linear combination of reduced-

form estimators. In the next section, we show how such an efficient estimator is derived.

2.2 Efficient Estimation

The POLS and the MDE are not efficient, and a problem is illustrated in Examples 1 and 2 in the presence

of random effects in uit . In this section we derive an efficient estimator based on the moment restrictions

used by the CRE approach. To proceed, we assume that πt ’s are known and thus λit ’s are observed. Let

wit = (xit, zi, 0, . . . , 0, λit, 0, . . . , 0) and θ = (β′, γ′, δ1, . . . , δT )′ as before, so that the bias-corrected main

equation is yit = witθ + eit , where eit = uit − δtλit . The moment restrictions derived for the CRE model

are E(siteit |zi) = 0 for t = 1, . . . ,T . Stacked vertically, those T conditional moment restrictions are written

in matrix notation as

E(Siei |zi) = 0, (4)
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where Si = diag(si1, . . . , siT ) and ei = (ei1, . . . , eiT )′. Letting yi be the T-vector of yit and Wi = (w′
i1, . . . ,

w′
iT )

′, (4) is written as E[Si(yi−Wiθ)|zi] = 0, where Siyi is observed although yi is not completely.With these

notations used, Wooldridge’s POLS is the method of moments estimator based on the unconditional moment

restrictions E[W ′
i Si(yi − Wiθ)] = 0, where Wi is replaced with Ŵi. These unconditional moment conditions

are not optimal given the conditional moment restrictions (4), due to the presence of heteroskedasticity and

correlation within Siei conditional on zi.

We derive an optimal set of unconditional moment restrictions implied by the conditional (4) using

Chamberlain’s (1992) arguments. For this, introduce the notation gi(θ) = Si(yi − Wiθ), and let Di =

−E[ ∂
∂θ′gi(θ)|zi] andΩi = E[gi(θ)gi(θ)′ |zi], both ofwhich are evaluated at the true parameter. Then D′

iΩ
−1
i gi(θ)

is an optimal set of unrestricted moment functions.

Let us evaluate Di and Ωi. First, Di is straightforward to evaluate. Because Wi is a function of zi, we

have

Di = E(SiWi |zi) = PiWi,

where Pi is the T × T diagonal matrix of pit = E(sit |zi) = Φ(ziπt). Next, because of the identity eit =

yit − witθ = uit − δtλit = εit + δt(vit − λit), the (t, r) element of Ωi = E(Sieie′iSi |zi) equals

ωi,tr = E(sit sireiteir |zi) = pi,tr E(εitεir) + δtδrmi,tr, (5)

where pi,tr = E(sit sir |zi) and mi,tr = E[sit sir(vit − λit)(vir − λir)|zi]. Note that pi,tt = E(sit |zi) = pit , and

pi,tr = Φ2(ziπt, ziπr ; ρtr) for t , r , where ρtr = E(vitvir) and Φ2(a, b; ρ) is the bivariate normal (mean 0,

variance 1, and covariance ρ) cumulative distribution function evaluated at (a, b). Also, from the known facts

about univariate and bivariate truncated normal distributions (see Greene, 2012, and Rosenbaum, 1961), we

have

mi,tt = pi,tt(1 − zitλit − λ2it),

mi,tr = ρtr(pi,tr − zithi,tr − zirhi,rt) +

√
1 − ρ2tr
2π

ϕ
©­«
√

z2it − 2ρtr zit zir + z2ir
1 − ρ2tr

ª®¬ (6)

− λir(hi,tr + ρtrhi,rt) − λit(hi,rt + ρtrhi,tr) + pi,trλitλir,

where zit = ziπt , hi,tr = ϕ(zit)Φ(z∗i,rt) and z∗i,rt = (zir − ρtr zit)(1− ρ2tr)−1/2. Note that mi,tt is also derived

from the mi,tr formula using ρtt = 1, z∗i,tt = 0 and h(zit, 0) = 1
2ϕ(zit).

Therefore, the infeasible optimal estimator θ̃opt solves
∑n

i=1 D′
iΩ

−1
i Si(yi − Wiθ) = 0, that is,

θ̃opt =

(
n∑

i=1

W ′
i PiΩ

−1
i SiWi

)−1 n∑
i=1

W ′
i PiΩ

−1
i Siyi, (7)
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which is the instrumental variable (IV) estimator for the equation Siyi = SiWiθ + Siei using Ω−1
i PiWi as

instruments. This estimator attains the asymptotic semiparametric efficiency bound (Chamberlain, 1992) for

consistent estimators using the CRE moment restrictions (4).

The infeasible optimal estimator in (7) is derived under the assumption that πt are known. When πt are

estimated from a first-step probit regression, the optimality of θ̃opt is unclear. It is known in the literature that

the infeasible and feasible estimators may have different asymptotic distributions (see, e.g., Hirano, Imbens

and Ridder, 2003, and Han and Kim, 2011, for asymptotic comparison of feasible and infeasible estimators

related with πt ), and there may be a hybrid estimator that is asymptotically more efficient than both the

infeasible and the feasible estimators. Theoretically interesting as it may be, we do not pursue this issue

further, because our primary goal is to improve efficiency by dealingwith the fact that siteit is heteroskedastic

and autocorrelated. An interested reader might benefit from following Han and Kim’s (2011) approach as a

simple means of analysis.

To make the procedure (7) feasible, we need to consistently estimate πt , ρtr , δt and E(εitεir) for all t

and (t, r) pairs. Of them, πt can be estimated by the initial probit for each t in a standard manner. The ρtr

parameters can be estimated in various ways. One way is to use T-variate probit to estimate all πt ’s and ρtr ’s

simultaneously, but the computational burden is heavy even for T = 3. Rochina-Barrachina (1999) suggests

pairwise bivariate probit regressions to estimate πt , πr and ρtr for each pair (t, r). She also proposes estimat-

ing ρtr by a two-step procedure after estimating pit nonparametrically for every t. Our suggestion is close

to this latter method but is simpler. Specifically, we first estimate πt for every t from the probit regressions,

and then use the fact that Pr(sit sir = 1|zi) = Φ2(ziπt, ziπr ; ρtr) to estimate ρtr using a likelihood method.

That is, ρ̂tr is the maximizer of

ln L(ρ) =
n∑

i=1

{
sit sir lnΦ2(ẑit, ẑir ; ρ) + (1 − sit sir) ln[1 − Φ2(ẑit, ẑir ; ρ)]

}
, (8)

where ẑit = zi π̂t for simplicity. (Singularity at ρ = ±1 can be avoided using Fisher’s (1915, 1921) loga-

rithmic transformation of reparametrizing ρ to arctanh(ρ) = 1
2 ln(

1+ρ
1−ρ ).) While numerical procedures for

bivariate probit often fail to converge, the maximization of (8) mostly works according to our experiments

for Section 4.

Once πt and ρtr are all estimated, pi,tr and mi,tr in (5) are naturally calculated because they are mea-

surable functions of πt and ρtr . The remaining parameters to estimate for the construction of Ωi are δt and

E(εitεir). First, δt can be replaced withWooldridge’s POLS estimators. Next, for the estimation of E(εitεir),

wemake the ‘random effects (RE) assumption’ that E(εitεir) = σ2
a+σ

2
b
[t = r] for someσ2

a ≥ 0 andσ2
b
> 0.
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Because ωi,tr denotes E(sit sireiteir |zi), we have from (5) that

E[p−1i,tr(sit sireiteir − δtδrmi,tr)|zi] = E(εitεir).

Letting p̃i,tr , m̃i,tr and δ̃t denoting the initial estimators of pi,tr , mi,tr and δt , respectively, constructed using

the initial estimates of πt , πr and ρtr as explained above, one way of estimating E(εitεir) is to get the cross

sectional average of p̃−1i,tr(sit ẽit sir ẽir − δ̃t δ̃r m̃i,tr), where sit ẽit is the POLS residual that is replaced with zero

when sit = 0. Under the standard RE (i.e., exchangeability) assumption that E(εitεir) = σ2
a + σ2

b
[t = r],

we may further average those averages over all (t, t) and all (t, r) with t , r . There are also other methods

such as regressing sit ẽit sir ẽir − δ̃t δ̃r m̃i,tr on p̃i,tr and its interaction with the dummy for t = r to estimate

σ2
a and σ2

b
. Massive experiments by the authors suggest that the following procedure works well.

1. Regress p̃−1i,tr(sit ẽit sir ẽir − δ̃t δ̃r m̃i,tr) on a constant and the dummy variable 1[t = r] using POLS by

pooling over all i, t and r . Let the intercept and the slope estimates be denoted φ̂a and φ̂b.

2. Let σ̂2
a = max(φ̂a, 0) and σ̂2

b
= |φ̂b |, where the max function is taken in order to ensure that σ̂2

a

is nonnegative and the absolute value to ensure positivity of σ̂2
b
. Note that a similar consideration is

made in the usual random-effects feasible generalized least squares estimation of panel data models

under strict exogeneity (Baltagi, 2013, p. 24; Maddala and Mount, 1973).

3. E(εitεir) is estimated by σ̂2
a + σ̂2

b
[t = r].

Now that all the components of (7) are estimated, we have the following feasible optimal estimator:

θ̂opt =

(
n∑

i=1

Ŵ ′
i P̃iΩ̂

−1
i SiŴi

)−1 n∑
i=1

Ŵ ′
i P̃iΩ̂

−1
i Siyi, (9)

where P̃i is the diagonal matrix of p̃it = Φ(zi π̂t) with π̂t being the initial probit coefficient estimates as

before, and Ω̂i is the T × T matrix of ω̂i,tr . Standard errors can be obtained using the method described in

Appendix A.3.

2.3 A Convenient Suboptimal Estimator

The feasible optimal procedure in the previous section involves inverting n covariance matrices, which can

be nuisance. Alternatively, we can use a common covariance Ω = n−1
∑n

i=1Ωi in place of Ωi in (7). It

is convenient that the common weight Ω can be consistently estimated by Ω̃ = n−1
∑n

i=1 Si ẽi ẽ′iSi without

estimating nuisance parameters (with “consistency” meaning Ω̃ − Ω →p 0 as n → ∞), where Si ẽi are the

10



POLS residuals with the unobserved residuals replaced with zero. The resulting common weighting (CW)

estimator is

θ̂cw =

(
n∑

i=1

Ŵ ′
i P̃iΩ̃

−1SiŴi

)−1 n∑
i=1

Ŵ ′
i P̃iΩ̃

−1Siyi . (10)

Unlike the feasible optimal estimator in Section 2.2, the CW estimation requires estimating only πt , and Ω̃

can be estimated nonparametrically using the POLS residuals. The CW estimator can also be understood as

the IV estimator obtained from the regression of Siyi on SiŴi using Ω̃−1P̃iŴi as instruments. Note that the

CW estimator in (10) is different from MDE.

Although the CW estimator accounts for error serial correlation somehow, the POLS and the CW esti-

mators are, in fact, not unanimously rankable in terms of efficiency, and we can construct a better estimator

by linearly combining them. For this, let θ̂(C) = (I − C)θ̂pols + Cθ̂cw = θ̂pols − C(θ̂pols − θ̂cw) for given C.

When πt are assumed known so Wi are observable, it turns out that an optimal choice of C is A1A−1
2 , where

A1 = Cov(θ̂pols, θ̂pols − θ̂cw) and A2 = Var(θ̂pols − θ̂cw). The resulting optimal linear combination θ̂(A1A−1
2 )

is at least as efficient as both POLS and CW (with πt known). We have the following result, where ‘Avar’

denotes the asymptotic variance.

Theorem 1. Avar(θ̂(A1A−1
2 )) − Avar(θ̂(C)) is negative semidefinite for all C.

A proof is given in the appendix.

Remark 1.1. The asymptotic variance comparison in Theorem 1 is valid when πt are known and thus λit

are observed. When πt are estimated by first-step probit regressions, the estimator θ̂(A1A−1
2 ) may not be an

optimal linear combination of the POLS and CW estimators. But the estimator is anyway inefficient, and the

possible efficiency loss is in practice unimportant.

We next consider estimating A1 and A2. For this, let

F1 =

(
n∑

i=1

Ŵ ′
i SiŴi

)−1
, F2 =

(
n∑

i=1

Ŵ ′
i P̃iΩ̃

−1SiŴi

)−1
and

G11 =
n∑

i=1

Ŵ ′
i Ω̃iŴi, G12 =

n∑
i=1

Ŵ ′
i Ω̃iΩ̃

−1P̃iŴi, G22 =
n∑

i=1

Ŵ ′
i P̃iΩ̃

−1Ω̃iΩ̃
−1P̃iŴi,

where Ω̃i = Si ẽi ẽ′iSi and Ω̃ = n−1
∑n

i=1 Ω̃i. Then Aj are consistently estimated by Âj , where

Â0 = F1G11F ′
1, Â1 = Â0 − F1G12F ′

2, Â2 = Â1 − (F1G12F ′
2)

′ + F2G22F ′
2.

11



Our proposed estimator (denoted the PO-CW estimator, hereafter) is, thus,

θ̂∗ = (I − Ĉ∗)θ̂pols + Ĉ∗θ̂cw, Ĉ∗ = Â1 Â−1
2 . (11)

This estimator is also obtained by the IV regression of Siyi on SiŴi using Zi = ŴiF1(I−Ĉ∗)′+Ω̃−1P̃iŴiF2Ĉ ′
∗

as instruments.

As repeatedly noted so far, the two-step procedures leads to the generated regressors problem, and stan-

dard errors should be obtained with this fact accounted for. A convenient general-purpose Delta-method

procedure is explained in Appendix A.3. Alternatively, block bootstrapping may be used. The bootstrap

variance estimators of the feasible estimators considered in this paper seem to perform well according to the

simulations in Section 4.

3 Estimation Based on Pairwise Differencing

In the CRE approach in Section 2, fixed effects are dealt with by the Chamberlain-Mundlak device, where

random effects remain and affect the statistical properties of the estimators. In this section we examine

fixed-effects approaches, which completely eliminate the time-invariant individual effects, and we propose

a convenient method that turns out to work remarkably well.

The model we consider is yit = αi + xit β + uit , where αi are unobservable fixed effects. As briefly

mentioned in the introduction, Kyriazidou (1997) considers the case where selection bias disappears by

differencing if the selection propensity remains the same over time. Rochina-Barrachina (1999) considers a

general case. We focus on Rochina-Barrachina’s parametric approach and propose a convenient data pooling

method for better performance.

3.1 First-Difference Estimation

We first consider the first-difference (FD) estimation using the observations with sit = 1 as an introduction.

The differenced equation is ∆yit = ∆xit β + ∆uit , and we use data only for i and t such that ∆yit is

observed, i.e., sit sit−1 = 1. The pooled OLS estimator of this equation in differences is inconsistent because

of selectivity. In order to derive the correction term, we note that

E(∆yit |zi, sit sit−1 = 1) = ∆xit β + δt E(vit |zi, sit sit−1 = 1) − δt−1 E(vit−1 |zi, sit sit−1 = 1) (12)

12



under the assumption that uit = δtvit + εit and εit is independent of vit . The E(vit |zi, sit sit−1 = 1) and

E(vit−1 |zi, sit sit−1 = 1) terms are evaluated using the following facts about the bivariate standard normal

variables (x, y) with correlation ρ:

E(x |x > −a, y > −b) =
ϕ(a)Φ(b∗)
Φ2(a, b; ρ)

+ ρ
ϕ(b)Φ(a∗)
Φ2(a, b; ρ)

=: ψ(a, b; ρ), (13)

where a∗ = (a − ρb)(1 − ρ2)−1/2 and b∗ = (b − ρa)(1 − ρ2)−1/2. (See Rosenbaum, 1961, and Maddala,

1983.) Note that ψ(a, a; 1) = λ(a) and ψ(a, b; 0) = λ(a) as special cases, where λ(a) = ϕ(a)/Φ(a) as

before. From (13) we derive that

E(vit |zi, sit sir = 1) = ψ(ziπt, ziπr ; ρtr) =: ψi,tr, (14)

where ρtr = E(vitvir) as before. By combining this with (12), we have

E(∆yit |zi, sit sit−1 = 1) = ∆xit β + δtψi,t,t−1 − δt−1ψi,t−1,t . (15)

After ψi,tr are estimated using the first-step estimators of the selection equation parameters (see Section

2 for the estimation of πt and ρtr ), one can regress

©­­­­­­­­«

si1si2∆yi2

si2si3∆yi3
...

siT−1siT∆yiT

ª®®®®®®®®¬
on



si1si2(∆xi2 −ψ̂i,12 ψ̂i,21 0 · · · 0)

si2si3(∆xi3 0 −ψ̂i,23 ψ̂i,32 · · · 0)
...

...
...

...
...

siT−1siT (∆xiT 0 0 0 · · · ψ̂i,T,T−1)


using POLS. The parameters to estimate are (β′, δ1, . . . , δT )′. In actual implementation, one can simply

omit the observations with sit−1sit = 0. The correction terms are accounted for differently from Rochina-

Barrachina (1999) in that the δt parameters are exactly identified. Note that the error terms in the differenced

equation are heteroskedastic and serially correlated, and hence the pooled OLS estimation of the differenced

equation is inefficient, and robust variance estimation is required for inferences.

Comparing this FD estimation with the estimation of the CRE model (3), the CRE model describes the

distribution of (yit, sit) conditional on zi for each t, while the FD estimation requires information on the

joint distribution of the pairs (yit, sit) and (yit−1, sit−1) for t = 2, . . . ,T . The moment conditions in (4) for

the CRE estimation and those in (15) for the FD estimation do not overlap, so efficiency cannot be ranked

between the CRE estimators and the FD estimator. Simulation results will be reported in Section 4.

In order to efficiently utilize the information in (15), we can again apply Chamberlain’s (1992) argument

by letting git(θ) = sit−1sit(∆yit − ∆xit β − δtψi,t,t−1 + δt−1ψi,t−1,t), collecting them for t = 2, . . . ,T to
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form gi(θ), and then getting “D′
iΩ

−1
i gi(θ)” as optimal unconditional moment functions, where Di is the

expected first derivative and Ωi is the covariance matrix conditional on the exogenous variables, and θ =

(β′, δ1, . . . , δT )′. As before, the Di term is not difficult to get, but theΩi term involves covariances conditional

on sit1 , sit2 , sit3 and sit4 for up to four different periods t1, t2, t3 and t4. (An expression is given in the appendix

for a more general “full-aggregation” estimator explained in Section 3.2.) Theoretically interesting as it is,

pursuing efficiency to this extent does not seem to be practically important because, first, making it feasible

is much harder than the CRE approach case, and, second, fixed effects are already removed so there is not

much room for improvement when the individual effects show large variability. Furthermore, we can gain

efficiency by gathering information from other nonconsecutive pairwise differences similarly to the within-

group estimation, as explained below.

3.2 Full Aggregation of Pairwise Differences

In the FD estimation in Section 3.1, only consecutive pairs are considered and we condition on the event

that sit sit−1 = 1. Extension to the full within-group (WG) estimation is more complex, because it involves

averaging over all selected observations. One possible approach is to consider all combinations of si1, . . . , siT

and exhaustively evaluate E(vit |si1, . . . , siT ). This might be possible for very small T , but working it out for

general T would be impractical, if not impossible.

An alternative approach is to consider pairs of periods separately. This method is in fact closely related

with theWG estimation ofmodels with fixed effects. The connection between them is revealed by the identity

T
∑T

t=1(at − ā)(bt − b̄) =
∑T

t=2

∑t−1
r=1(at − ar)(bt − br), where ā and b̄ are the sample means of at and bt ,

respectively. Due to this identity, the WG estimator for balanced panel data is also written as[
n∑

i=1

T∑
t=2

t−1∑
r=1

(xit − xir)′(xit − xir)

]−1 n∑
i=1

T∑
t=2

t−1∑
r=1

(xit − xir)′(yit − yir).

That is, the usualWG estimator is also the pooled OLS estimator using all possible pairwise differences (with

each pair used once). For panel data with selectivity, too, a corresponding “WG” estimator can be obtained

by pooling all pairwise differences. As shown above, for pairs of periods t and r such that sit sir = 1, we

have yit − yir = (xit − xir)β + uit − uir , where

E(uit − uir |zi, sit sir = 1) = δtψ(ziπt, ziπr ; ρtr) − δrψ(ziπr, ziπt ; ρtr) = δtψi,tr − δrψi,rt,

and hence,

E(yit − yir |zi, sit sir = 1) = (xit − xir)β + δtψi,tr − δrψi,rt .
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Once ψi,tr are estimated using (13) and (14), where πt are estimated at the first-step regression and

ρtr by maximizing (8) given the πt and πr estimates, we can pool all possible differences together without

duplication and then run pooled OLS. For example, if T = 4 and si = (1, 0, 1, 1) for an i, then the pooled

left-hand side variables and right-hand side variables are respectively

©­­­­­«
yi3 − yi1

yi4 − yi1

yi4 − yi3

ª®®®®®¬
and

©­­­­­«
xi3 − xi1 −ψ̂i,13 0 ψ̂i,31 0

xi4 − xi1 −ψ̂i,14 0 0 ψ̂i,41

xi4 − xi3 0 0 −ψ̂i,34 ψ̂i,43

ª®®®®®¬
for that i, and the associated parameter vector is (β′, δ1, . . . , δ4)′. The equation for yir − yit is identical to the

equation for yit − yir except that (−1) is multiplied to both sides, and thus we use only the pairs with t > r .

It is programmatically more convenient to stack the equations

sit sir(yit − yir) = sit sir(xit − xir)β + δt sit sir ψ̂i,tr − δr sit sir ψ̂i,rt + errori,tr

for all t and r such that t > r including zeros that appear when sit sir = 0. Note that this pooling estima-

tion, which we call the fully aggregated pairwise differencing (FAPD) estimator, is considerably easier to

implement than the MDE suggested by Rochina-Barrachina (1999).

It is worth noting that the FAPD estimator is not a bias-corrected WG estimator. While the WG estimator

is

β̂wg =

[
n∑

i=1

T∑
t=1

sit(xit − x̄i)′(xit − x̄i)

]−1 n∑
i=1

T∑
t=1

sit(xit − x̄i)′(yit − ȳi),

the FAPD estimator corrects the bias of a ‘weighted’ WG estimator

β̂wwg =

[
n∑

i=1

Ti
T∑
t=1

sit(xit − x̄i)′(xit − x̄i)

]−1 n∑
i=1

Ti
T∑
t=1

sit(xit − x̄i)′(yit − ȳi)

=

[
n∑

i=1

T∑
t=2

t−1∑
r=1

sit sir(xit − xir)′(xit − xir)

]−1 n∑
i=1

T∑
t=2

t−1∑
r=1

sit sir(xit − xir)′(yit − yir),

where the weight for i isTi =
∑T

t=1 sit , x̄i = T−1
i

∑T
t=1 sitxit , and ȳi = T−1

i

∑T
t=1 sit yit . This exact weighting

is crucial, due to which bias can be corrected by evaluating the expected errors conditional on only the pairs

sit = 1 and sir = 1 for each pair of t and r . Without it, the evaluation of the average of vit conditional on

the full (si1, . . . , siT ) is required because

β̂wg = β +

[
n∑

i=1

1

Ti

T∑
t=2

t−1∑
r=1

sit sir(xit − xir)′(xit − xir)

]−1
·

n∑
i=1

1

Ti

T∑
t=2

t−1∑
r=1

sit sir(xit − xir)′(uit − uir),
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the expectation of which involves conditioning on Ti =
∑T

t=1 sit . The expected values conditional on Ti

seem hard to evaluate except for very small T . This is the reason why bias correction is not plausible for the

original unweighted WG estimator but is straightforward for the weighted WG estimator.

Letting ei,tr = (yit − yir)− (xit −xir)β− δtψi,tr + δrψi,rt , the FAPD estimator makes use of the moment

restrictions that E(sit sirei,tr |zi) = 0 for all t > r . The way FAPD combines the moment restrictions is not

efficient because the error term is heteroskedastic and serially correlated. Nor is the MDE efficient because

it does not account for observation-wise heteroskedasticity and serial correlation. It is again possible to

derive efficient unconditional moment functions using Chamberlain’s (1992) method, and an expression for

infeasible optimal estimation is given in Appendix A.2. But the efficient estimation involves parameters

which are very hard to estimate. Furthermore, once fixed effects are eliminated, the extra benefit of this

optimal procedure seems limited, as was briefly discussed at the end of Section 3.1. The FAPD estimator

seems already to be a useful method, which practitioners can use without much difficulty. Simulations in

Section 4 confirm this assertion.

Finally, standard errors for the FAPD estimator can be obtained by using the Delta method explained in

Appendix A.3. Block-bootstrapping also works well according to simulations.

4 Simulations and an Application

4.1 Simulation Results

In this section we present results from simulations for the estimators considered in the previous sections.

Data are generated by

xit = µi + ξ0i + x0it, µi ∼ N(0, 1), ξ0i ∼ N(0, 1), x0it ∼ iid N(0, 1), (16a)

vit = (σ2
η + 1)−1/2(σηηi + v0it), ση = 1, ηi ∼ N(0, 1), v0it ∼ iid N(0, 1), (16b)

sit = 1[π0t + π1t xit + vit > 0], π0t = π1t = 0.5, (16c)

uit = δtvit + εit, εit = σµµi + (1 − ρ2ε)
1/2ε0it, ε0it = ρεε

0
it−1 + e0it, (16d)

δt = 0.75, e0it ∼ iid N(0, 1),

yit = β0 + β1xit + uit, β0 = −1, β1 = 1, (16e)

where the components µi, ξ0i , x0it , ηi, v
0
it and e0it are mutually independent. The explanatory variable xit in

(16a) consists of a time-invariant component (µi + ξ0i ) correlated with the fixed effects in the main equation
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and idiosyncratic innovations (x0it ). The selection error in (16b) has zero mean and unit variance, and is

serially correlated because of a time-invariant component ηi. It is also correlated with the main regression

error uit in (16d). The εit component of uit in (16d) consists of random effects σµµi and idiosyncratic errors

(1− ρ2ε)1/2ε0it , where ε0it is serially correlated if ρε , 0 as e0it is generated as iid. If ρε = 0, then the feasible

optimal estimator is indeed optimal, but otherwise inefficient. All the random variables are iid across i. The

correlation coefficient between selection errors in different times is ρtr = Corr(vit, vir) = E(vitvir) =

σ2
η/(σ

2
η + 1) = 0.5 for all t , r . The dependent variable yit is observed if sit = 1. Selection is endogenous

here because vit is correlated with uit .

We first estimate π0t and π1t for every t using separate probit regressions. Wooldridge’s (1995) POLS

estimator, the CW estimator, and an optimal linear combination of POLS and CW (denoted PO-CW) are then

calculated following the explanation in Section 2. For the feasible optimal estimator θ̂opt (denoted OPT1),

we estimate ρtr by maximizing (8) for every pair (t, r) with t > r . The infeasible optimal estimator θ̃opt

of the CRE model (denoted IOPT1) is computed only after π0t and π1t are estimated by the initial probit

regressions, that is, using the true values of E(εitεir) and ρtr . The FD estimator and the fully aggregated PD

(denoted FA in short) estimator in Section 3 are computed given the estimates of π0t , π1t and ρtr .

Table 1 reports the simulated bias and variance for the alternative estimators, together with the infeasible

optimal estimator (IOPT1), of β1 obtained from 10,000 replications for various σµ values with ρε = 0,

n = 500 and T = 5. The POLS, FD, and WG estimators without bias correction are reported as POLS0,

FD0, andWG0, respectively. The infeasible IOPT1 is obtained by (7) with πt replaced by the first-step probit

estimators, while the other parameters such as E(εitεir), δt , δr and ρtr are regarded as known. The reported

results suggest that the uncorrected POLS0, FD0, andWG0 estimators are severely biased as shown in panel

(a) of Table 1, while the corrected estimators have little bias. In terms of efficiency, the performance of

POLS deteriorates as the standard deviation σµ of the individual effects increases. See especially the case

σµ = 10 in the ‘POLS’ column in panel (b) of Table 1. The feasible optimal estimator (OPT1) works well

in terms of both bias and variance. When σµ is large, the variance of OPT1 is noticeably larger than that of

the infeasible IOPT1. This seems to originate from inefficient POLS which is used in the estimation of Ωi.

If we use the PO-CW estimator instead, the simulated variance decreases from 4.0722 to 3.1240 as noted in

Table 1. It is clear that CW is better than POLS in terms of variance for large σµ (compare ‘POLS’ and ‘CW’

for the cases with σµ ≥ 1 in panel (b) of Table 1) but worse than POLS for σµ = 0. Whereas, the linear

combination PO-CW looks at least as efficient as both POLS and CW asymptotically, although the simulated

variance of PO-CW sometimes slightly exceeds that of POLS for σµ = 0 and that of CW for σµ = 3, 5. This
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seems a small sample issue. In an unreported experiment with n = 1,000 and σµ = 5, PO-CW showed a

smaller variance than that of CW, and than that of POLS of course. It is also noticed that CW and PO-CW are

inferior to the infeasible optimal estimator, but even for σµ = 10, the variance of PO-CW is less than twice

that of IOPT1 and mounts to only 15% of the POLS estimator’s variance. It seems that the inefficiency of

PO-CW relative to OPT1 is small although PO-CW is not optimal, which seems to be explained by the fact

that the initial consistent parameter estimators for OPT1 are obtained from the inefficient POLS. If PO-CW

is used in the OPT1 procedure instead of POLS, the performance of OPT1 improves. Finally, FD and FA are

completely free from the individual effects, which is why the estimates are identical for different σµ values.

FA is more efficient than FD, and also than IOPT1 except for σµ = 0. FA being more efficient than IOPT1 is

not contradictory to the fact that IOPT1 is efficient because the moment restrictions used by FA are different

from those used by IOPT1. They are not rankable in terms of efficiency. We have also examined MDE for

both the CRE and the fixed effects models. No substantial differences have been noticed in the performances

of the pooled regression and its MDE version for both POLS and FA (results not reported). In fact, the pooled

regressions turned slightly better in terms of efficiency for all the data generating processes for Tables 1–3,

while MDE outperforms pooled estimators if the idiosyncratic error shows large temporal heteroskedasticity.

Table 2 reports simulation results for ρε = 0.5 (serial correlation in the idiosyncratic error). The infeasi-

ble optimal estimator IOPT1 is obtained using the true values of E(εitεir), but the feasible estimator OPT1

is obtained under the (wrong) assumption that E(εitεir) = σ2
a + σ2

b
[t = r]. The results are similar to the

case with ρε = 0. Though inefficient, OPT1 still performs better than POLS, CW, and PO-CW. It makes

sense that FD and FA are similar in efficiency, because serial dependence in ∆εit is about the same as that

in εit .

Table 3 examines the performance of various estimators as n and T change. We choose n ∈ {200, 400}

and T ∈ {5, 10} for the case σµ = 1 and ρε = 0. All the estimators improve as the sample size increases.

IOPT1 is supposed to be efficient relative to POLS, CW, and PO-CW, but not necessarily relative to the

FD and FA estimators, because the latter estimators utilize moment restrictions different from those used

by IOPT1, OPT1, POLS, CW, and PO-CW. The performance of FA is remarkable for the considered data

generating processes. It even outperforms the IOPT1. FA seems a good practical method if the practitioner

is willing to estimate the pairwise correlation coefficients ρtr in the selection errors vit .

Tables 4 and 5 examine how the asymptotic variances perform by reporting the simulated sizes of the

test when ρε = 0. Statistical tests are conducted by comparing t-statistics with the standard normal critical

values. Table 4 reports results using the Delta method in Appendix A.3, and Table 5 by using the block
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bootstrapping (with 100 bootstrap replications) method for n = 500 and T = 5. The simulated sizes are

reasonable.

4.2 Application: Earnings Equation for Married Women

We now apply the estimation methods to a wage equation for married women using a subset of the Korean

Labor and Income Panel Study (KLIPS) data. The sample consists of 1,849 married women aged 30 to 60,

observed during 2012–2015. About 40% of the observations are in the labor force. The main equation is the

panel-data version of Wooldridge’s (2010) Example 19.6:

ln(wageit) = αi + β1experit + β2exper2it + β3educit + θt + uit,

where wageit is average hourly wage, experit is job-market experience, and educit is years of education.

Individual effects and common time effects are accounted for by αi and θt . Determinants of selection (labor

force participation) are annual household income except wife’s (nwifeinc), age in 2012 (age), and the number

of children aged 0–19 (nkids) together with exper , exper2, educ. The model is identical to Wooldridge’s

(2010) except that nkids replaces number of children less than six years of age and number of children

between 6 and 18 inclusive due to data availability. The regressors are assumed to be strictly exogenous.

The selection equation is estimated for each t using explanatory variables in all periods. That is, when z1,it

and z2,i are respectively time-varying and time-invariant instruments for the selection equation, the selection

variable sit is regressed on z1,i1, . . . , z1,iT and z2,i for each t.

Table 6 shows summary statistics. Results of themain equation estimation are presented in Table 7, where

the reported robust standard errors are obtained by using the Delta method described in Appendix A.3. The

standard errors are smaller for PO-CW, OPT1, and FA than for POLS. Efficiency gain is noticeable.

5 Conclusion

In this paper we consider various estimators that correct selectivity bias in linear panel data models with

fixed effects. For CRE models, Wooldridge’s (1995) POLS and MDE are convenient but the performance

can be compromised when the variance of the individual effects is large. An efficient procedure is derived as

a means to overcome this problem, and a feasible version is provided under the conventional random-effects

assumption. The simulated performance of the feasible optimal estimator is remarkable, even though the

procedure involves cumbersome operations.
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A convenient common-weighting (CW) estimator is also examined. It is useful in practice but can be

worse than POLSwhen the variance of random effects is small. An asymptotically optimal linear combination

of POLS and CW is considered, which practically solves the large random-effects variance problem and is

asymptotically at least as efficient as both POLS and CW.

This paper also examines two estimators that eliminate fixed effects by pairwise differencing. We dis-

cuss a bias-corrected first-difference estimator and a new fully-aggregated pairwise differencing estimator,

the latter of which corrects bias in a weighted within-group estimator. While Rochina-Barrachina (1999)

proposes pairwise differencing and combining the pairs by the minimum distance procedure, we pool the

differences in a simpler estimation procedure. Both procedures are inefficient, and an efficient version is

provided in the appendix although its practical usefulness seems minor. Pairwise differencing methods re-

quire estimating pairwise serial correlations in the error term vit of the selection equation. We propose a

simple and workable two-step procedure while avoiding bivariate or multivariate probit regressions which

sometimes turn out to be unstable in practical applications.

Simulations show that both the optimal CRE estimator and the convenient suboptimal estimator work

well for samples with large n in comparison to POLS and MDE. The fully aggregated pairwise differencing

estimator exhibits a remarkable performance for the data generating processes that are considered. Standard

errors that account for the generated regressors problem are derived by using the Delta method explained in

Appendix A.3.
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A Mathematical Appendix

In this appendix, we prove Theorem 1, provide an expression for the infeasible optimal pairwise-differencing

estimators, and derive standard errors for various feasible estimators considered in this paper.

A.1 Proof of Theorem 1

We first prove Theorem 1.

Proof of Theorem 1. Let∆θ̂ = θ̂pols − θ̂cw so that θ̂(C) = θ̂pols − C∆θ̂. As we deal with asymptotic covari-

ances, we assume that Ω is known. Let ‘Avar’ and ‘Acov’ denote the asymptotic variance and asymptotic

coveriance, respectively. We have Avar(θ̂(C)) = A0−A1C ′−CA′
1+CA2C ′, where A0 = Avar(θ̂pols), A1 =

Acov(θ̂pols,∆θ̂) and A2 = Avar(∆θ̂). Using C = C∗ = A1A−1
2 , we have Avar(θ̂(C∗)) = A0 − A1A−1

2 A′
1,

and thus,

Avar(θ̂(C)) − Avar(θ̂(C∗)) = A1A−1
2 A′

1 − A1C ′ − CA′
1 + CA2C ′

= (A1 − CA2)A−1
2 (A1 − CA2)

′,

which is positive semidefinite.

A.2 Derivation of an Optimal Pairwise-Differencing Estimator

We next derive an efficient estimator based on pairwise differences under the assumption that πt and ρtr

are known. The moment restrictions are E(sit sirei,tr |zi) = 0 for all t > r , where ei,tr = (yit − yir) −

(xit − xir)β − (δtψi,tr − δrψi,rt). For notational brevity, let θ = (β′, δ1, . . . , δT )′ as before and wi,tr =
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(xit −xir, ψi,trdt −ψi,rtdr), where dt is the tth row of IT . Let yi,tr = yit − yir . Then the differenced equation

is yi,tr = wi,trθ + ei,tr . The moment conditions are E(sit sirei,tr |zi) = 0 for every t and r such that t > r ,

where ei,tr = yi,tr − wi,trθ. We again apply Chamberlain’s (1992) method. The expected first derivative

times −1 is the matrix of the T(T − 1)/2 rows of E(sit sirwi,tr |zi) = pi,trwi,tr , where pi,tr = E(sit sir |zi) =

Φ2(ziπt, ziπr ; ρtr) as before. It is more complicated to evaluate the conditional covariance matrix. For the

covariance of sit1 sir1ei,t1r1 and sit2 sir2ei,t2r2 conditional on zi, note that ei,tr = (εit − εir)+ δt(vit −ψi,tr)−

δr(vir − ψi,rt). For t1 > r1 and t2 > r2, we have

E(sit1 sir1ei,t1r1 sit2 sir2ei,t2r2 |zi) = Pr(sit1 sir1 sit2 sir2 = 1|zi)E(ei,t1r1ei,t2r2 |zi, sit1 sir1 sit2 sir2 = 1).

The first probability on the right-hand side is obtained by integrating the density of correlated standard normal

random variables, and the second term E(ei,t1r1ei,t2r2 |zi, sit1 sir1 sit2 sir2 = 1) is

E[(εit1 − εir1)(εit2 − εir2)] + δt1δt2 E[(vit1 − ψi,t1r1)(vit2 − ψi,t2r2)|zi, ai]

− δt1δr2 E[(vit1 − ψi,t1r1)(vir2 − ψi,r2t2)|zi, ai] − δr1δt2 E[(vir1 − ψi,r1t1)(vit2 − ψi,t2r2)|zi, ai]

+ δr1δr2 E[(vir1 − ψi,r1t1)(vir2 − ψi,r2t2)|zi, ai],

where ai denotes the event that sit1 sir1 sit2 sir2 = 1 for notational brevity. The first term is straightforward,

because εit are assumed to be independent of vit . For the second term, we have

E[(vit1 − ψi,t1r1)(vit2 − ψi,t2r2)|zi, ai] = E(vit1vit2 |zi, ai) − E(vit1 |zi, ai)ψi,t2r2

− ψi,t1r1 E(vit2 |zi, ai) + ψi,t1r1ψi,t2r2,

and other terms are expanded similarly. Typical terms to evaluate are E(vitj |zi, sit1 sit2 sit3 sit4 = 1) and

E(vitj vitk |zi, sit1 sit2 sit3 sit4 = 1) for j, k ∈ {1, 2, 3, 4}, which depend on the joint distribution of (vit1, vit2, vit3,

vit4). The case t1 = t3 and t2 = t4 is readily obtained using Rosenbaum’s (1961) results and has already

been done in Section 2. For other cases, the conditional moments can be obtained by Tallis’s (1961) moment

generating function of the multivariate truncated normal distribution. The first conditional moment is

E(vitj |zi, sit1 sit2 sit3 sit4 = 1)

= p−1i,.
{
ρtj t1ϕ(zit1)Φ3(z∗i,t2t1, z

∗
i,t3t1

, z∗i,t4t1 ; ρt2t3.t1, ρt2t4.t1, ρt3t4.t1)

+ ρtj t2ϕ(zit2)Φ3(z∗i,t1t2, z
∗
i,t3t2

, z∗i,t4t2 ; ρt1t3.t2, ρt1t4.t2, ρt3t4.t2)

+ ρtj t3ϕ(zit3)Φ3(z∗i,t1t3, z
∗
i,t2t3

, z∗i,t4t3 ; ρt1t2.t3, ρt1t4.t3, ρt2t4.t3)

+ρtj t4ϕ(zit4)Φ3(z∗i,t1t4, z
∗
i,t2t4

, z∗i,t3t4 ; ρt1t2.t4, ρt1t3.t4, ρt2t3.t4)
}
,
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where pi,. = Pr(sit1 sit2 sit3 sit4 = 1|zi). For j = 1, ρt1t1 = E(vit1vit1) = 1, zit1 = ziπt1 , z∗i,t2t1 = (1 −

ρ2t1t2)
−1/2(zit2 − ρt1t2 zit1) and ρt2t3.t1 = {(1− ρ2t1t2)(1− ρ

2
t1t3

)}−1/2(ρt2t3 − ρt1t2 ρt1t3) is the first-order partial

correlation coefficient between vit2 and vit3 holding vit1 fixed. The expressions for other j are similar. Also,

E(vitj vitk |zi, sit1 sit2 sit3 sit4 = 1)

= ρtj tk + p−1i,.
[
ρtj t1 ρtk t1 zit1ϕ(zit1)Φ3(z∗i,t2t1, z

∗
i,t3t1

, z∗i,t4t1 ; ρt2t3.t1, ρt2t4.t1, ρt3t4.t1)

+ ρtj t2 ρtk t2 zit2ϕ(zit2)Φ3(z∗i,t1t2, z
∗
i,t3t2

, z∗i,t4t2 ; ρt1t3.t2, ρt1t4.t2, ρt3t4.t2)

+ ρtj t3 ρtk t3 zit3ϕ(zit3)Φ3(z∗i,t1t3, z
∗
i,t2t3

, z∗i,t4t3 ; ρt1t2.t3, ρt1t4.t3, ρt2t4.t3)

+ ρtj t4 ρtk t4 zit4ϕ(zit4)Φ3(z∗i,t1t4, z
∗
i,t2t4

, z∗i,t3t4 ; ρt1t2.t4, ρt1t3.t4, ρt2t3.t4)

+ ρtj t1

{
ϕ2(zit1, zit2 ; ρt1t2)Φ2(z∗i,t3t2 |t1, z

∗
i,t4t2 |t1 ; ρt3t4.t1t2)(ρtk t2 − ρt1t2 ρtk t1)

+ ϕ2(zit1, zit3 ; ρt1t3)Φ2(z∗i,t2t3 |t1, z
∗
i,t4t3 |t1 ; ρt2t4.t1t3)(ρtk t3 − ρt1t3 ρtk t1)

+ϕ2(zit1, zit4 ; ρt1t4)Φ2(z∗i,t2t4 |t1, z
∗
i,t3t4 |t1 ; ρt2t3.t1t4)(ρtk t4 − ρt1t4 ρtk t1)

}
+ ρtj t2

{
ϕ2(zit1, zit2 ; ρt1t2)Φ2(z∗i,t3t1 |t2, z

∗
i,t4t1 |t2 ; ρt3t4.t1t2)(ρtk t1 − ρt1t2 ρtk t2)

+ ϕ2(zit2, zit3 ; ρt2t3)Φ2(z∗i,t1t3 |t2, z
∗
i,t4t3 |t2 ; ρt1t4.t2t3)(ρtk t3 − ρt2t3 ρtk t2)

+ϕ2(zit2, zit4 ; ρt2t4)Φ2(z∗i,t1t4 |t2, z
∗
i,t3t4 |t2 ; ρt1t3.t2t4)(ρtk t4 − ρt2t4 ρtk t2)

}
+ ρtj t3

{
ϕ2(zit1, zit3 ; ρt1t3)Φ2(z∗i,t2t1 |t3, z

∗
i,t4t1 |t3 ; ρt2t4.t1t3)(ρtk t1 − ρt1t3 ρtk t3)

+ ϕ2(zit2, zit3 ; ρt2t3)Φ2(z∗i,t1t2 |t3, z
∗
i,t4t2 |t3 ; ρt1t4.t2t3)(ρtk t2 − ρt2t3 ρtk t3)

+ϕ2(zit3, zit4 ; ρt3t4)Φ2(z∗i,t1t4 |t3, z
∗
i,t2t4 |t3 ; ρt1t2.t3t4)(ρtk t4 − ρt3t4 ρtk t3)

}
+ ρtj t4

{
ϕ2(zit1, zit4 ; ρt1t4)Φ2(z∗i,t2t1 |t4, z

∗
i,t3t1 |t4 ; ρt2t3.t1t4)(ρtk t1 − ρt1t4 ρtk t4)

+ ϕ2(zit2, zit4 ; ρt2t4)Φ2(z∗i,t1t2 |t4, z
∗
i,t3t2 |t4 ; ρt1t3.t2t4)(ρtk t2 − ρt2t4 ρtk t4)

+ϕ2(zit3, zit4 ; ρt3t4)Φ2(z∗i,t1t3 |t4, z
∗
i,t2t3 |t4 ; ρt1t2.t3t4)(ρtk t3 − ρt3t4 ρtk t4)

}]
.

For example, for j = 1 and k = 3, we have

z∗i,t3t2 |t1 =
{
(1 − ρ2t1t3)(1 − ρ2t2t3.t1)

}−1/2
(zit3 − βt3t1.t2 zit1 − βt3t2.t1 zit2),

where βt3t1.t2 is the partial regression coefficient of vit3 on vit1 controlling vit2 , and ρt3t4.t1t2 is the second-

order partial correlation coefficient between vit3 and vit4 controlling vit1 and vit2 . Other conditional moments

can be obtained similarly. Also, Tallis (1961) presents the evaluated first and second moments conditional

on three different periods. With the expected first derivative and the covariance (conditional on zi) obtained
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in this way, we can use Chamberlain’s (1992) arguments to construct optimal unconditional moment restruc-

tions and a resulting optimal estimator.

A.3 Standard Errors for Multi-Step Estimators

In this appendix, we derive the asymptotic variance matrices of various two-step and multi-step estima-

tors considered in this paper, where asymptotics are derived with fixed T as n → ∞. In all cases, we ex-

press the estimator vector ξ̂ (containing all the multi-step parameter estimators) as the Z-estimator satisfying

n−1
∑n

i=1 gi(ξ̂) = 0. Specifically, a Taylor series expansion about the true parameter ξ gives

0 =
1
√

n

n∑
i=1

gi(ξ̂) =
1
√

n

n∑
i=1

gi(ξ) +

[
1

n

n∑
i=1

∂gi(ξ)

∂ξ ′

]
√

n(ξ̂ − ξ) + op(1),

and thus, the limit variance of
√

n(ξ̂ − ξ) equals D−1CD−1′ under usual regularity, where C is the limit

covariance matrix of n−1/2
∑n

i=1 gi(ξ) and D is the probability limit of n−1
∑n

i=1
∂gi(ξ)
∂ξ′ . This limit variance

is estimated by D̂−1ĈD̂−1′, where D̂ = n−1
∑n

i=1
∂gi(ξ̂)
∂ξ′ and Ĉ = n−1

∑n
i=1 gi(ξ̂)gi(ξ̂)

′. For the estimators

considered in this paper, the gi(·) functions can be shown to satisfy the regularity conditions necessary for the

approximations and convergences. Theoretically interesting as it is, we do not pursue mathematical details

here, and we rather presume that the regularity conditions are satisfied as a high level assumption.

Let π = (π′1, . . . , π
′
T )

′ and λ(z) = ϕ(z)/Φ(z). All the estimation procedures begin with the probit

regression of the selection equation for each t. The associated moment functions for the first order conditions

are

g1i(π) = (g′1i1, . . . , g
′
1iT )

′, g1it = z′ih(ziπt)[sit − Φ(ziπt)], (17)

suppressing the arguments, where h(z) = ϕ(z)/{Φ(z)[1 − Φ(z)]}. Given the probit estimator π̃ defined by

the first order condition derived from (17), the POLS estimator is obtained based on gi = [g′1i, g
′
2i]

′, where

g2i(π, θpols) = Wi(π)
′[Siyi − SiWi(π)θpols], (18)

where Wi(π) = [wi1(π1)
′, . . . ,wiT (πT )

′]′ with wit(πt) = [xit, zi, 0, . . . , 0, λ(ziπt), 0, . . . , 0], the parameter

vector is ξ = (π′, θ ′pols)
′. The asymptotic variance of (π̃′, θ̂ ′pols)

′ is derived by the method explained at

the beginning of this section after centering and rescaling. Wooldridge (1995) also derives the asymptotic

variance of POLS.

Next, for the CW estimation, let the parameter vector be (π′, θ ′pols, θ
′
cw)

′. Then the CW estimator is based

on (17), (18), and

g3i(π, θpols, θcw) = Wi(π)
′Pi(π)Ω(π, θpols)

−1[Siyi − SiWi(π)θcw], (19)
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where Ω(π, θ) = n−1
∑n

i=1[Siyi − SiWi(π)θ][Siyi − SiWi(π)θ]
′. Note that the same parameter θ is used

separately for the POLS estimation and the CW estimation in the next step, so we use the θpols and θcw

notations to distinguish them. The asymptotic variance of the centered and rescaled (π̃′, θ̂ ′pols, θ̂
′
cw)

′ is now

obtained as before.

As the joint asymptotic distribution of (π̃′, θ̂ ′pols, θ̂
′
cw)

′ has been obtained above, the limit distribution of

θ̂∗ = (I − Ĉ∗)θ̂pols + Ĉ∗θ̂cw in (11) is easily obtained under the regularity that Ĉ∗ converges in probability to

a nonrandom matrix. This is obvious, and its estimation is straightforward.

For the optimal weighted IV estimator OPT1 in (9), we should also consider the estimator of ρtr , the max-

imizer of ln L(ρ) in (8), for all (t, r) pairs. The first order condition for maximizing (8) is n−1
∑n

i=1 g4i,tr(π̃,

ρ̂tr) = 0, where

g4i,tr(π, ρtr) =
ϕ2(ziπt, ziπr ; ρtr)

Φ2i,tr(ρtr)[1 − Φ2i,tr(ρtr)]
[sit sir − Φ2i,tr(ρtr)], (20)

and Φ2i,tr(ρtr) = Φ2(ziπt, ziπr ; ρtr). (See Greene, 2012, for the derivative of Φ2(·, ·; ρ).) Next, the first

order conditions for the pooled least squares estimation of the σ2
a and σ2

b
parameters in E(εitεir) = σ2

a +

σ2
b
[t = r] are

g5i(π, ρ, θpols, φ) =
T∑
t=1

T∑
r=1

©­«
1

1[t = r]

ª®¬× (21)

{[
site

pols
it sirepolsir − δpolst δ

pols
r mi,tr(π, ρtr)

pi,tr(π, ρtr)

]
− φa − φb[t = r]

}
,

where site
pols
it = siteit(π, θpols), ρ is the T(T − 1)/2 × 1 vector of ρtr for all t > r , φ = (φa, φb)

′,

pi,tr(π, ρtr) = Φ2(ziπt, ziπr ; ρtr), mi,tr(π, ρtr) as given in (6), and siteit(π, θ) = sit yit − sitwit(πt)θ. Now

the optimal estimator is based on the moment function

g6i(ξ) = Wi(π)
′Pi(π)Ωi(π, ρ, θpols, φ)

−1[Siyi − SiWi(π)θopt], (22)

where ξ = (π′, ρ′, θ ′pols, φ
′, θ ′opt)

′ and Ωi(π, ρ, θpols, φ) is the T × T matrix of

ωi,tr(π, ρ, θpols, φ) = pi,tr(π, ρtr)(max(0, φa) + |φb |[t = r]) + δ
pols
t δ

pols
r mi,tr(π, ρtr),

with θpols = (β′pols, γ
′
pols, δ

pols
1 , . . . , δ

pols
T )′. The collectedmoment function vector is gi = [g′1i, g

′
2i, g

′
4i, g

′
5i, g

′
6i]

′,

where g4i is the collection of g4i,tr in (20) for all t > r .

We next consider the FAPD estimator. The procedure uses the probit estimator of π and the ML-like

estimator of the serial correlation parameters ρtr . Thus, the gi function contains (17) and (20) for t > r . The
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generated regressors are ψ(ziπt, ziπr ; ρtr), where the ψ function is given in (13). The remaining moment

functions are

g7i(ξ) =
T∑
t=2

t−1∑
r=1


(xit − xir)′

ψ(ziπt, ziπr ; ρtr)Jt − ψ(ziπr, ziπt ; ρtr)Jr

 sit sir

×
[
(yit − yir) − (xit − xir)β − δtψ(ziπt, ziπr ; ρtr) + δrψ(ziπr, ziπt ; ρtr)

]
,

where Jt is the tth column of IT , and the parameter vector is ξ = (π′, ρ′, β′, δ1, . . . , δT )′. The collected

moment function vector is gi = [g′1i, g
′
4i, g

′
7i]

′, where g4i is the collection of g4i,tr in (20) for all t > r as

before. The FD estimation is handled similarly.
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Table 1: Comparison for various σµ values (ρε = 0, 10,000 replications)

sit = 1[0.5 + 0.5xit + vit > 0], vit = (ηi + v0it)/
√
2, v0it ∼ iid N(0, 1), ηi ∼ N(0, 1),

yit = −1 + xit + uit , uit = 0.75vit + εit , εit = σµµi + (1 − ρ2ε)
1/2ε0it , ε

0
it = ρεε

0
it−1 + e0it ,

e0it ∼ iid N(0, 1), µi ∼ N(0, 1), n = 500, T = 5.

(a) Simulated bias

Without correction With correction

σµ POLS0 FD0 WG0 POLS CW PO-CW OPT1 IOPT1 FD FA

0 -0.1518 -0.0840 -0.0933 -0.0053 -0.0051 -0.0079 -0.0075 -0.0063 -0.0081 -0.0093

1 -0.1518 -0.0840 -0.0933 -0.0060 -0.0065 -0.0074 -0.0080 -0.0080 -0.0081 -0.0093

2 -0.1518 -0.0840 -0.0933 -0.0067 -0.0074 -0.0068 -0.0075 -0.0083 -0.0081 -0.0093

3 -0.1518 -0.0840 -0.0933 -0.0075 -0.0078 -0.0067 -0.0059 -0.0083 -0.0081 -0.0093

5 -0.1518 -0.0840 -0.0933 -0.0089 -0.0083 -0.0066 -0.0021 -0.0081 -0.0081 -0.0093

10 -0.1517 -0.0840 -0.0933 -0.0125 -0.0088 -0.0064 0.0016 -0.0076 -0.0081 -0.0093

(b) Simulated variance ×100

Without correction With correction

σµ POLS0 FD0 WG0 POLS CW PO-CW OPT1 IOPT1 FD FA

0 0.1079 0.1780 0.1190 0.5029 0.5806 0.5263 0.4738 0.4758 0.8516 0.5776

1 0.1237 0.1780 0.1190 0.7971 0.7183 0.6748 0.6082 0.6086 0.8516 0.5776

2 0.1710 0.1780 0.1190 1.6640 0.9004 0.8848 0.8063 0.7953 0.8516 0.5776

3 0.2498 0.1780 0.1190 3.1038 1.1087 1.1111 1.0390 0.9873 0.8516 0.5776

5 0.5022 0.1780 0.1190 7.7015 1.6962 1.7016 1.6503 1.4204 0.8516 0.5776

10 1.6852 0.1780 0.1190 29.2195 4.3476 4.2513 4.0722a 2.8149 0.8516 0.5776

Note: Estimates without correction are computed using observations with sit = 1. POLS is Wooldridge’s (1995) POLS estimator,
CW is a common-weighting estimator that uses individual expected first derivatives and a common covariance, PO-CW is a feasible
optimal linear combination of POLS and CW, OPT1 is the feasible optimal estimator, and IOPT1 is the infeasible optimal estimator
which uses true parameters for all unknown parameters with the exception of πt estimated by probit. FD is the bias-corrected pooled
first-difference estimator, and FA is a feasible fully-aggregated pairwise-differencing estimator with proper correction terms.
a The simulated variance for σµ = 10 of OPT1 is 3.1240 if the PO-CW estimators of δt are used instead of the POLS estimators.
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Table 2: Comparison for various σµ values (ρε = 0.5, 10,000 replications)

sit = 1[0.5 + 0.5xit + vit > 0], vit = (ηi + v0it)/
√
2, v0it ∼ iid N(0, 1), ηi ∼ N(0, 1),

yit = −1 + xit + uit , uit = 0.75vit + εit , εit = σµµi + (1 − ρ2ε)
1/2ε0it , ε

0
it = ρεε

0
it−1 + e0it ,

e0it ∼ iid N(0, 1), µi ∼ N(0, 1), n = 500, T = 5.

(a) Simulated bias

Without correction With correction

σµ POLS0 FD0 WG0 POLS CW PO-CW OPT1 IOPT1 FD FA

0 -0.1520 -0.0843 -0.0935 -0.0053 -0.0058 -0.0070 -0.0079 -0.0073 -0.0081 -0.0092

1 -0.1520 -0.0843 -0.0935 -0.0060 -0.0067 -0.0068 -0.0080 -0.0080 -0.0081 -0.0092

2 -0.1519 -0.0843 -0.0935 -0.0067 -0.0074 -0.0066 -0.0067 -0.0080 -0.0081 -0.0092

3 -0.1519 -0.0843 -0.0935 -0.0074 -0.0078 -0.0066 -0.0045 -0.0079 -0.0081 -0.0092

5 -0.1519 -0.0843 -0.0935 -0.0089 -0.0082 -0.0065 -0.0009 -0.0077 -0.0081 -0.0092

10 -0.1519 -0.0843 -0.0935 -0.0125 -0.0088 -0.0064 0.0018 -0.0074 -0.0081 -0.0092

(b) Simulated variance ×100

Without correction With correction

σµ POLS0 FD0 WG0 POLS CW PO-CW OPT1 IOPT1 FD FA

0 0.0865 0.0957 0.0862 0.5355 0.4761 0.4445 0.4225 0.3986 0.4634 0.4148

1 0.1018 0.0957 0.0862 0.8344 0.5535 0.5348 0.5074 0.4768 0.4634 0.4148

2 0.1487 0.0957 0.0862 1.7062 0.6976 0.6956 0.6727 0.6159 0.4634 0.4148

3 0.2271 0.0957 0.0862 3.1507 0.8955 0.9016 0.8870 0.7779 0.4634 0.4148

5 0.4786 0.0957 0.0862 7.7580 1.4812 1.4799 1.4654 1.1620 0.4634 0.4148

10 1.6595 0.0957 0.0862 29.2999 4.1383 4.0252 3.8482a 2.4427 0.4634 0.4148

Note: Estimates without correction are computed using observations with sit = 1. See the notes in Table 1 for POLS, CW, PO-CW,
OPT1, IOPT1, FD, and FA. IOPT1 is obtained correctly for ρε = 0.5, while OPT1 is based on the false assumption that ε0it is iid.
a The simulated variance for σµ = 10 of OPT1 is 2.8341 if the PO-CW estimators of δt are used instead of the POLS estimators.
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Table 3: Comparison for various (n,T) combinations (σµ = 1, 10,000 replications)

sit = 1[0.5 + 0.5xit + vit > 0], vit = (ηi + v0it)/
√
2, v0it ∼ iid N(0, 1), ηi ∼ N(0, 1),

yit = −1 + xit + uit , uit = 0.75vit + εit , εit = σµµi + ε0it , ε
0
it ∼ iid N(0, 1), µi ∼ N(0, 1).

(a) Simulated bias

Without correction With correction

n T POLS0 FD0 WG0 POLS CW PO-CW OPT1 IOPT1 FD FA

200 5 -0.1510 -0.0839 -0.0932 -0.0133 -0.0139 -0.0159 -0.0177 -0.0174 -0.0190 -0.0204

400 5 -0.1519 -0.0849 -0.0937 -0.0078 -0.0077 -0.0098 -0.0105 -0.0103 -0.0107 -0.0119

200 10 -0.1500 -0.0849 -0.0978 -0.0120 -0.0132 -0.0148 -0.0185 -0.0182 -0.0193 -0.0206

400 10 -0.1512 -0.0850 -0.0979 -0.0057 -0.0077 -0.0088 -0.0104 -0.0106 -0.0107 -0.0119

(b) Simulated variance ×100

Without correction With correction

n T POLS0 FD0 WG0 POLS CW PO-CW OPT1 IOPT1 FD FA

200 5 0.2985 0.4437 0.2918 1.8819 1.7022 1.7158 1.4747 1.4673 1.9185 1.2892

400 5 0.1506 0.2274 0.1478 0.9805 0.8837 0.8432 0.7535 0.7596 1.0563 0.7158

200 10 0.1468 0.2151 0.1309 1.1174 0.8577 0.8891 0.7110 0.7137 0.8956 0.5433

400 10 0.0721 0.1044 0.0643 0.6045 0.4371 0.4273 0.3729 0.3774 0.4765 0.3061

Note: Estimates without correction are computed using observations with sit = 1. See the notes in Table 1 for POLS, CW, PO-CW,
OPT1, IOPT1, FD, and FA.
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Table 4: Simulated size of test using the Delta method (n = 500, T = 5, 1,000 replications)

sit = 1[0.5 + 0.5xit + vit > 0], vit = (ηi + v0it)/
√
2, v0it ∼ iid N(0, 1), ηi ∼ N(0, 1),

yit = −1 + xit + uit , uit = 0.75vit + εit , εit = σµµi + ε0it , ε
0
it ∼ iid N(0, 1), µi ∼ N(0, 1),

H0 : β1 = 1, H1 : β1 , 1.

(a) 10% significance level

σµ POLS CW PO-CW OPT1 FD FA

0 0.109 0.113 0.124 0.097 0.093 0.103
1 0.123 0.117 0.115 0.107 0.093 0.103
2 0.115 0.111 0.117 0.100 0.093 0.103
3 0.115 0.103 0.116 0.094 0.093 0.103
5 0.113 0.102 0.114 0.081 0.093 0.103
10 0.114 0.090 0.098 0.063 0.093 0.103

(b) 5% significance level

σµ POLS CW PO-CW OPT1 FD FA

0 0.054 0.060 0.070 0.047 0.052 0.046
1 0.061 0.055 0.070 0.054 0.052 0.046
2 0.064 0.055 0.058 0.053 0.052 0.046
3 0.063 0.056 0.060 0.044 0.052 0.046
5 0.064 0.052 0.060 0.039 0.052 0.046
10 0.063 0.041 0.051 0.026 0.052 0.046

(c) 1% significance level

σµ POLS CW PO-CW OPT1 FD FA

0 0.016 0.015 0.023 0.013 0.005 0.007
1 0.011 0.011 0.019 0.013 0.005 0.007
2 0.012 0.009 0.014 0.009 0.005 0.007
3 0.015 0.006 0.013 0.009 0.005 0.007
5 0.014 0.007 0.009 0.005 0.005 0.007
10 0.017 0.004 0.004 0.003 0.005 0.007

Note: Variances are estimated by using the Delta methods explained in Appendix A.3. The t-statistics are compared with the critical
values for the standard normal distribution.
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Table 5: Simulated size of test using block bootstrap (n = 500, T = 5, 1,000 replications)

sit = 1[0.5 + 0.5xit + vit > 0], vit = (ηi + v0it)/
√
2, v0it ∼ iid N(0, 1), ηi ∼ N(0, 1),

yit = −1 + xit + uit , uit = 0.75vit + εit , εit = σµµi + ε0it , ε
0
it ∼ iid N(0, 1), µi ∼ N(0, 1),

H0 : β1 = 1, H1 : β1 , 1.

(a) 10% significance level

σµ POLS CW PO-CW OPT1 FD FA

0 0.120 0.120 0.116 0.101 0.108 0.121
1 0.133 0.127 0.101 0.105 0.108 0.121
2 0.134 0.119 0.098 0.106 0.108 0.121
3 0.129 0.123 0.104 0.096 0.108 0.121
5 0.124 0.114 0.104 0.084 0.108 0.121
10 0.122 0.110 0.093 0.062 0.108 0.121

(b) 5% significance level

σµ POLS CW PO-CW OPT1 FD FA

0 0.061 0.064 0.062 0.058 0.054 0.069
1 0.073 0.063 0.060 0.063 0.054 0.069
2 0.070 0.065 0.055 0.062 0.054 0.069
3 0.068 0.062 0.056 0.054 0.054 0.069
5 0.072 0.064 0.051 0.046 0.054 0.069
10 0.069 0.054 0.043 0.028 0.054 0.069

(c) 1% significance level

σµ POLS CW PO-CW OPT1 FD FA

0 0.019 0.018 0.015 0.016 0.012 0.015
1 0.012 0.015 0.013 0.015 0.012 0.015
2 0.017 0.014 0.014 0.012 0.012 0.015
3 0.021 0.013 0.013 0.012 0.012 0.015
5 0.024 0.011 0.008 0.008 0.012 0.015
10 0.023 0.009 0.007 0.005 0.012 0.015

Note: The variance for each sample is estimated from 100 bootstrap replications. The t-statistics are compared with the critical
values for the standard normal distribution.
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Table 6: Summary statistics

Variable Description Total sample Participants Nonparticipants

inlf Labor force participation 0.396 1.000 0.000
(0.489) (0.000) (0.000)

wage Average hourly earnings – 10.549 –
(thousand KRW) (6.383)

exper Job-market experience (year) 9.582 13.763 6.836
(7.707) (7.217) (6.721)

educ Education (year) 12.522 12.737 12.380
(2.970) (2.943) (2.980)

nwifeinc Other household annual income 42.394 35.486 46.931
(million KRW) (27.411) (23.076) (29.040)

nkids Number of children aged 0–19 1.071 1.062 1.076
(0.983) (0.946) (1.006)

age Age at year 2012 43.274 42.902 43.518
(8.542) (7.786) (8.997)

Number of observations 7,396 2,932 4,464

Note: Sample means and sample standard deviations (in parentheses) are reported. Statistics for participants and nonparticipants are
simple averages and standard deviations over the observations with inlf = 1 and inlf = 0, respectively.
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Table 7: Estimation results of the earnings equation for married women

ln(wage) exper expersq educ Wald test

POLS0 0.0823*** (0.0246) -0.0008*** (0.0003) 0.0494* (0.0383) –

FD0 0.0941** (0.0457) -0.0006** (0.0003) 0.0137 (0.0435) –

WG0 0.0760*** (0.0263) -0.0005*** (0.0002) 0.0209 (0.0323) –

POLS 0.1545*** (0.0471) -0.0008*** (0.0003) 0.0519* (0.0376) 14.19***

CW 0.1398*** (0.0528) -0.0007*** (0.0003) 0.0287 (0.0344) 9.87*

PO-CW 0.1757*** (0.0452) -0.0006** (0.0003) 0.0584** (0.0323) 28.02***

OPT1 0.1344*** (0.0419) -0.0007*** (0.0003) 0.0405 (0.0323) 12.15**

FD 0.0409 (0.0646) -0.0005** (0.0003) 0.0131 (0.0438) 14.08***

FA 0.0547* (0.0410) -0.0005*** (0.0002) 0.0187 (0.0325) 10.39**

Note: The dependent variable is log of average hourly earnings, ln(wage). Time dummies are included but the results are suppressed.

Standard errors for POLS0, FD0, and WG0 are estimated by the cluster-robust variance estimator, while those for POLS, CW, PO-

CW, OPT1, FD, and FA are obtained by using the Delta method explained in Appendix A.3. ***, **, and * denote statistical

significance at the 1%, 5%, and 10% levels, respectively. The Wald test statistics are for joint significance of the correction terms,

which are distributed as χ24 under the null.
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