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This paper studies a threshold regression model, where the threshold is determined by

an unknown relation between two variables. The novel features of this model are in

that the threshold is determined by two variables and their relation is nonparametric.

Furthermore, we allow that the observations can be spatially correlated and hence the

model can be applied to study thresholds over a random field. We derive the limiting

distributions of the semiparametric estimators and develop a likelihood ratio test on the

nonparametric threshold. As an empirical illustration, we estimate an unknown economic

border that splits the Queens and the Brooklyn boroughs in New York City, where each

region has a different level of the square-footage elasticity to the house price.
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1 Introduction

This paper studies a threshold regression model, where the threshold is determined by an

unknown relation between two variables. More precisely, we consider a model given by

 = 00 + 00 · 1 [ ≤ 0 ()] + 

for  = 1 2 · · ·  , in which the marginal effect of  to  can be different depending on

 ≤ 0 () or not. The threshold function 0(·) is unknown and the main parameters of
interest are 0, 0, and 0(·). The novel features of this model are in that the threshold is
determined by two scalar variables ( ) and their relation is nonparametric. Furthermore,

we allow that the observations can be cross-sectionally dependent (i.e., they can be strong-

mixing random fields as Bolthausen, 1982), and hence the model can be applied to study

thresholds over a space.

This paper contributes to the literature as follows. First, this paper formulates the thresh-

old by some unknown interactions between two variables : 1 [ ≤ 0 ()]. Unlike the stan-

dard threshold models presuming that the threshold is determined by the level of one variable

(e.g., Hansen, 2000), we consider that multiple variables can determine the threshold. Fur-

thermore, the threshold function can be fully nonparametric (but smooth enough) and hence

it can cover many interesting cases that have not been studied. For example, we can consider

a model with heterogeneous thresholds if we see 0 () as heterogeneous thresholds over ;

this specification can cover the case that the threshold is determined by the sign of a condi-

tional moment. Apparently, when 0() =  or 0() =  for some parameter  and  6= 0,
it becomes the standard threshold regression model (where the threshold is determined by

the ratio  for the latter case).

Second, this paper allows that the variables are cross-sectionally dependent, which has

not been considered in the threshold model literature. This generalization allows us to study

threshold models over a random field (i.e., space): If we let ( ) correspond to the latitude

and the longitude on the map, then 0(·) can be understood as the “unknown” border that
splits the area into two. Examples include identifying the boundary of some airborne pollution

(or toxic waste) or some tipping point over an area that segregates population.

The main results of this paper can be summarized in three-folds: First, we apply a

two-step estimation for this semiparametric model and derive asymptotic properties of the

estimators, where the unknown function 0(·) is estimated using a kernel method. Provided
0 = 0

− for some 0 6= 0 and  ∈ (0 12), it is shown that the nonparametric estimatorb(·) is uniformly consistent and (bb) satisfies the −12-consistency using asymptotic results
of random fields by Bolthausen (1982) and Jenish and Prucha (2009). Limiting distributions

of these semiparametric estimators are also derived. Second, we develop a pointwise test
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of 0 : 0() = ∗() for a given  in the support of ; simulation studies show its good

finite sample performance. Third, as an illustration, we apply this new model to study an

unknown spatial threshold. In particular, we estimate an unknown economic border that

splits the Queens and the Brooklyn boroughs in New York City, where each region has a

different level of the square-footage elasticity to the house price.

The rest of the paper is organized as follows. Section 2 summarizes the model and

our estimation procedure. Section 3 derived limiting properties of the estimators. Section

4 develops a likelihood ratio test of the threshold function and studies its small sample

performance by Monte Carlo simulations. Section 5 applies the results to the housing price

data to identify unknown economic border. All the mathematical proofs are in the Appendix.

2 Nonparametric Threshold Regression

We consider a threshold regression model given by

 = 00 + 00 · 1 [ ≤ 0 ()] +  (1)

for  = 1 2 · · ·  , where (   ) ∈ R1++1+1 and 0 (·) is an unknown function. The
threshold function 0(·) is unknown and the main parameters of interest are 0, 0, and 0(·).
In this model, the threshold is determined by two scalar variables ( ) and their relation

is nonparametric. If we see this model as a spatial threshold model over a space, then ( )

can be understood as the location index (i.e., latitude and longitude) and hence the threshold

1 [ ≤ 0 ()] describes two-dimensional sample splitting.
1

We estimate the unknown parameters in two steps. More precisely, for a given , we fix

0 () = , where  can depends on , and we first obtain b (; ) and b (; ) by local least
squares conditional on :

(b (; ) b (; )) = argmin


 (  ; ) , (2)

where

 (  ; ) =
X
=1



µ
 − 



¶¡
 − 0 − 01 [ ≤ ]

¢2
for some kernel function  (·) and a bandwidth parameter . Then, for a compact Γ ⊂ R,

1This model is different from Seo and Linton (2007), which specifies linear index form between ( ) but
assumes a nonparametric smooth transition function instead of 1 [·].
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0(·) is estimated by

b () = argmin
∈Γ

 (; ) for a given  ∈ S,

where  (; ) is the concentrated sum of squares defined as

 (; ) = 

³b (; ) b (; )  ; ´ . (3)

Finally, the estimators of 0 and 0 are obtained from

(bb) = argmin


X
=1

¡
 − 0 − 0

¢2
, (4)

where  = 1 [ ≤ b ()].
We allow for cross-sectional dependence in (0   )

0
in this study. For this purpose,

similarly as Jenish and Prucha (2009), we consider the samples over a random expanding

lattice  ⊂ R2 endowed with a metric  ( ) = max1≤≤2 | − | and the corresponding
norm max1≤≤2 ||, where  denotes the -th component of . We write || for the number
of elements in  and we simply let the cardinality of  as  (i.e., || = ); the summation

in (3) hence can be rewritten as
X

∈
. Following Bolthausen (1982) and Jenish and Prucha

(2009), we also define a mixing coefficient:

() = sup {| ( ∩)−  () ()| :  ∈ A and  ∈ A with  ( ) ≥ } , (5)

where A is the -algebra generated by (
0
   )

0
.

We first assume the following conditions. We let  ( ) be the joint density function of

( ), and define

 ( ) = 
£


0
| ( ) = ( )

¤
and (6)

 ( ) = 
£


0

2
 | ( ) = ( )

¤
. (7)

We also denote S as the support of  and S as a bounded subset in the interior of S. In
what follows, we only consider  ∈ S.

Assumption A

(i) The lattice  ⊂ R2 is infinite countable; all the elements in  are located at dis-

tances at least 0  1 from each other, i.e., for any   ∈  :  ( ) ≥ 0; and
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lim→∞ ||  = 0.

(ii) (0   )
0
is stationary and -mixing with the mixing coefficient () satisfyingP∞

=1() ∞ and
P∞

=1
2()(2+) ∞ for some   0.

(iii) 0 = 0
− for some 0 6= 0 and  ∈ (0 12) 

(iv)  [| ] = 0 and 0  
£
2 |  

¤
∞ almost surely.

(v)  :  7→ Γ is twice continuously differentiable, where Γ is a compact subset of R.

(vi) Uniformly in ( ), there exists  ∞ such that 
h
||||8+ |( ) = ( )

i
  and


h
||||8+ |( ) = ( )

i
  for some   0.

(vii)  ( ),  ( ), and  ( ) are bounded, continuous in , and twice continuously

differentiable in  ∈ S.

(viii) 00 (0() ) 0  0, 00 (0() ) 0  0, and  (0() )  0 for all  ∈ S.

(ix)  [
0
1 [ ≤ ] | = ] is positive definite for any  ∈ Γ and for any  ∈ S.

(x) As →∞,  → 0 and 1−2 →∞.

(xi)  (·) is uniformly bounded, continuous, and symmetric around zero with satisfyingR
 ()  = 0,

R
2 ()   0, 2 =

R
()2  ∞, lim→∞ ||() = 0, and

lim→∞ ||()2 = 0.

Most of these conditions are similar to Assumption 1 of Hansen (2000). Note that 0 in

Assumption A-(i) can be any strictly positive value, but we can impose 0  1 without

loss of generality. The mixing condition in Assumption A-(ii) is from Bolthausen (1982).

Assumption A-(x) and (xi) are standard in the kernel estimation literature (e.g., Li and

Racine, 2007), except that the magnitude of the bandwidth  depends on .

3 Asymptotic Results

We first obtain the asymptotic properties of the nonparametric estimator b (). The first
theorem shows that b () is uniformly consistent.
Theorem 1 Under Assumption A, sup∈S |b ()− 0 ()|→ 0 as →∞.

The second result derives the limiting distribution of b (). Similar to Hansen (2000), we let
 (·) be a two-sided Brownian motion.
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Theorem 2 Under Assumption A and 1−23 → 0, for any fixed  ∈ S,

1−2 (b ()− 0 ())→  () argmax
∈

µ
 ()− ||

2

¶

as →∞, where
 () =

2
0
0 (0 ()  ) 0

(00 (0 ()  ) 0)
2  (0 ()  )

and 2 =
R
()2.

Note that the distribution of argmax∈ ( ()− || 2) is known (e.g., Bhattacharya and
Brockwell, 1976), which is also described in Hansen (2000, p.581).  () term determines the

scale of the distribution at given , which increases in the conditional variance 
£
2 |  

¤
;

but decreases in the size of the threshold constant |0| and the density of ( ) near the
threshold.

Theorem 2 also shows that the (pointwise) rate of convergence of b () is 1−2, which
depends on two parameters,  and . It is decreasing in  like the parametric case. As noted

in Hansen (2000), a larger  reduces the threshold effect 0 = 0
− and hence decreases

effective sampling information on the threshold. Since we estimate (·) using the kernel
estimation method, the rate of convergence depends on the bandwidth size  as well. Like

the standard kernel estimator cases, smaller bandwidth decreases effective local sample size,

which reduces the precision of estimators of (·). Therefore, in order to have a sufficient
level of rate of convergence, we need to choose  large enough when the threshold effect

0 is expected to be small (i.e., when  seems to be large and close to 12). For instance,

by balancing the square of conventional 2-rate bias and the (
1−2)−1-rate precision from

Theorem 2, the optimal bandwidth satisfies ∗ = −(1−2)5 for some constant 0   ∞.2
However, it does not mean that we can always choose  as large as possible, which is also

common in the standard kernel estimation. The choice needs to be such that 1−23 → 0,

which is required to control for the (
2
) bias term in the kernel estimator and hence the

limiting distribution of 1−2 (b ()− 0 ()) has mean zero.

The next result derives the limiting distribution of the parameter estimators b and b,
where they satisfy the conventional −12-consistency. We denote  = [0 01 (0 ())]

0
.

Theorem 3 Let b = (b0b)0 and 0 = (00 0)0. Under the same condition in Theorem 2 and

2 It is the standard problem in the kernel estimation studies that the optimal bandwidth parameter selection

based on this expression is not feasible in practice since the constant term  is unknown. In our case,

unfortunately, it is even more infeasible because the choice of the bansdwidth parameter depends on the

nuisance parameter  as well, which is not even estimable. We can use the cross-validation approach in

practice, though its statistical properties need to be studied further.
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1−22 →∞,
√

³b − 0

´
→ N

¡
0∗−1 ∗∗−1¢

as →∞, where

∗ = 
£


0


¤
=

⎛⎝  [
0
]  [

0
1 (0 ())]

 [
0
1 (0 ())]  [

0
1 (0 ())]

⎞⎠ ,
 ∗ =   [] =

⎛⎝ 
£


0

2


¤

£


0

2
1 (0 ())

¤

£


0

2
1 (0 ())

¤

£


0

2
1 (0 ())

¤
⎞⎠ ,

which are positive definite by construction.

Note that we need a smaller bandwidth parameter  (i.e., 
1−22 →∞) in order to achieve

the −12-consistency of b. in Theorem 3. This additional condition is required to satisfy

the asymptotic orthogonality condition between b and b (e.g., Assumption N(c) in Andrews
(1994)), and hence the replacement of b by 0 in (4) has an effect at most (

−12). The
asymptotic variance can be estimated by the same analogue of ∗ and  ∗ using b =
 − 0b − 0b and b.
4 Likelihood Ratio Test

From Theorem 2, we can consider a pointwise likelihood ratio test statistic for

0 : 0 () = ∗ () for some  ∈ S, (8)

which is given as

() =

Ã
X
=1



µ
 − 



¶!
×  (∗ ()  )− (b ()  )

 (b ()  ) . (9)

The following theorem obtains the null limiting distribution of this test statistic.

Theorem 4 Under the same condition in Theorem 2, for any fixed  ∈ S, the test statistic
in (9) under the hull hypothesis (8) satisfies

()→  ()max
∈

(2 ()− ||)
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as →∞, where
 () =

2
0
0 (0 ()  ) 0

2()00 (0 ()  ) 0

with 2() = 
£
2 | = 

¤
and 2 =

R
()2.

When 
£
2 |   = 

¤
= 2(), which is the case of local conditional homoskedasticity, the

scale parameter  () is simplified as 2, and hence the limiting null distribution of ()

becomes free of nuisance parameters as well as common for all  ∈ S. Though this limiting
distribution is still nonstandard, the critical values in this case can be obtained using the

same method as Hansen (2000, p.582) with a scale-adjusted by 2. More precisely, since the

distribution function of  = max∈ (2 ()− ||) is given as  ( ≤ ) = (1−−2)21 [ ≥ 0]
(e.g., Hansen, 2000), the distribution of ∗ = 2 (which is the limiting random variable of

() under the local conditional homoskedasticity) is  (
∗ ≤ ) = (1− −22)21 [ ≥ 0].

By inverting it, we can obtain the asymptotic critical values for a choice of(·). For instance,
the asymptotic critical values for the Gaussian kernel is reported in Table I, where 2 =

(2
√
)−1 ' 02821 in this case.
For the general cases,  () can be estimated as

b () = 2b0 b (b ()  )bb2()b0 b (b ()  )b
where b2() =P

=1 1()b2 , b (b ()  ) =P
=1 2()

0
, and

b (b ()  ) =P
=1 2()

0
b2

are the standard Nadaraya-Watson estimators with b =  − 0b − 0b from (4) and

1() = 

µ
 − 



¶Á X
=1



µ
 − 



¶
,

2() = K
µ
 − b ()

0

 − 

00

¶Á X
=1

K
µ
 − b ()

0

 − 

00

¶
,

for some bivariate kernel function K(· ·) and bandwidth parameters 0, 00. Note that we
can also form an asymptotic confidence interval for b () using the likelihood test inversion
method advocated by Hansen (2000).

Table I: Asymptotic Critical Values (Gaussian Kernel)

 (∗  ) 0.800 0.850 0.900 0.925 0.950 0.975 0.990

 1.268 1.439 1.675 1.842 2.074 2.469 2.988
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In order to study small sample performance of the likelihood test, we conduct Monte Carlo

simulations as follows. We consider the threshold regression in (1) with  ∈ R1, 0 = 0, and
0 () = sin()2. For the dependence structure in (   )

0, we consider the following
two cases with  = 01:

• DGP1: (   )
0 ∼ N (0 4)

• DGP2:

⎧⎪⎨⎪⎩
( )

0 ∼ N (0 2) ;

| ( ) ∼ N ¡
0 [1 + 

¡
2 + 2

¢
]−1
¢
;

|{(  )}=1 ∼ N (0Ω) ,

where the ( )th element of Ω is Ω = [1+(( − )
2+( − )

2)]−1 for   = 1 2 · · ·  ,
and  = (1 · · ·  )0. DGP1 is the case with i.i.d. observations, whereas DGP2 is the
case with spatially correlated observations. For the bandwidth parameter, we simply select

 = 0 = 00 = −12, where  is the standard deviation of . Tables II and III summarize
the rejection probabilities of () at 5% nominal size over three different locations  = 00,

05, and 10 for these two DGP’s. For each location, we consider nine cases with  =

100 200 500 and 0 = 1 2 3. Note that each combination of ( 0) determines  for a fixed

0 as  = (log 0 − log 0) log. (See Hansen (2000) for a similar simulation design.) The
result shows that the performance of the likelihood ratio test improves with  and the size

of threshold 0.

Table II: Rej. Prob. with i.i.d. data (DGP1)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.14 0.08 0.05 0.11 0.08 0.04 0.10 0.06 0.04

200 0.17 0.09 0.05 0.18 0.08 0.06 0.16 0.10 0.03

500 0.26 0.08 0.06 0.28 0.11 0.05 0.27 0.11 0.05

Table III: Rej. Prob. with spatially correlated data (DGP2)

 = 00  = 05  = 10

 \ 0 1 2 3 1 2 3 1 2 3

100 0.08 0.06 0.04 0.06 0.05 0.05 0.06 0.04 0.03

200 0.11 0.05 0.04 0.12 0.06 0.05 0.11 0.07 0.04

500 0.22 0.12 0.08 0.27 0.13 0.09 0.27 0.14 0.10
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Figure 1: Threshold Function Estimate

5 Empirical Illustration

As an illustration, we study the housing price of the Queens and the Brooklyn boroughs

in New York City, using the single family house sales data in the year 2017. The data

set (Rolling Sales Data) is available at http://www1.nyc.gov/site/finance/taxes/property-

rolling-sales-data.page. In the threshold regression model (1), we consider the following

variables:3

   

house price ($) constant latitude longitude

log of Gross Square Footage (ft2)

log of Land Square Footage (ft2)

dummy for built before 1945 (WWII)

In this exercise, since the pair ( ) corresponds to the latitude and the longitude on the map,

“above the threshold” means the region on the northern side of the economic border, whereas

“below the threshold” means the region on the southern side of the economic border. The

sample size is  = 51 387 (27 233 observations in Queens; 24 154 observations in Brooklyn).

3“Gross Square Footage” is the total area of all the floors of a building as measured from the exterior

surfaces of the outside walls of the building, including the land area and space within any building or structure

on the property. “Land Square Footage” is the land area of the property listed in square feet. (Source:

http://www1.nyc.gov/assets/finance/downloads/pdf/07pdf/glossary_rsf071607.pdf)
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Figure 1 depicts the nonparametric threshold function estimates b, which is the “un-
known” economic border that splits the Queens and the Brooklyn boroughs in New York

City. The estimated border (orange line) is found to be substantively different from the

administrative border between these two boroughs (blue line). One interesting note is that

the big drop-down of the red line in the middle of Brooklyn is where the Brooklyn College

is located. Table IV summarizes the coefficient estimates for the parametric components, b
and b.

Table IV: Estimation Result

b b
constant 8.837 −2.367

log of Gross Square Footage 0.200 −0.506
log of Land Square Footage 0.418 0.824

dummy for built before 1945 0.119 0.025

We can find that the housing price on the southern side of the threshold (or economic border)

is lower than that on north. The (semi-) elasticity of the Gross Square Footage is higher on

the northern side, whereas the (semi-) elasticity of the Land Square Footage is higher on the

southern side. It is also found that houses on the southern side are older than the north.
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A Appendix

Throughout the proof, we denote  () =  (( − )) and 1 () = 1 [ ≤ ] for any

 : S 7→ Γ.

A.1 Useful Lemmas

Lemma A.1 For a given  ∈ S, let

 (; ) =
1



X
=1


0
1 () () ,

 (; ) =
1√


X
=1

1 () () .

Under Assumption A,

sup
∈Γ

| (; )− (; )|→ 0,

sup
∈Γ

¯̄̄
−12−12  (; )

¯̄̄
→ 0

as →∞, where
 (; ) =

Z 

−∞
( ) ( ) 

and
 (; )⇒  (; )

a mean-zero Gaussian process indexed by .

Proof of Lemma A.1 For expositional simplicity, we only present the case of scalar .

Throughout the proof,  ∈ (0∞) stands for a generic constant term that may vary, which

can depend on the location . We first prove the pointwise convergence of  (; ). By

stationarity, Assumption A-(vii) and Taylor expansion, we have

 [ (; )] =
1



ZZ
[2 | ]1[ ≤ ]

µ
 − 



¶
 ( ) 

=

ZZ
( + )1[ ≤ ] ()  ( + ) 

=

Z 

−∞
( ) ( )  +

¡
2
¢
,
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where ( ) is defined in (6). However, we have

  [ (; )] =
1

22


⎡⎣Ã X
=1

©
21 () ()−

£
21 () ()

¤ª!2⎤⎦
=

1

2

h©
21 () ()−

£
21 () ()

¤ª2i
+

2

22

X



£
21 () ()  

2
1 () ()

¤
= 

µ
1



¶
+

µ
1


+ 2

¶
→ 0.

Note that we use Assumption A-(vi), (vii), and Lemma 1 of Bolthausen (1982) to show that¯̄̄̄
¯̄ 1

X



£
21 () ()  

2
1 () ()

¤¯̄̄̄¯̄ (A.1)

≤ 1



X


¯̄̄̄


∙
21 ()

µ
 − 



¶
 21 ()

µ
 − 



¶¸¯̄̄̄

=
2


X


¯̄


£
21 () ()  

2
1 () ()

¤
+

¡
2
¢¯̄

≤ 2

∞X
=1

 ()(2+)
³

h
4+2 1 () ()

2+
i´2(2+)

+
¡
4

¢
= 

¡
2 + 4

¢
for some finite   0, where  () is the mixing coefficient defined in (5) and the equality

is by the change of variables ( = ( − )) in the covariance operator. The equality is

from the changes of variables and Taylor expansion like in  [ (; )] above. Hence, the

pointwise convergence is established. For a given , the uniform tightness of  (; ) in

 follows from a similar argument as in Lemma 4.6 of Zhu and Lahiri (2007). Then the

uniform convergence follows from standard argument. Since  [| ] = 0, the proof for
sup∈Γ |−12−12  ( ) | → 0 is identical and hence omitted.

Next, we derive the weak convergence of  (; ). For any fixed  and , Theorem of

Bolthausen (1982) implies that  (; ) ⇒  (; ) under Assumption A-(ii). Because  is

in the indicator function, such pointwise convergence in  can be generalized into any finite

collection of  to yield the finite dimensional convergence in distribution. By theorem 15.5 of

Billingsley (1968), it remains to show that, for each positive () and () at given , there

exist ∆  0 such that if  is large enough,



Ã
sup

∈[+∆]
| (; )−  (; )|  ()

!
≤ ()∆
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for any . To this end, we consider a fine enough grid such that  = 0  1  2  · · · 
−1  

=  +∆, where ∆2 ≤  ≤ ∆ and max1≤≤

¡
 − −1

¢ ≤ ∆.

We define () =  ()1
£
−1   ≤ 

¤
and () = −1−1

X

=1
|()|. Then

for any  ∈ £−1 ¤,¯̄
 (; )− 

¡
; 

¢¯̄ ≤ p
()

≤
p
 |()− [()]|+

p
 [()]

and hence

sup
∈[+∆]

| (; )−  (; )|

≤ max
1≤≤

¯̄

¡
; 

¢−  (; )
¯̄

+ max
1≤≤

p
 |()− [()]|+ max

1≤≤

p
 [()]

≡ Ψ1() +Ψ2() +Ψ3().

In what follows, we denote () =  ()1
£
   ≤ 

¤
for any given 1 ≤    ≤ 

and for a fixed . First, for Ψ1(), we have


h¯̄

¡
; 

¢−  (; )
¯̄4i

=
1

22

X
=1


£
4 ()

¤
+

1

22

X
6=


£
2 ()

2
 ()

¤
+

1

22

X
6=


£
3 ()()

¤
+

1

22

X
6= 6= 6=

 [()()()()] +
1

22

X
 6= 6=


£
2 ()()()

¤
≡ Ψ11() +Ψ12() +Ψ13() +Ψ14() +Ψ15(),

where each term’s bound is obtained as follows. For Ψ11(), a straightforward calculation and

Assumption A-(vi) yield Ψ11() ≤ 1()
−1−1 + () = (−1−1 ) for some constant

0  1() ∞. For Ψ12(), similarly as (A.1),

Ψ12() ≤ 2

22

X


¡

£
2 ()

¤

£
2 ()

¤
+
¯̄


£
2 () 

2
()

¤¯̄¢
(A.2)

≤ 2
³

he2 i´2 + 2

2

(
2

∞X
=1

 ()(2+)
³

he4+2

i´2(2+)
+

¡
4

¢)

for some   0 that depends on , where we let e =  ()1
£
   ≤ 

¤
from the

change of variables ( = ( − )). Then, by the stationarity, Cauchy-Schwarz inequality,

and Lemma 1 of Bolthausen (1982), we have

Ψ12() ≤  0
¡
 − 

¢2
+(−1) +(2)
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for some constant 0   0 ∞ similarly as Hansen (2000). Using the same argument as the

second component in (A.2), we can also show that Ψ13() = (−1) +(2). For Ψ14(), by

stationarity,

Ψ14() ≤ 4!

22

X
1

| [1()()()()]|

≤ 4!

2

X
=1

X
≤

| [1() +1()++1()+++1()]|

+
4!

2

X
=1

X
≤

| [1()+1() ++1()+++1()]| (A.3)

+
4!

2

X
=1

X
≤

| [1() +1()++1() +++1()]|

similarly as Billingsley (1968, p.173). By Assumption A-(vi), (vii), and Lemma 1 of Bolthausen

(1982),

| [1() +1()++1()+++1()]|
≤  ()(2+)

× ¡ £1()2+¤¢1(2+) ³ h(+1()++1()+++1())2+i´1(2+)
=  ()(2+)

×
³


n

he2+1

i
+

¡
2
¢o´1(2+)µ

3

½


∙³e+1e++1e+++1´2+¸+
¡
2
¢¾¶1(2+)

= 4(2+)  ()(2+)

×
(³


he2+1

i´1(2+)µ


∙³e+1e++1e+++1´2+¸¶1(2+) +
¡
2
¢)
,

where the first equality is by the change of variables ( = ( − )) and by Assumption

A-(xi). It follows that the first term in (A.3) satisfies

4!

2

X
=1

X
≤

| [1() +1()++1()+++1()]|

≤ 4!


2−(4(2+))


∞X
=1

2 ()(2+)

×
(³


he2+1

i´1(2+)µ


∙³e+1e++1e+++1´2+¸¶1(2+) +
¡
2
¢)

= 

Ã
1


2(2+)


!
+

Ã

4(2+)




!
(A.4)
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by Assumption A-(ii). However, if we select  such that

2

2 + 
≥ 1

1− 2 ,

then 
2(2+)
 = (1−2(2(2+))(1−2) )1(1−2) → ∞ by Assumption A-(x), which yields

(A.4) becomes (1). Using the same argument, we can also verify that the rest of terms in

(A.3) are all (1) and hence Ψ14() = (1). For Ψ15(), we can similarly show that it is (1)

as well because

Ψ15() ≤ 3!

2

X
=1

X
≤

¯̄


£
21() +1()++1()

¤¯̄
+
3!

2

X
=1

X
≤

¯̄


£
21()+1() ++1()

¤¯̄
.

By combining these results for Ψ11() to Ψ15(), we thus have


h¯̄

¡
; 

¢−  (; )
¯̄4i ≤ 1()

¡
 − 

¢2
for some constant 0  1() ∞ given , and Theorem 12.2 of Billingsley (1968) yields



µ
max

1≤≤

¯̄

¡
; 

¢−  (; )
¯̄
 ()

¶
≤ 1()∆

2

4()
, (A.5)

which bounds Ψ1().

To boundΨ2(), the standard result (e.g., Li and Racine, 2007, Ch.1) yields that
£
2
¤ ≤

2() for some constant 0  2() ∞ given . Then by Lemma 1 of Bolthausen (1982),

we have



∙³p
 |()− [()]|

´2¸
=

1


 

"
X
=1

|()|
#

≤ 1



£
2()

¤
+

2



X


| (|()|  |()|)|

≤ 2()∆

and hence by Markov’s inequality,



µ
max

1≤≤

p
 |()− [()]|  ()

¶
≤ 2()∆

2()
. (A.6)

Finally, to bound Ψ3(), note thatp
 [()] = 1212 3()∆ ≤ 23()−12−12 (A.7)

for some constant 0  3() ∞ given , where ∆ ≤ 2. So tightness is complete by
combining (A.5), (A.6), and (A.7), and hence the weak convergence follows from Theorem
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15.5 of Billingsley (1968). ¥

Lemma A.2 Define  = 1−2, where  is given in Assumption A-(iii). For a given
 ∈ S, let  () = 0 () +  with some || ∞, and

∗ ( ) =
X
=1

¡
00

¢2
(1 ( ())− 1 (0 ())) () ,

∗ ( ) =
X
=1

00 (1 ( ())− 1 (0 ())) () .

Then,
∗ ( )→ || 00 (0 ()  ) 0 (0 ()  )

and

∗ ( )⇒ ()
q
00 (0 ()  ) 0 (0 ()  )2

as →∞ under Assumption A, where 2 =
R
()2.

 () =
00 (0 ()  ) 02

(00 (0 ()  ) 0)
2  (0 ()  )

.

Proof of Lemma A.2 First consider   0. By change of variables and Taylor expansion,

Assumption A-(vii) and (viii) imply that

 [∗ ( )] =



X
=1


h¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
= 

ZZ 0()+

0()

h¡
00

¢2 | + 
i
 ()  ( + ) 

= 00 (0 ()  ) 0 (0 ()  ) +  (1) .

Next, given that (1 (0 () + )− 1 (0 ()))2 = 1 (0 () + )− 1 (0 ()) for   0,
we have

  [∗ ( )] =
2
22

 

"
X
=1

¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

#

=
2
2

 
h¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
+
22
22

X



h¡
00

¢2
(1 (0 () + )− 1 (0 ())) () 

¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
≡ Ψ1( ) +Ψ2( ).

16



Taylor expansion and Assumption A-(vii) and (viii) lead to that

Ψ1( ) =
2
2


h¡
00

¢4
(1 (0 () + )− 1 (0 ()))2

 ()
i

− 2
2

³

h¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i´2
= 

¡
−2

¢
=  (1) .

Furthermore, by change of variables ( = (−)) in the covariance operator and Lemma
1 of Bolthausen (1982), for some   0

Ψ2( )

≤ 22
2

X



h¡
00

¢2
(1 (0 () + )− 1 (0 ())) () 

¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

i
≤ 22



∞X
=1

 ()2(2+)
µ


∙¯̄̄¡
00

¢2
(1 (0 () + )− 1 (0 ())) ()

¯̄̄2+¸¶2(2+)
= 

¡
−1

¢
=  (1) .

Hence, the pointwise convergence of ∗ ( ) is obtained. Since 00 (0 ()  ) 0 (0 ()  )
is strictly increasing and continuous in , the convergence holds uniformly on any compact

set. The same argument holds for negative , which completes the proof for ∗ ( ).
For ∗ ( ), Assumption A-(iv) leads to  [∗ ( )] = 0. Then, similarly as for ∗ ( ),

for any  6= , we have


£
00 (1 (0 + )− 1 (0)) ()  (A.8)

00 (1 (0 + )− 1 (0)) ()
¤ ≤ 2

−1
 

for some positive constant  ∞, by the change of variables in the covariance operator and
Lemma 1 of Bolthausen (1982). It follows that

 [∗ ( )] =



 
£
00 |1 (0 + )− 1 (0)| ()

¤
+ ()

= 00 (0 ()  ) 0 (0() )2 +  (1) ,

where 2 =
R
()2. Then by the CLT for stationary and mixing random field (e.g.

Bolthausen (1982); Jenish and Prucha (2009)), we have

∗ ( )⇒ ()
q
00 (0 ()  ) 0 (0 ()  )2

as →∞. This pointwise convergence in  can be extended to any finite-dimensional conver-
gence in  by the fact that for any 1  2,  [

∗
 (1 )  

∗
 (2 )] =   [∗ (1 )]+ (1)

since (1 (0 + 2)− 1 (0 + 1))1 (0 + 1) = 0 and (A.8). The tightness follows
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from a similar argument as in Lemma A.1 and the desired result follows by Theorem 15.5 in

Billingsley (1968). ¥

A.2 Proof of Main Theorems

Proof of Theorem 1 We first show pointwise convergence. For given  ∈ S, let e() =
()

12, e() = ()
12, e() = ()

12, and e(; ) = ()
121 (()); we

denote e(), e(), e(), e(; ) as their corresponding matrices of -stacks. Then b(; ) =
(b(; )0b(; )0)0 in (2) is given as

b(; ) = ( e(; )0 e(; ))−1 e(; )0e(), (A.9)

where e(; ) = [ e() e(; )]. Therefore, since e() = e()0 + e(0(); )0 + e() ande() lies in the space spanned by e(; ), we have
 (; )− e()0e() = e()0 ¡ − (; )¢ e()− e()0e()

= −e()0 (; )e() + 200 e(0(); )0 ¡ − (; )¢ e()
+00 e(0(); )0 ¡ −  (; )¢ e(0(); )0

where  (; ) = e(; )( e(; )0 e(; ))−1 e(; )0 and  is the identity matrix of rank .

Because

(; ) =
1



X
=1

e(; )e(; )0 and (; ) =
1√


X
=1

e(; )e(),
however, Lemma A.1 yields that

e(; )0e() = [ e()0e() e(; )0e()] = 

³
1212

´
e(; )0 e(0(); ) = [ e()0 e(0(); ) e(; )0 e(0(); )] =  ()

for given . It follows that

1

1−2

¡
 (; )− e()0e()¢ (A.10)

= 

µ
1

1−2

¶
+

µr
1

1−2

¶
+

1


00 e(0(); )0 ¡ −  (; )¢ e(0(); )0

=
1


00 e(0(); )0 ¡ −  (; )¢ e(0(); )0 + (1)

as 1−2 → 0 with  → ∞. Note that  (; ) is the same as the projection onto
[ e() − e(; ) e(; )], where e(; )0( e() − e(; )) = 0. Furthermore, for  ≥ 0(),e(0(); )0( e()− e(; )) = 0 and e(0(); )0 e(; ) = e(0(); )0 e(0(); ). Hence,
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similarly as Lemma A.1, it can be verified that

 [ (0(); )] =
1



ZZ
[2 | ]1[ ≤ 0()]

µ
 − 



¶
 ( )  (A.11)

=  [ (0; )] +

Z ÃZ 0(+)

0()
( + )( + )

!
()

=  [ (0; )] +

Z ÃZ 0(+)

0()
( )( )

!¡
1 + 1

2

2
¢
()

=  [ (0; )] +

Z ¡
21+ 22

2

2
¢ ¡
1 + 1

2

2
¢
()

=  [ (0; )] +
¡
2
¢
,

for some 1 21 22  ∞, where the fourth equality is by the Leibniz integral rule under
Assumption A-(v). It follows that, uniformly over  ∈ Γ ∩ [0()∞),

1


00 e(0(); )0 ¡ −  (; )¢ e(0(); )0 (A.12)

→ 
0
0(0; )0 − 00(0; )

0(; )−1(0; )0 ∞,

from Lemma A.1 and Assumptions A-(viii) and (ix), as 
¡
2
¢
= (1). Note that (; ) =

[
0
1()| = ]() is positive definite from Assumptions A-(viii) and (ix), where ()

is the marginal density of . The pointwise consistency follows using the same argument as

the proof of Lemma A.5 of Hansen (2000).

Next, to show the uniform consistency over  ∈ S, it suffices to show the uniform tightness
of b () on . For any , consider 1  2. By Assumption A-(v), we can pick ∆ such

that |0 (2)− 0 (1)| ≤ ∆ for any |2 − 1| ≤ ∆. Then, take a fine enough grid 1 =

0  1  2  · · ·  −1   = 2 such that max1≤≤ | − −1| ≤ ∆. By the

pointwise consistency, max1≤≤ |b ()− 0 ()| ≤ ∆ when  is sufficiently large. For any

 ≤ − 1 and any  ∈ [ +1], therefore, Assumption A-(v) and the pointwise convergence
imply that with probability greater than 1 − , both b () and 0 () are in the interval

[0 ()−  0 (+1)+ ], which has length bounded by 3. Since  is arbitrary, we have with

probability greater than 1− ,

sup
0≤≤∆

|b (1)− b (1 + )|

≤ max
1≤≤

|b ()− 0 ()|+ max
1≤≤

sup
∈[ +1]

|b ()− 0 ()|+ sup
0≤≤∆

|0 (1)− 0 (1 + )|

≤ 4∆

which completes the proof by Theorem 15.5 of Billingsley (1968). ¥

In order to prove Theorem 2, we first show the following lemma.

Lemma A.3 Let b (b ()) = (b (b ())0 b (b ())0)0, b (0 ()) = (b (0 ())0 b (0 ())0)0, and
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0 = (
0
0 

0
0)
0 for a given  ∈ S. Then, under Assumption A,p



³b (0 ())− 0

´
= (1) and

p


³b (b ())− b (0 ())´ = (1).

Proof of Lemma A.3 For the first result, from (A.9), we havep


³b (0 ())− 0

´
=

µ
1


e(0; )0 e(0; )¶−1µ 1√


e(0; )0e()¶

=

Ã
1



X

=1


0
 () (0; )

(0; ) (0; )

!−1Ã
1√


X

=1
0 ()

(0; )

!
= (1)

from Lemma A.1, where ()
−1X

=1


0
 () → ()  ∞ for some positive definite

() and 1√


X

=1
0 () = (1).

For the second result, we let b() = [0 
0
1 (b ())]0, () = [0 

0
1 (0 ())]

0
, and

 = [
0
 

0
1 (0 ())]

0
. Then,  = 00+. Using a using a similar expression as above, we

have p


³b (b ())− b (0 ())´ (A.13)

=
p


³b (b ())− 0

´
−
p


³b (0 ())− 0

´
=

µ
 + 

µ
1



¶¶−1 1√


X
=1

©b() ¡ − b()00¢− ()
¡
 − ()

00
¢ª

 ()

=

µ
 + 

µ
1



¶¶−1( 1√


X
=1

(b()− ) ()

− 1√


X
=1

b() (b()− )
0 0 ()− 1√



X
=1

() ( − ())
0 0 ()

)

for some 0   ∞. However, since b()−  = [0 
0
 (1 (b ())− 1 (0 ()))]0,

1√


X
=1

(b()− ) ()

=

"
0

1√


X
=1

 (1 (b ())− 1 (0 ())) ()

#0

=

"
0

1√
1−2

X
=1

− (1 (b ())− 1 (0 ())) ()

#0
= ((

1−2)−12)→ 0
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by Lemma A.2 and Assumption A-(x). Similarly, we also have

1√


X
=1

b() (b()− )
0 0 ()

=

"
(1−2)−12

P
=1 

−00 (1 (b ())− 1 (0 ())) ()

(1−2)−12
P

=1 
−00 (1 (b ())− 1 (min{b ()  0 ()})) ()

#
= ((

1−2)−12)→ 0

since (b()− )
0 0 = 00 (1 (b ())− 1 (0 ())). The last component in (A.13) can be

shown to be ((
1−2)−12) as well using the same argument, which completes the proof.

¥

Proof of Theorem 2 First, define  = 1−2, where  is given in Assumption A-

(iii). For a given  ∈ S, we consider e() such that |e ()− 0 ()| ∈ [() ] for some
0  ()  ∞. Then, given Lemma A.2, it can be verified that  (∗(e; )−∗(0; ) 
0) → 1 as  → ∞ using the standard results in kernel regression (e.g., Li and Racine,

2007, Ch.2) and following Hansen (2000), where ∗(0; ) = (b (b ()) b (b ())  0; )
and ∗(e; ) = (b (b ()) b (b ())  e; ). It follows that with probability approaches to
one, since ∗(b; ) −∗(0; ) ≤ 0 for given , |b () − 0 () | ≤ () and hence we can

define a random variable ∗() such that

∗() = (b ()− 0 ()) = argmax

½
∗(0; )−∗

µ
0 +




; 

¶¾
.

We now let ∆(; ) = 1 (0 () + ())− 1 (0 ()). We then have

∗(0; )−∗

µ
0 +




; 

¶
= −

X
=1

³b (b ())0 ´2∆(; ) ()

+2
X
=1

³
 − b (b ())0  − b (b ())0 1 (0 ())´³b (b ())0 ´∆(; ) ()

≡ −(; ) + 2(; ).
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For (; ), Lemmas A.2 and A.3 yield

(; ) =
X
=1

µ³
0 + −12−12  + (

−12−12 )
´0


¶2
∆(; ) ()

= ∗ ( ) +
1

1−2

X
=1

¡
−

¢0


0


¡
−

¢
∆(; ) () +  (1)

= ∗ ( ) +

¡
(1−2

¢−1
) +  (1)

= ∗ ( ) + (1)

for some   ∞, since 1−2 → ∞ and
X

=1
−2 0

0
∆(; ) () = (1)

from Lemma A.2. Note that b (b ()) − 0 = (b (b ()) − b (0 ())) + (b (0 ()) − 0) =

(
−12−12 ) from Lemma A.3. Similarly, for (; ), since  = 00+

0
01 (0())+,

we have for some  ∞

(; )

=
X
=1

µ
 + 00 {1 (0 ())− 1 (0 ())}−

³b (b ())− 0

´0


−
³b (b ())− 0

´0
1 (0 ())

¶b (0 ())0 ∆(; ) ()

=
X
=1

³
 + 00 {1 (0 ())− 1 (0 ())}− −12−12  0 − −12−12  01 (0())

´
×
³
0 + −12−12 

´0
∆(; ) () + (1)

= ∗ ( ) +
1√

1−2

X
=1


¡
−

¢
∆(; ) ()

+
X
=1

00
0
0 (∆(; ) {1 (0 ())− 1 (0 ())}) () (A.14)

+
1√

1−2

X
=1

00
0


¡
−

¢
(∆(; ) {1 (0 ())− 1 (0 ())}) ()

+
1√

1−2

0X
=1

00
0


¡
−

¢
∆(; ) ()

+
1

1−2

X
=1

¡
−

¢0


0


¡
−

¢
∆(; ) ()

+
1√

1−2

0X
=1

00
0


¡
−

¢ {∆(; )1 (0())} ()

+
1

1−2

X
=1

¡
−

¢0


0


¡
−

¢ {∆(; )1 (0())} () + (1)
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= ∗ ( ) +

¡
(1−2

¢−12
) +(

1−23) +

¡
(1−2

¢−12
) + (1)

= ∗ ( ) + (1)

from Lemma A.2, since 1−2 → ∞ and 1−23 → 0 under Assumption A-(x). Note

that the third term on (A.14), denoting 3(; ), is 

¡
1−23

¢
, which is also negligible as

1−23 → 0. To see this, similarly as  [ (; )] in the proof of Lemma A.1, we have

 [3(; )] =


2−1

ZZ
00( + )0 {1[ ≤ 0 () + ()]− 1[ ≤ 0 ()]}
×{1[ ≤ 0 (+ )]− 1[ ≤ 0 ()]} ()  ( + ) .

However, since4

{1[ ≤ 0 () + ()]− 1[ ≤ 0 ()]} {1[ ≤ 0 (+ )]− 1[ ≤ 0 ()]}
= 1 [0 ()   ≤ min {0 (+ )  0 () + ()}]

+1 [max {0 (+ )  0 () + ()}   ≤ 0 ()]

≤ 1 [0 ()   ≤ 0 (+ )] + 1 [0 (+ )   ≤ 0 ()] ,

we have

 [3(; )] ≤ 
2−1

ZZ 0(+)

0()
00( + )0 ()  ( + ) 

+


2−1

ZZ 0()

0(+)
00( + )0 ()  ( + ) 

= 
¡
1−23

¢
,

which is because ZZ 0(+)

0()
00( + )0 ()  ( + ) 

=

Z ÃZ 0(+)

0()
00( )0 ( ) 

!¡
1 + 1

2

2
¢
()

=

Z ¡
21+ 22

2

2
¢ ¡
1 + 1

2

2
¢
()

= 
¡
2
¢

4Note that

1 [1   ≤ min {2 3}] + 1 [max {2 3}   ≤ 1]

=


1 [1   ≤ 2] + 1 [3   ≤ 1] if 2 ≤ 3
1 [1   ≤ 3] + 1 [2   ≤ 1] if 2  3


≤


1 [1   ≤ 2] + 1 [2   ≤ 1] if 2 ≤ 3
1 [1   ≤ 2] + 1 [2   ≤ 1] if 2  3


= 1 [1   ≤ 2] + 1 [2   ≤ 1] .
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for some 1 21 22 ∞, similarly as (A.11). The other term can be verified symmetrically.
It hence follows that

∗(0; )−∗

µ
0 +




; 

¶
= −∗ ( ) + 2∗ ( ) + (1)

and the desired result follows from Lemma A.2 using the same argument of the proof of

Theorem 1 of Hansen (2000). ¥

Proof of Theorem 3 Let b = [0 
0
1 (b ())]0,  = [0 

0
1 (0 ())]

0
, and ∆ () =

1 (b ())− 1 (0 ()). Then,
√

³b − 0

´
=

Ã
1



X
=1

bb0
!−1Ã

1√


X
=1

b ¡ − (b − )
0 0
¢!

=

Ã
1



X
=1

bb0
!−1Ã

1√


X
=1

©
 + ( − b) + b (b − )

0 0
ª!

and it suffices to establish

1



X
=1

bb0 → 
∗ (A.15)

1√


X
=1

 → N (0  ∗) (A.16)

and

1√


X
=1

b (b − )
0 0 =  (1) (A.17)

1√


X
=1

( − b) =  (1) . (A.18)

First, by Assumptions A-(vi), (x), and Theorem 2, (A.15) can be readily verified since

−1
X

=1


0
1 (b ()) = −1

X

=1


0
1 (0 ()) + −1

X

=1


0
∆ () and


£


0
∆ ()

¤ ≤ Z ¯̄̄̄
¯
Z ()
0()

 ( )  ( ) 

¯̄̄̄
¯  (A.19)

=

Z ½
| (0 ()  )  (0 ()  )|

µ
1

1−2

¶¾


= 

µ
1

1−2

¶
→ 0

similarly as (A.11). Using a similar argument, asymptotic normality in (A.16) follows by

Theorem of Bolthausen (1982) under Assumption A-(ii).

Second, to show (A.17) and (A.18), we consider the case of scalar  for expositional
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simplicity. We first observe that, by Assumptions A-(vi), (x), and (A.19),



⎡⎣Ã 1√


X
=1

2 0∆ ()

!2⎤⎦ = 
£
4 

2
0 |∆ ()|

¤
+ 2

¡

£
2 0∆ ()

¤¢2
(A.20)

+
2



X



£
2 0∆ ()  

2
0∆ ()

¤
≤ −220

£
4 |∆ ()|

¤
+ 21−220

¡

£
2∆ ()

¤¢2
+2−220

∞X
=1

 ()(2+)
h¯̄
2∆ ()

¯̄2+i2(2+)
= 

¡
−2

¢
+

µ
1

1−22

¶
+

¡
−2

¢→ 0,

provided 1−22 →∞. Similarly as (A.19), we can also verify that


h
(∆ ())

2
i
≤
Z ¯̄̄̄
¯
Z ()
0()

 ( )  ( ) 

¯̄̄̄
¯  = 

µ
1

1−2

¶
and hence



⎡⎣Ã 1√


X
=1

∆ ()

!2⎤⎦ = 

µ
1

1−2

¶
→ 0 (A.21)

since [∆ ()] = 0 from Assumption A-(iv). From (A.20) and (A.21), therefore,

1√


X
=1

b (b − )
0 0 =

⎡⎣ −12
X

=1


0
0∆ ()

−12
X

=1


0
0∆ ()1 (b ())

⎤⎦
1√


X
=1

( − b) =

⎡⎣ −12
X

=1
∆ ()

−12
X

=1
∆ ()1 (b ())

⎤⎦
are both (1), which completes the proof. ¥

Proof of Theorem 4 From (A.10) and (A.12), we have

1


 (b ()  ) = 1



X
=1

2 () + (1)→ 
£
2 | = 

¤
 () ,

where  () is the marginal density of . In addition, from Theorem 2 and the proof of

Lemma A.3, we have

 (0 ()  )− (b ()  ) = ∗ (0 ()  )−∗ (b ()  ) + (1)

since b (b ()) − b (0 ()) = (()
−12). Following the proof of Theorem 2 of Hansen

(2002), the rest of the proof follows from the change of variables and the continuous mapping
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theorem because ()
−1X

=1
 () →  () by the standard result of kernel density

estimation. ¥
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