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Abstract

This paper studies possibilities of using shrinkage methods for predictive regression. The
variable selection in predictive regression is important since there is a variety of potential pre-
dictor variables. The commonly used predictors typically have various degrees of persistence,
and exhibit low signal strength in explaining the dependent variable. We investigate the pitfalls
and possibilities of the LASSO methods in this predictive regression framework with mixed de-
grees of persistence. We show that the adaptive LASSO methods have the consistent variable
selection and the oracle properties under the presence of stationary, unit root and cointegrated
predictors. The conventional LASSO methods under this environment are also studied, signi-
fying some practical concerns. Exploratory simulation results are reported, and some empirical

practices are performed for illustration.
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1 Introduction

Predictive regression models are extensively used in empirical macroeconomics and finance. A
leading example is the stock return regression model where predictability has been a long standing
goal. The first central econometric issue in these models is severe test size distortion in the presence
of highly persistent predictors coupled with the regression endogeneity. When persistence and
endogeneity are present, the conventional inferential tools designed for stationary data are no longer
valid. Another major challenge in predictive regression is the well-known low signal-to-noise ratio
(SNR). The regression coefficient representing the predictive relation is small albeit it could be
statistically significant. Thus it is hard to detect the significant relation, and is often dominated
by the estimation error when the predictive relation is exploited for forecasting. The predictive
regression literature has developed econometric methods for overcoming the inferential difficulties
and for improving prediction.

The shrinkage methods have been popular in the era of high dimensional data. We have wit-
nessed unprecedented abundance of data sources across many disciplines such as computer science,
neuroscience, engineering and statistics. This data-rich environment also provides new challenges
and opportunities in using machine learning technique for economic data analysis. Machine learning
methods, in particular, the shrinkage methods are increasingly popular for the econometric inference
and prediction in view of its variable selection and regularization property. A leading technique in
the shrinkage methods is the least absolute shrinkage and selection operator (LASSO; Tibshirani,
1996), which has received much attention in the past two decades.

This paper stuides the property of LASSO methods in predictive regression. The intrinsic low
SNR in predictive regression creates challenges hence naturally calls for a shrinkage method. A
researcher may throw in ez ante a pool of candidate regressors hoping to catch a few important
predictors. The more variables the researcher attempts, the more important is a data-driven method
for variable screening, since many of these variables ex post demonstrate little to none predictability.
LASSO-type shrinkage methods are therefore attractive in the predictive regression as they enable
researchers to select the important predictors and excluding the irrelevant or unimportant ones.
However, time series regressors in predictive regressions have heterogeneous degrees of persistence.
Some may exhibit short memory (e.g., T-bill), while others are highly persistent (e.g., most of
financial /macro predictors). Moreover, the multiple persistent predictors can be cointegrated. For
example, DP ratio is essentially a cointegrating residual between the dividend and price. The so-
called cay data (Lettau and Ludvigson, 2001) is another cointegrating residual between consumption,
asset holdings and labor income. The property of LASSO methods under the mixed regressor
persistence has not been systematically studied yet.

The performance of LASSO procedure crucially relies on the choice of the tuning parameter. In
this paper, we examine whether a single tuning parameter can cope with the heterogeneous degrees
of regressors. In particular, we explore the plain LASSO (Tibshirani, 1996), the standardized
LASSO (see below for the definition) and the adaptive LASSO (Zou, 2006) with three categories of

regressors; non-cointegrated unit root (I(1)) regressors, cointegrated regressors, and short memory



(I(0)) regressors. The different degrees of persistence of the regressors challenges the conventional
wisdom of the variable screening property of the plain LASSO and the standardized LASSO. We find
that the last two methods with the commonly used tuning parameter cannot deliver proper variable
screening. In contrast, the adaptive LASSO with the proper choices of the tuning parameter and the
weights is shown to achieve the oracle property and consistent variable selection. Our exploration
in this paper paves a stepping stone toward the automated variable selection in a high-dimensional

predictive regression with heterogeneously persistent regressors.

Literature Review Since the seminal LASSO paper by Tibshirani (1996), a variety of nontrivial
extension of LASSO has been proposed; the adaptive LASSO (Zou, 2006) and Elastic net (Zou
and Hastie, 2008), to name a few. In econometrics, Caner (2009) and Caner and Zhang (2014)
employ the LASSO-type procedures in GMM contexts. Belloni and Chernozhukov (2009), Belloni,
Chen, Chernozhukov and Hansen (2012), Belloni, Chernozhukov and Hansen (2014), Belloni, Cher-
nozhukov, Chetverikov and Wei (2015) develop new methodology and uniform statistical theory for
estimation and inference in various microeconometric settings.

In comparison with the vast literature of LASSO in cross sectional regressions, shrinkage methods
are less studied in time series context. Medeiros and Mendes (2016) study the adaptive LASSO
method in high-dimensional stationary time series models. Kock and Callot (2015) discuss LASSO
in a VAR system. In the time series forecasting context, Inoue and Killian (2006) apply various
model selection and model averaging methods to forecast U.S. consumer price inflation. Hirano and
Wright (2017) develop a local asymptotic framework with iid orthonormalized predictors to study
the risk properties of various machine learning estimators.

There are also a few papers on LASSO with nonstationary data. Caner and Knight (2013)
discuss the bridge estimator, a generalization of LASSO, for the augmented Dicky-Fuller test in
autoregression. Under the same setting, Kock (2016) investigates consistent variable selection by
adaptive LASSO. In a VECM framework, Liao and Phillips (2015) use the adaptive LASSO for
cointegration rank selection.

In predictive regression context, Kostakis et al.(2014), Lee (2016) and Phillips and Lee (2013,
2016) provide some valid inference in the presence of multiple predictors with various degrees of
persistence. Xu (2017) studies variable selection and inference in predictive regression with possible
cointegration among the I(1) predictors. Koo et al. (2016) recently investigates the property of
the plain LASSO in predictive regressions, in which they invoke the restricted eigenvalue condition
(Bickel, Ritov and Tsybakov, 2009). The last two papers are closely related to this paper. We,
however, advocate the usage of adaptive LASSO in predictive regression under mixed degrees of
persistence.

The paper is organized as follows. Section 2 introduces the unit root regressors into a simple
LASSO framework to clarify the idea. Section 3 substantially generalizes the model to include I{0),
I(1) and cointegrated regressors. The theoretical results are explored through a set of empirically

relevant simulation designs in Section 4. We also examine the stock return regressions via these



LASSO methods in Section 5.

Notation We use standard notation. We define ||-||; and ||-||, as the usual vector {;-norm and
lo-norm respectively. — , —P and —*% represent convergence in distribution, convergence
in probability and almost sure convergence, respectively. All limit theory assumes n — oo S0 we
oftentimes omit this condition. ~ signifies "being distributed as" either exactly or asymptotically,
depending on the contexts. O (1) and o(1) (O, (1) and o,(1)) are (stochastically) asymptotically

bounded or negligible quantities.

2 LASSO Theory with Unit Roots

In this Section, we study the theory of LASSO with p-dimensional unit root regressors. To fix ideas,
we investigate the asymptotic behavior of the adaptive LASSO, plain and standardized LASSO
under a simple nonstationary regression model. This simple framework helps us understand the
technical issues in LASSO arising from nonstationary predictors with the conventional choices of
tuning parameters. Section 3 generalizes the simplistic model to include 1(0), I(1) and cointegrated
predictors altogether.

Assume the dependent variable y; is from the linear model

P
y¢:ZmijB;n+ui, 1=1,...,n. (1)
j=1
Let y = (y1,-..,yn)" be the response vector, and X = [z1,...,xp] be the predictor matrix, where
each z; = (x1;,...,xn;) for j = 1,...,p are unit root predictors with x;; = z;—1; +€;; = ZZZI €kj

eij ~ iid (O,agj). For simplicity, let eg; = 0 for all 5. In a p x 1 vector notation

%
4 =3¢ )
k=1

where ey. = (g1, ..., €xp).
We assume the following iid assumption on innovations. This assumption will be substantially

generalized to the linear process assumption in Section 3.

Assumption 2.1 The vector of innovation e;. = (e;1, ..., €ip) (1 X p vector) and u; (scalar) follow

the joint wid distribution:

/ S, %
(el'> ~iid (0,2:( oo T ))
U; (p1)x1 Zeu Ou



Under Assumption 2.1, the following functional central limit theorem holds:
L3 ( i ) e ( Bt ) = BM (%) Q)
v k=1 \ YF ) pryxa Bu(r)
The regression equation (1) can be equivalently written as

p
y=>Y =85, tu=y=Xp +u. (4)
j=1

where ! = (ﬂikn,...,ﬁ;jn)/. The true coefficient in (1) 87, = Ba‘j/n‘sﬂ', where f; € R is a fixed

constant independent of the sample size, and §; € [0,1). Here j*n varies with the sample size if
Bg; # 0 and §; € (0,1)". Let 6 = max;< d;.

Note that the pure I(1) regressor model in (4) is a direct extension of the common predictive
regression application with a single unit root predictor (e.g., D/P-ratio). The mixed roots case in
Section 3 will be more relevant in practical applications with multivariate predictors.

The literature of predictive regression focuses on the non-standard statistical inference caused
by persistent regressors and weak signal; the discussion is usually confined to a reasonable number
of candidate predictors, but not with a huge number of them. Following this literature, we also

2. This simple

consider the asymptotic framework in which p is fixed and the sample size n — oo
asymptotic framework allows us to concentrate on the contrast between the stationary regressors and
the nonstationary ones in the penalized estimation methods. We need not introduce the complex
and unstable large sample Gram matrix theory, for which the restriction on the eigenvalues must
be imposed (Bickel et al., 2009).

Under this framework, one can learn about the unknown coefficients 3 from the data by running

the OLS

~ols

= i — XBJ3.
6 arg[gglRI;Hy Bll2

whose asymptotic behavior is now well understood (Phillips, 1987). Let Q = fol B.(r)B,(r)dr,
where B, is the p x 1 vector Brownian motion, BM (%), as given in (3). Let W = fol By (r)dB,(r)

is a stochastic integral whose distribution depends on 3. Then we have

—ols X'X\ ' X' _
n(ﬂ _ﬁn>_<n2> T:>91W

!This type of local-to-zero coefficient is designed to balance the I(0)-I(1) relation between the stock return and
the unit root predictors, as well as modeling the weak SNR in predictive regressions. See Phillips and Lee (2013) and
Timmermann and Zhu (2017) for the recent discussion. Note that the case of §; = 1 (Pitman drift) is excluded not
to have the effect of nuisance parameter in the limit, unilke Hirano and Wright (2016). Please see Remark 3.7 below
for the related discussion and clarification.

*Koo et al. (2016) allow the number of I(0) regressors to increase while still having the number of I(1) regressors
fixed.



In addition to the low SNR in predictive regressions, some true coefficients fj; in (4) could be
identically zero. Let A* = {j : Bo; # 0} be the set of the relevant regressors and A* = {1,...,p} \A*
be the set of the redundant regressors. Let p* = |A*| be the number of relevant regressors. If we

have prior knowledge about A*, ideally we can estimate the unknown parameter by OLS

~oracle .
8 = arg min ||y — > @il
peRs jeAr

We call this the oracle estimator. The oracle information about A* is infeasible in practice. Since
~oracl

15} “ is estimated by OLS, it is straightforward to see that its asymptotic distribution is

-~ [
n (507"110 e

_ 5;;) — QZ}WA*,

where Q4+ is the p* X p* submatrix (ij/)j,j’eA* and Wy« is the p* x 1 subvector (Wj)jGA*'

2.1 Adaptive LASSO with Unit Root Regressors

The adaptive LASSO is known to enjoy the oracle property in regressions with stationary and weakly
dependent regressors (Medeiros and Mendes, 2016). To accommodate the predictive regression
applications, we investigate whether the adaptive LASSO maintains the oracle property in the
regression with p-dimensional unit root regressors.

The adaptive LASSO estimator for (1) is given by

p
~alasso . ~
B =argéger;IIy—XﬁHngMZwJ'\BJI, (5)
j=1
. N ~init L. . ~init . )
where the weight is w; = |3 j |7 for some initial estimator 5 . In this paper we discuss the case

with v > 1 and B BOZS

We introduce additional notation. An index set associated with non-zero coefficients is called
A;lasso # 0} as the selected
active set by the adaptive LASSO (5), while let A* = {j : 5, # 0} be the true active set. For a

generic index set A and vector an p x 1 vector 3, we denote 84 = (5;)jeA-

an active set in the literature of variable selection. Denote A, = {j :

We provide a modified version of Zou (2006, Theorem 2) in the presence of unit root regressors.

Theorem 2.1 Suppose the linear model (1) satisfies Assumption 2.1. If the tuning parameter \,

s chosen such that A\, — oo and nl’\jv‘g + ﬁ — 0, then

(a) Variable selection consistency: P (A, = A*) — 1.

~alasso ~alasso

(b) Asymptotic distribution of B4 : n(f — B ar = QZ}WA*.

n

Theorem 2.1 confirms the oracle property of the adaptive LASSO with unit root regressors. The

first result indicates that the selected active set coincides with the true active set with probability



approaching to one. The second result shows that the asymptotic distribution of adaptive LASSO
estimator in the true active set is the same as the oracle estimator.

This delicate adaptive argument is only valid through the proper choice of w; = |B;IS|_7 in this
nonstationary regression. In essence, when the true coefficients are not zero, @w; provides a penalty
of the order )\nn'yg_l = 0(1) so is negligible, recovering OLS limit theory. On the other hands, if the
true coefficients are zero, w; provides a heavier penalty of the order A Y~ — oo thereby achieving
consistent variable selection. This intuition was originally provided in Zou (2006, Remark 2) in the

deterministic regressor design.

Remark 2.2 In Theorem 2.1, we observe some interconnected rate conditions between An, 05 and
= — 0. In the

meantime, A\ynY~! — o0 is required to penalize the zero coefficients. Consider the formulatzon of

~v. To achieve the oracle property in the active set, we need a rate condition of

the usual tuning parameter A\, = eAbnn%, then we need

bn, nt/2=v

123 b — 0.

When fy =1, and 6 = 1/2 (a balancing order for I(0)-I(1) regression,), the corresponding condition is
bn + 5 1/2 — 0 so a slowly shrinking sequence such as b, = (loglog n) satisfies the rate condition.

Thzs is a commonly imposed rate condition in the adaptive LASSO literature.

Since we now have the positive results about adaptive LASSO with unit root regressors, we
continue to study the plain LASSO (Tibshirani, 1996), and a simple variant, which we call the
standardized LASSO.

2.2 Plain LASSO with Unit Roots

The plain LASSO can be viewed as a special case of the penalized estimation in (5) with the weights
wj, g =1,...,p, fixed at unity. In this paper, we call it the plain LASSO estimator

~lasso

_ are min [y — X2
= arg min y = X85 + X 15l (6)

LASSO is proposed by Tibshirani (1996) to produce a parsimonious model as it tends to select the
relevant variables. The following results characterize the asymptotic behavior of the conventional
LASSO according to various choices of A, when we use unit root regressors. For exposition, we
define a function D : (Rdim(@))3 — RT as

D (s,v,0)

sj (vgsgn (0;) I (0; # 0) + |v;]| I (0 = 0))

M@

Jj=1
for three generic vectors s, v, and 6 of the same dimension.

Corollary 2.3 Suppose the linear model (1) satisfies Assumption 2.1.



(a) If A\, = 00 and A\, /n — 0, then

~lasso

n(B =By = QW

(b) If Ay = 00 and A\, /n — ¢y € (0,00), then

~lasso

n(p — B;) = argmin {v'Qv — 20'W 4+ e\ D(1p, v, 55) } -

¢) If \p/n — 00, and A\, /%% =0
(c) If An/ ; / ;

2
~1
%(5 e B;) = argmin {v'Qu + D(1,,v,55) }
n v
Remark 2.4 Corollary 2.5 extends the results of Zou (2006, Section 2) to the unit root regressor
case. Following the same discussion as Zou’s, we conclude that the plain LASSO’s variable selections

are in general inconsistent when the unit root regressors are present.

The above Corollary 2.3 shows that the conventional tuning parameter A, ~ /n is too small
for variable selection with nonstationary regressors. Moreover, without the adaptive argument as
in the adaptive LASSO case, the consistent variable selection is not guaranteed. In this paper, we
call the phenomenon that LASSO shrinks some estimated coefficient to exactly zero (whether or
not the true coefficients are zeros) as the variable screening effect, instead of the variable selection
effect (which means that LASSO shrinks those truly zero coefficients). Such effect will be further
discussed in the paragraphs following Corollary 3.8.

2.3 Standardized LASSO with Unit Roots

In view of the problem that the usual choice of A, is too small for LASSO to conduct variable
screening in nonstationary regression, one may consider an alternative implementation which is
common in practice. LASSO is scale-variant in the sense that if we change the unit of x; by

multiplying with a non-zero constant ¢, such a change is not reflected in the penalty term in (6) so
~lasso

the LASSO estimator does not change proportionally to 3, /c. To keep LASSO scale-invariant

to the choice of unit of x;, which can be arbitrary, researchers often scale-standardize LASSO as

p
~slasso
ore ig I = XPI + 30 3 13 )

n
1=

where 7; = \/% Yoy (i — :Ej)Q is the sample standard deviation of (z;;); ;. In this paper, we
call (7) the standardized LASSO. Such standardization is the default option for LASSO in many



statistical packages, for example the R package glmnet.

We can view the standardized LASSO is another alternative of (5) by setting @w; = ;. When
such a scale standardization is carried out with stationary and weakly dependent regressors, these
0;’s converge in probability to the finite population variance. As it does not change the rate of the
tuning parameter, it has no asymptotic effect to the estimation. In contrast, when z; has a unit

root, from (3) we have

\3/% = % f: (23 — 7j)° = dj = \// B2 (r)dr — </ B, (1) dr>2 (8)

i=1

so that 5; = O, (y/n). It thus imposes a much heavier penalty on the associated coefficients with unit
root regressors than the stationary ones. Adopting a standard argument for LASSO as in Knight
~slasso

and Fu (2000) and Zou (2006), we have the following asymptotic distribution for n(8 — Br).

Let d = (dy,...,d,)" be the corresponding random vector.
Corollary 2.5 Suppose the liner model (1) satisfies Assumption 2.1.

(a) If A, — 00 and A\, /v/n — ¢y € [0,00), then

~slasso

n(f — f,) = argmin {U'Qv — 20'W + exD(d, v, 5(’)‘)} ,

where ¢y = 0 case restores OLS limit theory.
(b) If \p//n — o0 and )\n/n%_S — 0,

3/2

~slasso

S—(B — 87) = g min {v'Qu + D(d,v, 5)}

An

Remark 2.6 In Corollary 2.5, D(d,v, 5}) is the term that generates the variable screening effect.
In Corollary 2.5(a), D(d,v, ) appears under the usual choice of tuning parameter A\, ~ /n. In
contrast, its counterpart D(1,,v, B;) emerges in Corollary 2.3 when A, ~ n. The random vector d,
the first argument of D(-,v, 3}), introduces an extra source of randomness in the variable screening
in the standardized LASSO, whereas its counterpart in the plain LASSO is the unit vector 1,. We

confirm that the standardized LASSO cannot achieve consistent variable selection in general.

To summarize, in the regression with unit root predictors, the adaptive LASSO retains the
oracle property under the usual choice of the tuning parameter. For the plain LASSO to exhibit
the variable screening effect, we need to lift the tuning parameter up to the order of n. For the
standardized LASSO, although \,, ~ y/n is sufficient for variable screening, the sample variance of
the nonstationary regressors brings the random vector d into the limit theory, affecting the variable
screening.

The unit root regressors are shown to alter the asymptotic properties of the conventional LASSO

methods. In practice, we often encounter a multitude of candidate predictors, exhibiting various



dynamic patterns. Some are stationary, while others can be highly persistent and may be cointe-
grated. In the following section, we will show that the conventional LASSO methods behave even

more irregularly under the mixed persistence environment.

3 LASSO Theory with Mixed Roots and Cointegration

In this section, we generalize the model of Section 2 by considering I(0) and I(1) regressors with
possible cointegration among those I(1) regressors. In applications of predictive regression with

multiple predictors, the model and LASSO theory of this section can provide a general guidance.

3.1 OLS theory with mixed roots

We first study OLS theory since OLS estimator is used as the initial estimator for the adaptive
LASSO. The dependent variable y; is generated from the linear model

Pz DPc Pz

Y = Z zija; + Z :L'%(ﬁ;n + Z ﬂizjﬁ;kn +u; =™ Z; + gbfl/Xf + B,*L/X@ + ug, (9)
j=1 j=1 j=1
/
fori=1,...,n, where Z; = (zil,...,zipz)', X¢ = (:1:51,...,:1:pr> ,and X; = ($i17-.-7$ipm)/ represent

the stationary, cointegrated and unit root regressors, respectively. Equivalently,
y=2Za"+ X, + X0, +u:=W0, +u, (10)
where the response vector y = (y1,...,yn)’, the observation matrix of predictors

W:[Z,XC,X],

nxp NXP: NXPe NXPg

and the stacked parameter of 6% = (o, ¢¥, 3*) with p = p. + pe + ps-

y P
px1
As in Section 2, each z; = (215, ..., xn;) for j = 1,...,p, is a unit root predictor (initialized at

zeros for simplicity) with x;; = xi—1; + e;; = 22:1 ex; where the DGP for €] = (e, ...,eipx)/ is
given in Assumption 3.1 below. In a p, X 1 vector notation ) = 22:1 e... On the other hand, the

pe X 1 predictor X¢ has the triangular representation (Phillips, 1991)

A ch = sz — A1 XQCZ = Vi , (11)
P1XPec 1 XPp2
AXQCZ = v9; ,

where A = [I,,, —A1], X{ = (X¢, X§)', and p. = p1 + p2. Hence p; is the cointegration rank, and
p2 is the number of unit roots in the system. This is a convenient but general representation of
cointegrated system, and Xu (2017) recently used this structure in predictive regression framework.
Now we let ¢ = (qﬁ{, e Dps Py 1 ...,¢;1+p27n)/ so that, for j €{p1 +1,...,p1 + p2} the coeffi-



cient ¢7, = ¢, /nd% with d; € [0,1) to ensure the regression model validity, similarly to Section 2.
Recall § = max;<;, d;.

We stack the cointegrating residual vector and the innovation from (11) and define p. x 1 vector
v; = (v);,vh;)". We then assume the following linear process for innovation and cointegrating residual
vectors. In contrast to the unrealistic iid assumption in Section 2, the linear process assumption is
fairly general, including many practical dependent processes (stationary AR and MA processes, for

example) as special cases.

Assumption 3.1 [Linear Process| The vector of stacked innovation follows the linear process:

2,
V; >
G o=\ ) | =FL)e =) Feiy,
(p+1)x1 €. j=0
Uj
Ezi Yo Y e 0
i DYDY b 0
g = i i 0, R = 2 /“” ve ,
(p+1)x1 Eei (p+1)x(p+1) Eze Zve Yee Vew
Eui O, O/ E/eu EUU

where Fo = Ipp1, Y2020 J |1 Fjll < oo, F(z) =327, Fjz7 and F(1) = > 2o Fj > 0.

Remark 3.1 Our empirical model is
y=Wo, +u=Zog+ X, + X3, +u,

where the rightmost expression represents possible mized roots. By assuming a convenient cointe-

grating system (11), we interpret the empirical relation as

y = Zag+ Xioy+ X593, + X6, +u
= Zog+ (X{ — X$5A)) ¢4y + XS(AL 50 + 65,) + XBh +u
= Zaoj+v1di + X5 (A170 + ¢5,) + X By + .

Then, to ensure our empirical model validity, we allow (A\¢3y + ¢5,,) and B} to be small enough

to keep y stationary. As an asymptotic mechanism, we introduce a local-to-zero modeling for the

coefficients in front of I(1) regressors, so ¢% is supposed to off-set the non-zero full rank component
5\ PzFDPc

Al 97, leading to A\¢] + ¢35 ~ 0. We model this small component ¢35 as ¢, = (%gm)j:p ot

nli
However, we do not really assume that the "true coefficients” are shrinking to zero as n increases.

This 1s rather a way of modeling small coefficients with any given n, facilitating our logic on the

empirical model.

Remark 3.2 Following the cointegration and predictive regression literature, we allow the correla-

tion between the regression error €y and the innovation of nonstationary predictors €.;. However,

10



in order to ensure identification we rule out the correlation between y; and either the innovation of

stationary or the cointegrated predictors.

Define the long-run covariance matrices associated with the innovation vectoras @ =>";2 _E (51- i h) =
F()X.F(1), where F(1) = (F!/(1),F! (1), F! (1), F, (1))". Moreover, define the sum of one-sided
autocovariance as A = > 37 | E (&€/_,), and A = A+E (§¢]). We use the functional law (Phillips
and Solo, 1992) under Assumption 3.1 to derive

3
3
W W
& =
g

)
T; = BM (Q).
)

Si-
g
o
|
Si-
™
L8
I
>
SICHCES
l
>
SR

&g
&
g
3
oy
g

Note that the observation matrix W can be decomposed as | Z , X7, X§, X ] From (11),

nXpz nxXpr nxp2 nXpx

v] = X¢ — XSA) is an n x p; matrix of I(0) cointegrating residuals. Define

Rn:<\/ﬁ.12+pl O )

0 n- IPQ +pa

which will serve as a normalizing matrix for any cointegrating rank p; with 0 < p; < p.. We
“extend” the T(0) regressors as Z© = [Z,v1] and the I(1) regressors as X := [X§, X]|. Let us denote

QZZ QZ’U QZ@ O
Q.. Q Q
Q _ zZv VU ve O
Q. Q. Qe Qew
0 0 U, Qu

ze ve

according to the explicit form of .. Then the left-top p x p submatrix of €2, which we denote as

Q] can be also represented conformably,

pXp’

@)

QZZ QZ’U ze Q+ Q+
— / _ zZ zZT

[Q]po - sz vi Qve - Q+, Q+ .
Q/Ze Q;e Qee zx rxr

Using the BN decomposition and weak convergence to stochastic integral, it is easy to show

Z*’u/\/ﬁ ‘EZ+ ~ N(():ZUUQZZ) -
( X+’u/n ) - ( Ex+ ~ fB+(T)ng(T)/Fu(1),+A+u ) o §+ (12)

where the one-sided long-run covariance matrix Ay, = > 7%  E (Uu;—p) with u; = (vh;, e.)".
Give the definition of these quantities, we establish the following theorem about the asymptotic
l
distribution of the OLS estimator 8, = (W'W)~1W'y.

11



Theorem 3.3 If the linear model (9) satisfies Assumption 3.1, then
Ry (07— 07) = (27) "¢,

QL 0

where Q1 =
(%

) , and &1 is given in (12) above.

Remark 3.4 Theorem 3.3 shows that an asymptotic bias term Ay, appears in the limit distribution
of OLS with nonstationary predictors. This asymptotic bias arises from the serial dependence in the
mnovations. However, the asymptotic bias does not affect the rate of convergence, so 5{:8 -0y =
Op(Rgl). This rate of convergence is critical in the study of the asymptotic behavior of the adaptive
LASSO using 5(:8 as the initial estimator.

Next, we study the asymptotic behavior of the adaptive LASSO in this mixed roots scenario.

3.2 Adaptive LASSO with mixed roots

Similarly to Section 2.1, we define the adaptive LASSO estimator under the system of (10) as

P
~alasso
0 = arg min ||y — W6|> + X w;|6; 13
gﬁeRPHZ/ 12 + n; 31051, (13)
~ 1 . . L
where w; = @) S\*V. The following theorem confirms that the adaptive LASSO maintains the oracle
property and variable selection consistency in the presence of stationary, unit root and cointegrated
~alasso

regressors. With some abuse of notation, we keep using A, = {j : 0, # 0} as the selected active
set by the adaptive LASSO (13), while let A* = {j: 0; # 0} be the true active set.

Theorem 3.5 Suppose that the linear model (9) satisfies Assumption 3.1. If the tuning parameter

An, 18 chosen such that A\, — oo and

An 1
n(1/2)A(1—7-S) + Apn(Y—1)/2 —

0, (14)

then, we have

(a) Variable selection consistency: P (A, = A*) — 1.

~alasso ~alasso

(b) Asymptotic distribution of 0 4~ : [Ry (6 —0)]ar = (Q+*)_1§:{*.

Remark 3.6 The rate condition for the tuning parameter A, in Theorem 5.5 implies the conditions
in Theorem 2.1 as a special case, as long as v > 1, and 6 > 1/2. The condition (1/) is reasonable
because, (i) we choose v > 1 in practice to prevent the adaptive LASSO implementation from being

non-convex optimization, and (ii) 6 > 1/2 is the balancing order of I(0)-1(1) predictive regression

12



applications. Being agnostic to the presence of stationary, unit root and cointegrated regressors, we

can choose the tuning parameter A, following the guidance in Theorem 3.5.

Remark 3.7 Another related results in the literature are uniformly valid inference and forecasting
after the LASSO model selection, see Belloni, Chernozhukov and Kato (2015, 2018) or Hirano and
Wright (2016), for example. These papers allow the so-called model selection mistake by LASSO,
and provide the valid inference or prediction by introducing local limit theory with small departures
from the true models. Combining these recent developments with our current LASSO theory with

mized roots would be interesting future research but we do not pursue here.

Given what we learn from Caner and Knight (2013) and Kock (2016), the theoretical results in
Theorem 3.5 may be expected. These papers, however, work in the pure autoregressive setting with
iid error processes. We complement this line of nonstationary LASSO literature by allowing a general
regression framework with mixed degrees of persistence. We also generalize the error processes to the
commonly used dependent processes, which is important in practice. For example, the long-horizon
return regressions in Section 5 requires this type of dependence in their error structure because of the
overlapping return construction. Moreover, our research provides a valuable guidance for practice.
Faced with a variety of potential predictor variables with uncertain orders of integration, we may
not be able to sort them into different persistence categories in predictive regressions. Theorem 3.5
provides a simple condition leading to a desriable oracle property without requiring prior knowledge

on multivariate regressors persistence.

3.3 Conventional LASSO with mixed roots

We now study the asymptotic theory of the plain LASSO estimator

~lasso

0 = i —WO2 4+ N, |10 1
arg;renr;Hy 12 n 101l (15)
under the system of (10). Following the notation in Section 3.1, let

0F — (a*/ */ /B:L/)/ — (akaI’BrJka/)/7

n Yrn

where o™ is the (p, + p1) X 1 parameter vector associated with the stationary and cointegrated
predictors, and 3,7 is the (pa +pz) X 1 local-to-zero parameter vector associated with the unit root

predictors.

Corollary 3.8 Suppose the linear model (9) satisfies Assumption 3.1.

(a) If Ay — 00 and An/y/m — 0, then Ru(8 — 62) = () ¢+,
(b) If \n/\/n — cx € (0,00), then
~lasso " , /
R ( —by) = <v1(0)7vl(1)>



where

_ . 1O+ / +
Uiy = A% e {vQlv—20¢z+ +ex D (p4py,v,07)
~1
oy = () Ex+

(¢) If \n/\/n — o0 and A\ /n — 0, then

\/ﬁ ~lasso " !
Tan(e -0y = (w}(oyw;u))
where
wI(O) = w8 vegg’ig}rm {’U/szv + D (1pz+p1,va Oé+*)} )
wl(l) = 0.

Remark 3.9 In Corollary 3.8(a), the tuning parameter is too small and the limit theory of plain
LASSO is equivalent to that of OLS; there is no variable screening effect. When the tuning parameter
is raised to the case of (b), the plain LASSO screens variables in the stationary part, but the tuning
parameter is still too small for variable screening in the nonstationary part. Such difficulty is
caused by the different rates of convergence between the estimated coefficients associated with the
stationary regressors and the nonstationary ones. Since the plain LASSO has one single rate for
the tuning parameter, it is not adaptive to deal with these two types of predictors. There is no
way to achieve, simultaneously in both types of predictors, the same rate of convergence as OLS and
screening variables. If we further increase the tuning pammefler as in the case of (c), then the slower
~+lasso

convergence rate of the 1(0) part drags down the rate of [ from n to n3/2/)\n. Moreover, it

implies inconsistency of a5 if X, /n — ¢y € (0,00).
Let us now turn to standardized LASSO, defined as

P

8"  axg win Iy ~ WO + A _Zlaj 0,1 (16)
j=

We investigate whether the standardized LASSO restores the optimal rate of convergence and

variable screening effect in this linear regression with mixed roots. In standardized LASSO, the sta-

tionary regressors are accompanied with o; = O, (1) for j =1,...,p, + p1, while the nonstationary

regressors are coupled with o; = O, (y/n) for j = p.+p1+1,...p. According to the following results

on the asymptotic properties of the standardized LASSO, we do not have the rate adaptiveness.

Corollary 3.10 Suppose the linear model (9) satisfies Assumption 3.1.

14



(a) When X\, = cy € [0,00), then

Rn@szasso —0") = arg felllRI}) {U’Q+U — 206" +¢\D ((dj, vj, 08]-)?2:;?;1)} ,
where ¢y = 0 case restores OLS limit theory.
(b) When A, — oo and )\n/n(lf‘_s)/\o'5 — 0, then
R, ~slasso N . IO+ * \Pztp1
)\—n(G —0%) = arg min {UQ v+ D ((dj’vj790j)j:pz+l>}'

Remark 3.11 The difficulty of standardized LASSO arises from the coefficients associated with the
cointegrating residuals. In OLS, these estimates gAZ)j, j=1,...,p1, converges at \/n rate. However, in
the standardized LASSO their corresponding penalty have the multipliers of 6; = Op (y/n), instead
of the desirable Oy (1). In other words, the penalty level is too heavy for these parameters. The
overwhelming penalty produces variable screening effect as soon as N, = cx € (0,00), as shown
in Corollary 3.10(a). Moreover, (b) implies that for the consistency of 51 the tuning parameter \,
must be small enough so that A\, /v/n — 0. In this case, no variable screening is possible for all other
coefficients in 6. If we further raise A, to A\n/v/n — ¢\ € (0,00), those 31 will be an inconsistent

estimator for ¢Y.

To sum up this section, in the general model with various types of regressors, the adaptive
LASSO maintains the oracle property under the standard choice of the tuning parameter. It echoes
our finding in Section 2, which is one special case of the model in this Section. In contrast, the plain
LASSO using the single tuning parameter does not adapt to the different order of magnitudes of
the stationary and nonstationary regressors. The standardized LASSO suffers from overwhelming
penalties for those coefficients associated with the cointegration residuals. Keeping an agnostic
view about the persistence property of the regressors, we recommend the adaptive LASSO in the

multivariate predictive regression with mixed regressor persistence.

4 Monte Carlo Simulation

In this Section, we examine the performance of forecasting and variable screening of LASSO methods
via simulation. We consider the different sample sizes n to demonstrate the validity of limit theory
as well as the finite sample performance. All the comparison is based on the one-period-ahead

forecast Yni1-

4.1 Simulation Design

To evaluate the finite sample performance of various estimators, we consider two data generating
processes (DGPs), one with unit root regressors and the other with mixed roots and cointegration.

In the Appendix B.1, two more DGPs using lagged dependent variables as regressors are included.
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DGP 1 (Unit roots). We consider a linear model with eight unit root predictors, z; =
<£Uz'1 Tio - LUz's)/ where x;; are drawn from independent random walk processes x;; = x;—1,; +
eij, €ij ~ 1i.d. N (0,1). The dependent variable y; is generated by yi1 = v* + @} + u; where
the intercept v* = 0.25, and % = (1,1,1,1,0,0,0,0)’ //n. The idiosyncratic error u; follows i.i.d.
standard normal distribution, so does those u;’s in the other three DGPs.

DGP 2 (Mixed roots and cointegration). This DGP corresponds to the generalized model
in Section 3. The dependent variable y; is generated by y; = v* + 2321 zijo + Z?:l 505, +
SN2 @B, + wi, where 0% = (a*, ¢, B1) = (0.4, 0,03, -0.3,0,0, L, 0) and v* = 0.3. The

stationary regressors z;; and z; follow two independent AR(1) processes with the same AR(1) coef-

ficient 0.5. X¢ € R% is an I(1) process with cointegrating rank 2 based on the vector error correction
1 -1 0 O 01 00

model (VECM) AX{ =TVAX{ | +e;, where A = and I' = are the
0 0 1 -1 00 01

cointegrating matrix and the loading matrix, respectively. In the error term e; = (e;1, €2, €3, 61‘4)/,
we set e;o = e;1 —p; and e;4 = e;3—1v; where p; and v; are AR(1) processes with the AR(1) coefficient

0.2. ;1 and z;2 are independent random walk as those in DGP 1.

As we develop our theory with fixed-dimensional regressors, the OLS is a natural benchmark.
Another benchmark is the oracle OLS, in which the oracle reveals the true model. In reality, the ora-
cle OLS estimator is infeasible. The sample sizes in our exercise range from n = 40, 80, 120, 200, 400
and 800. For each simulation, we generate data with 1000 burn-in periods and run 1000 replications
for each sample size n.

For the shrinkage estimators, we do not penalize the intercept in the simulations as well as in
the empirical application. Each shrinkage estimator relies on its tuning parameter \,, which is the
convergence rate, v/n for DGP 1 and y/n/log(log(n)) for DGP 2, multiplied by a constant . We use
10-fold cross validation® to guide the choice of ¢y. Specifically, we set n = 200 and run an exploratory
simulation for 100 times for each method that needs a tuning parameter . In each replication, we

use the 10-fold cross-validation to obtain cg\l), ce cg\loo). Then we fix ¢y = median (cg\l), e 0&100))

in the full-scale 1000-time simulation. cglasso and ¢3/%55° are then determined correspondingly. The
OLS estimator is used as the initial estimator in the adaptive LASSO, and the tuning parameter

Ap, is set similarly.

4.2 Performance Comparison

Table 1 reports the out-of-sample prediction accuracy in terms of the mean prediction squared error
(MPSE), MPSE = E [(ynﬂ — @\n+1)2:| . By the simulation design, the variance of the idiosyncratic
error is 1, which is the unpredictable part. Table 2 summarizes the variable screening performance.
Recall that the set of relevant regressors as A* = {j e{l,...,p}: 0; #* 0} and the estimated active

3In all simulation experiments as well as in the empirical application, we partition the sample into consecutive
blocks in cross-validation.
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set is A = {j e{l,...,p}: /éj #* 0}. We define two correct ratios for variable screening:

CRlzik'EH{j;jeﬁ,jeA*}

]

Here C'R; is the percentage of the correct selection in the active set, whereas C' Ry is the percentage

], CRQ:MtCE[‘{j:jeA*C,jGEC}

of correct elimination of the zero coefficients. We also report the overall correct ratio
1 . " ~x
CR=_F H{j €1,...,p: 10 #0) = I8 # 0)}H .
These expectations are computed by the average in the 1000 simulations replications.

Table 1: Mean Prediction Squared Error (MPSE)

n  Oracle OLS alasso  plasso slasso
DGP1 40 1.2064 1.4841 1.3388 1.2259  1.2695
80 1.1886 1.2677 1.2540 1.2267 1.2294
120 1.1035 1.1710 1.1459 1.1340 1.1289
200 1.0940 1.1689 1.1429 1.1349 1.1303
400 0.9775 1.0047  0.9969 0.9941 0.9959
800 0.9855 0.9927 0.9879 0.9897  0.9896
DGP 2 40 1.2626 1.4900 1.3793 1.3638 1.4190
80 1.1029 1.2156 1.1903 1.2055 1.2100
120 1.0984 1.1640 1.1463 1.1565 1.1584
200 1.1017 1.1523 1.1241 1.1386  1.1388
400 0.9569 0.9722 0.9606 0.9662 0.9675
800 1.0102 1.0172 1.0125 1.0145 1.0175

Note: Bold numbers are for the best performance among all the feasible estimators.

According to Table 1, the plain LASSO and the standardized LASSO achieve better forecasting
performance than adaptive LASSO in DGP 1. As the sample size increases to n = 800, the adaptive
LASSO performs better. In DGP 2, adaptive LASSO outperforms the competitors in MPSE except
for the smallest sample size n = 40. The MPSE results can be explained by the variable screening
results in Table 2.

The parameter tuning in the adaptive LASSO is not as good as the plain LASSO and the
standardized LASSO due to the estimated weights from the first step estimation, which means the
adaptive LASSO achieves better variable screening at the cost of additional estimation errors in
finite sample. In DGP 1 with pure unit-root regressors, the plain LASSO and the standardized
LASSO achieve good performance in terms of C'R, not far behind the adaptive LASSO in large
sample size cases and even better than the adaptive LASSO in small sample size cases. Considering
the trade-off between variable screening and coefficient estimation accuracy, it is understandable
that the plain LASSO and the standardized LASSO have better forecasting performance in DGP

1. As the sample size increases, the difference in variable screening becomes significant and the
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Table 2: Variable Screening

CR CR;y CRs
n alasso  plasso  slasso alasso  plasso  slasso alasso  plasso  slasso
40 0.5885 0.6366 (0.6000 0.7653 0.6408 0.8178 0.4118 0.6325 0.3823
80 0.6606 0.6776 0.6339 0.8268 0.8248  0.8918 0.4945 0.5305 0.3760
— 120 0.7080 0.6860 0.6581 0.8868 0.9095 0.9395 0.5293 0.4625 0.3768
% 200 0.7619 0.6739 0.6735 0.9365 0.9673 0.9713 0.5873 0.3805  0.3758
R 400 0.8311 0.6361 0.6794 0.9810 0.9930 0.9930 0.6813 0.2793  0.3658
800 0.8874 0.6040 0.6883 0.9983 0.9998 0.9993 0.7765 0.2083 0.3773
40 0.6845 0.5953  0.5541 0.8018 0.8933  0.9525 0.5673 0.2973  0.1558
80 0.7719 0.6175  0.5773 0.9148 0.9835 0.9895 0.6290 0.2515 0.1650
o120 0.8103  0.6045  0.5796 0.9580 0.9943  0.9963 0.6625 0.2148 0.1630
?5 200 0.8378 0.5915 0.5834 0.9880 0.9990 0.9993 0.6875 0.1840 0.1675
A 400 0.8661 0.5840  0.5959 0.9980 1.0000 1.0000 0.7343 0.1680 0.1918
800 0.8846 0.5728 0.6111 1.0000 1.0000 1.0000 0.7693 0.1455  0.2223

Note: Bold numbers are for the best performance.

adaptive LASSO has better forecasting performance.

The advantage of the adaptive LASSO in variable screening is prominent in DGP 2 as the DGP
becomes more sophisticated with mixed roots and cointegration. The adaptive LASSO outperforms
the others in forecasting performance.

The adaptive LASSO outperforms the others in CR and C Ry in both DGPs. As sample size
increases, all CR, C Ry and C' Ry of the adaptive LASSO increases in both DGPs, which verifies the
variable screening consistency of the adaptive LASSO. The asymptotic theory suggests A\, ~ /n is
too small for the plain LASSO to eliminate 0 coefficients corresponding to I(1) regressors, which is
congsistent to the C'Ry results of the plain LASSO that C Ry decreases as the sample size increases.
The plain LASSO and the standardized LASSO achieve high CR; at the cost of low CRo, i.e. they
tend to keep more regressors even some of the selected ones are redundant. As the sample size
increases, the difference in CR; among methods becomes negligible.

According to Table 2, the standardized LASSO has the lowest variable elimination correct ratio
C Ry, whereas in asymptotics it imposes heavier penalty on coefficients of 1(1) regressors than the
plain LASSO does due to the presence of W; = ; = O, (y/n) in the penalty term. The reason
is that we fix c'f\lasso and ¢5/%%%° by cross-validation separately. The cross-validation selects tuning
parameters based on the in-sample MSE and hence favors ¢y achieving lower MPSE and adjusts ¢y in
finite sample. For example, in DGP 1, c’j\lasso = 1.295 whereas ¢§/%*%° = 0.265 which is much smaller
than c?\lasso. If we fix cﬁlasso by cross-validation and let cilasso = cﬁlasso, C Ry of the standardized

LASSO would become higher. We provide this simulation result in Appendix B.2.
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5 Empirical Application

To illustrate the performance of the adaptive LASSO in predictive regression and compare with that
of other common approaches, this section presents an empirical study on stock return predictability
with the updated Welch and Goyal (2008) dataset used in Koo et al. (2016).

5.1 Data

As in Koo et al. (2016), we use the monthly Welch and Goyal (2008) data from January 1945 to
December 2012, with the dependent variable, the excess return, defined as the difference between
the continuously compounded return on the S&P 500 index and the three-month Treasury bill rate
and 12 financial and macroeconomic variables as predictors.

The predictors include the Dividend Price Ratio (dp), the difference between the log of the 12-
month moving sum dividends and the log of the S&P 500 index; Dividend Yield (dy), the difference
between the log of the 12-month moving sum dividends and the log of lagged the S&P 500 index;
Earning Price Ratio (ep), the difference between the log of the 12-month moving sum earnings and
the log of the S&P 500 index; Term Spread (tms), the difference between the long-term government
bond yield and the Treasury Bill rate; Default Yield Spread (dfy), the difference between Moody’s
BAA and AAA-rated corporate bond yields; Default Return Spread (dfr), the difference between
the returns of long-term corporate bonds and long-term government bonds; Book-to-Market Ratio
(bm), the ratio of the book value to market value for the Dow Jones Industrial Average; Treasury
Bill Rates (tbl), the 3-month Treasury Bill rates; Long-Term Return (Itr), the rate of returns of
long-term government bonds; Net Equity Expansion (ntis), the ratio of the 12-month moving sums
of net issues by NYSE listed stocks over the total end-of-year market capitalization of NYSE stocks;
Stock Variance (svar), the sum of the squared daily returns on the S&P 500 index; Inflation (infl),
the log growth of the Consumer Price Index (all urban consumers).

Over the whole sample period, the excess return has an estimated AR(1) coefficient of 0.1494,
which indicates little persistence, similar to the long-term return of government bonds (ltr), stock
variance (svar) and inflation (infl). The other predictors show high persistence, with AR(1) coef-
ficients greater than 0.95. The mixture of stationary predictors and persistent predictors fits the
mixed roots environment that we studied in previous sections.

As recognized in the literature, the signal of persistent predictors may become stronger in long-
horizon return prediction; see Cochrane (2009). In addition to the one-month-ahead short-horizon
prediction, We also construct the long-horizon excess return as the sum of continuous compounded

monthly excess return on the S&P 500 index,

i+12xh—1
LongReturn; = Z ExReturny,
k=i

where h is the length of the forecasting horizon in terms of year and ranges from h = %, i, %, 1,2, 3,

and the monthly excess return corresponds to h = %
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Table 3: Mean Prediction Squared Error (MPSE)

MPSE Percentage relative to OLS
h OLS RWwD  alasso plasso slasso OLS RWwD  alasso plasso slasso
10-years
% 0.00209 0.00188 0.00187 0.00186 0.00187 | 1.00000 0.90189 0.89399 0.88889 0.89541
i 0.00936 0.00663 0.00615 0.00834 0.00758 | 1.00000 0.70822 0.65706 0.89042 0.80928
% 0.01835 0.01644 0.01316 0.01608 0.01534 | 1.00000 0.89558 0.71680 0.87582  0.83553
1 0.03404 0.04292 0.02882 0.03084 0.02951 | 1.00000 1.26089 0.84675 0.90605 0.86718
2 0.07708 0.12968 0.05398 0.07248  0.06261 | 1.00000 1.68233 0.70031 0.94033 0.81229
3 0.20066 0.27608 0.12125 0.15875  0.17730 | 1.00000 1.37586 0.60422 0.79110 0.88356
15-year
% 0.00203 0.00196 0.00182 0.00186  0.00187 | 1.00000 0.96935 0.89922 0.91664 0.92465
i 0.00826 0.00692 0.00605 0.00656 0.00654 | 1.00000 0.83711 0.73186 0.79379 0.79109
% 0.02009 0.01714 0.01548 0.01846  0.01697 | 1.00000 0.85304 0.77052 0.91870  0.84451
1 0.03996 0.04449  0.03013 0.02940 0.03686 | 1.00000 1.11338 0.75411 0.73572 0.92240
2 0.05947 0.13694 0.03887  0.05240 0.05392 | 1.00000 2.30285 0.65368 0.88111 0.90664
3 0.11166 0.29198 0.08014 0.10578  0.11163 | 1.00000 2.61489 0.71774 0.94737 0.99971

Note: Bold numbers are for the best performance.

5.2 Performance Comparison

We apply the set of feasible forecasting methods as in Section 4 to forecast both short-horizon and
long-horizon stock returns recursively with both 10-year and 15-year rolling windows. In addition
to OLS, we include the random walk with drift (RWwD), i.e. we take the historical average of the
excess returns, yYn+1 = % Z? yi, as another benchmark . All variables are included in the predictive
regression, which is referred to the kitchen sink model in Welch and Goyal (2008). The forecasting
performance is evaluated based on the out-of-sample MPSE and percentage defined as the ratio of
the MPSE of a particular method over that of OLS.

The tuning parameter for shrinkage estimators are determined by 10-fold cross-validation with
consecutive partitions in each estimation window.

The forecasting performance results are summarized in Table 3. All three shrinkage methods
can improve the OLS and RWwD benchmarks, and the adaptive LASSO outperforms the others in
most cases. In short-horizon (h = 1—12) prediction with 10-year rolling window, the plain LASSO
performs the best. As the signal accumulates in the long-horizon prediction, the adaptive LASSO
achieves smaller MPSE.

The exceptional case with 15-year rolling window and h = 1 is due to that the adaptive LASSO
fails to track the recovery trend after the financial crisis. As shown in Figure 1, the plain LASSO
provides better forecasts during the periods after the financial crisis whereas the adaptive LASSO
gives the opposite prediction. With 10-year rolling window, all three methods fail to provide sound
forecasts after the financial crisis.

We use the case with 10-year rolling window and h = 1 as an example and plot the estimated

coefficients in Figure 2. The unstable nature of the predictive model is clear. The shrinkage
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Figure 1: True Return v.s. Predicted Return
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methods select different variables in different estimation windows. The adaptive LASSO eliminates
more variables than the plain LASSO and the standardized LASSO does and hence provides more

parsimonious models. Similar patterns can be found in other cases.
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Figure 2: Estimated Coefficients (10-year rolling window, h = 1)
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A Technical Appendix

A.1 Proofs in Section 2

Proof. [Proof of Theorem 2.1] We modify the proof of Zou (2006, Theorem 2). Let 3, = 8 +n"tv

be a perturbation from the original parameter (3, and let

( - HY Zxﬂ B]n+ ‘|2—"_A Zw]‘6]n+ |

Jj=1 j=1
~al l

Define 5(" = n(Ba - Br). Since 3" is the minimizer of (5), 9™ = argmin, ¥, (v). Let
Va(v) = Up(v) — ¥n(0)

X'v 9 & v &
O R RO Sl T Sy [N

j=1 j=1

X'X LS
= V(-2 Zw (I8 + 21 = 183 (17)

n

By FCLT and the continuous mapping theorem, the first term and the second term of (17) converge
1 25wy xhu; = W, respectively. We thus focus on the third

in distribution,

term.

P ~ol . . ol
The third term involves the weight for each j, w; = \ﬁj ’ |~7. Since the OLS estimator n <ﬁo - ﬁ;‘;) =

QW = 0,(1), we have
@ = B+ Op (0™ 1) = 185;/m® + Op (1) 7, (18)
for all j. If ﬁgj #£ 0, as the ;‘n dominates n_lvj for a large n,

(187 + 17 i = [B7l) = n ™ vjsgn(B],) = n™ vjsgn(5g;)- (19)

(18) and (19) now imply

A\ d;y—1
185;/n% + Op (n=1) 'n
)\nn'yé 1

B ’56} +0p (1)

Ann
‘BO] + OP ( ) ‘,Y

My - (15 + 2| = |B5ul) = vjsen(5g;) = vjsen(55;)

vjsgn(83;) = Op (Aan™ ™) = 0, (1), (20)

by the given rate of A,. On the other hand, if 7; = 0, then (|5}, + n~ ;| — | ) = n~tv;|. For
any fixed v; # 0,
An Apn 1 Apn 1

M@ - (|85 +n" o] — [B5]) = ——— lvjl = T vyl = YoNGI |vj| — oo. (21)
i . |7 p( )
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as A\pn?~! — oo. Thus we have V,,(v) = V (v) for every fixed v, where

VQu —20'W, if vgee =0
V(v) =

0, otherwise.

Both V,, (v) and V (v) are strictly convex in v, and V (v) is uniquely minimized at
—_ 01 —
('UA* = Was,vp0e = O) )

Applying the Convexity Lemma (Pollard, 1991), we have

~(n) ~alasso (n)

vyl =n(Bae — i) = Qi Was and D2 = 0. (22)

The first part of the above result establishes Theorem 2.1(b).

Next we show variable selection consistency. We have P(A* C A,) — 1 immediately follows
from the first part of (22) as ﬁfﬂ) converges in distribution to a non-degenerate continuous random
variable. For those j ¢ A*, if the event {j € A,,} occurs, then the KKT optimality condition entails

’ ~alasso )\nwj

2oty - XU = 2, (23)

Notice that on the right-hand side of the KKT condition

AnW; An Apn Y1 B Apn Y1

— 00, (24)

~ols, —  ~ols,
" ”|5j |7 ‘n/Bj 7 Op (1)

from the given rate condition. However, looking at the left-hand side of (23), using y = X3 + u
and (22) we have

/
2 , ~alasso 2 ~alasso ~alasso ;U

/ * I’;X * J
El'j(y—Xﬁ ):Exj(Xﬁn_Xﬁ +u) =2 7 n(B, — B )+27
XN\ /iy n '
() )
= 20 - (U Was +0,(1)) + 2W;. (25)

In other words, the left-hand side of (23) remains as a non-degenerate continuous random variable in

the limit. For any j € A*¢, the disparity of the two sides of the KKT condition implies P(j € A,,) =
~al =

P (%x;(y — x5 asso) = A"%) — 0. That is, P(A*® C A%) — 1 or equivalently P(A4, C A*) — 1.

We thus conclude the variable selection consistency P(A, = A*) - 1. =

Proof. [Proof of Corollary 2.3] The proof is a simple variant of that of Theorem 2.1 by setting
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w; = 1 for all j. For Part(a), the counterpart of (17) is

/

Vn(v):v’(XX)v—Q v+ A Z| — 18-

n2

For a fixed v; and a sufficiently large n,

« Vi % )\nU' % )\n . *
M([Bjn + ) = 1B5a]) = = sgn(55;) = O <n> , 1 Bo; # 05
« UV, 'U >\n . *

Since \,/n — 0, the effect of the penalty term is negligible. We have V,,(v) = V(v) for every
fixed v, and furthermore Vy(v) = v'Qu — 20'W. Due to the strict convexity of V,, (v) and V (v), the

Convexity Lemma implies
n (Bl“”" By =0 = lw,

In other words, the LASSO estimator has the same asymptotic distribution of the OLS estimator.

For Part (b), as A\,/n — ¢y € (0,00), the effect of the penalty emerges as

X'X ‘X
)v—2L0+ An D(lp,v By) = v'Qu — 20'W + c\D (1p,v, ;) -

Valo) = v'(= -

The conclusion of the statement again follows by the Convexity Lemma.

For Part (c), we define a new perturbation 3, = 35 + 2%v, and
9 An
U(v) = [|Y - X ﬁ+f I+ A Zrﬂjw vjl;
7j=1
)\% / ! )\n 4 2 * )\n *
Vi (v) = ¥, (v) — ¥, (0) = v (X' X)v — 52 Xv+ A > (B + —5 0l = 185.))-

=1

Given the rate % =0, i‘b—gv is dominated by any f7, = ﬁa‘j/n‘% if B5; # 0 in the limit. So, for a

sufficiently large n,

Ao XX Mo (U X A2 i
Va(v) = ﬁvl( n2 Jv— ;2 <n> v+ ﬁD (1p, v, By)
A X'X 1 u' X i
- ﬁ [U( 7'1,2 )v_)\n/n2< n >U+D(1P7U750)]
A X'X .
= ﬁ ['U/( n2 )’U+0p(].) +D(1p71}750)] .

~lasso

Notice that the scaled difference (™ = A-1n2(5"  —f*) can be expressed as (™ = arg min, ¥, (v).
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By the strict convexity of V,, (v) and V (v) = v'Qu + D (1, v, 5;), we invoke the Convexity Lemma
2 ~lasso

to obtain (83 — [}) = argmin, V (v). =

Proof. |Proof of Corollary 2.5] The standardized LASSO differs from the plain LASSO by setting
the weight @; = &;. For Part (a), we use the perturbation 8, = 8 + n~lv, and

p
v —~ ()
Ta) = [V = X (B4 D)7+ 2D I:Uj!ﬂjn +1),
‘]:

)U727U+>\ ZU] |B]n+ ‘ |Bj*n|)

7j=1

/

XX
n2

Vo(v) = U, (v) — ¥, (0) = '(
When \,/v/n— ¢y >0 and 2 f = d; as in (8), the penalty term

p ~ p
O (B + 21 155 = 220 (Fo0s55) = o0 D v, 5)

j=1

where 7 = (8]-)?:1. Part (a) follows by the same argument in the proof of Corollary 2.3(b).
Part (b) here is similar to the proof of Corollary 2.3(c) by introducing a new perturbation
Bn = B + 3/21} and

An An
alw) = 1V = (B 2 ) P40 D8+
7j=1
A2, A A
Vn (U):lﬂn(v)—\]jln(()):ﬁv (X X)U / 2u X’U-i-A ZU] ’/BJn—i_ 3/2 ’ |6 |)
7j=1

Given the rate )\n/n%_s — 0, for a sufficiently large n we have

=N N An . . N )\2 0j
An0j <’/Bjn + W”ﬂ - |5jn|> =D (%‘a n;-}/QUjHBOj) =D <\/ﬁ U]7B0j>

so that

=%

[v'(ﬁf)u - )\n/l\/ﬁ2 (“f) v+ D <jﬁ,u,5;;>]
[v();X)U+D<\; v 60> +o,(1 )] .

Define V(v) = v+ D (d, v, 5§), and the conclusion follows by the same Convexity argument. m

=%
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A.2 Proofs in Section 3

Proof. [Proof of Theorem 3.3] The OLS estimator

Ry (6, -0;) = Ry (WW) ™' W

= Ry (RaQ) ' R,Q (WW) ' QR, (QR,) ™ W'u
— R,Q 'R, [R;\QTWWQ TR, R\Q T W, (26)

b _ _ . .
where () 0 A I, 0 This @ is chosen so that

I, 0 0 0
0 I, 0 0
—A I, 0

0 0 0 I,

wWQ =z X{, X5, X] = [Z,X{ — X541, X5, X] = [Z, v, X5, X],

in which 1(0) and I(1) components are separated. To keep the notations concise, let [Z,v1] :== ZT
and [X§, X]:= XT. We have

Vadas Z+/5(+ Q+ 0
-1 y—1yxs! —1p—1 _ 3/2 .— Ot
n3/2 n2 T
Let the i-th column of Xt be X7  =[X§ | x;.]', which is a unit root vector with no cointegration
(P2+:D:c)><1
relationship. Using the component-wise BN decomposition, the scalar u; = F,(1) x & —AZy.

1x(p+1) (p+1)x1
Thus we have

1 1o 1 1
+,, — E : +,/ E : + 7 / 2 : + A
EX u = E XZ U; = <n £ X’L Ei) Fu(l) - ﬁ £ XZ AEUZ.

(:D2+Pw)><1 i=1
On the right-hand side of the above equation, 2 Y% | X;fe! = [ BT(r)dB.(r)’, and summation
by parts implies

1 & ~ 1
— ZX?Asm- = — Z u;z-:m' + 0p(1) LN Ay
L N4 (p2-+pz)x1

where A, is the corresponding submatrix of the one-sided long-run covariance A defined in (12,).

Combining these results, we have

Xtu/n = /B+(r)dBE(T)’Fu(1)/ + ALy i=Exr,
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and furthermore

Tu//n +
R'Q™'W'u = ( Z)ﬁ/é;{ ) — ( Sz ) = ¢t (28)

Ex+
Finally,
I, 0 0 0
R,Q7'R,! 0 I 0 I (29)
n = — 1p
" 0 0 I, 0
0 0 0 I,

The conclusion follows by substituting (27), (28) and (29) into (26). =

Proof. [Proof of Theorem 3.5] The basic idea of this proof is close to that of Theorem 2.1, but
there are some delicacy in the details. Let 6,, = 0% + R,,'v be a perturbation from 6}, and

Rjn Uj ‘

P P
) =Y =Y 205, + Ry v)l3 + A )@
j=1

J=1

where Rj, = (Ry) jj 18 the j-th diagonal element of R,,. Define
Val) = Wa(v) ~ 0,(0) = u— BT W} full3 + A ij (105, + R3.bes)] ~ 165.)

= VRIW'WR Y — 20 RIW u+ A, Z o (\a;fn + Rlvj)| - |9;n\) .
j=1

The first term

VRWWER v =0 (R'Q'R,) (R, QW IR (R,QR ) v = QM (30)
by (27) and (29) as we have shown in the proof of Theorem 3.3. Similarly, the second term

20 Ry W =20 (R,'Q'R,) (R,'Q ™' W'u) = 20/¢T. (31)

We focus on the third term. Theorem 3.3 and Remark 3.4 have shown the OLS estimator
— 0%, =0Op (Rj_nl) for each j. Given any fixed v; # 0 and a sufficiently large n:

~ols

9

e For j € {1,...,p. +p1}, the coefficients are invariant with the sample size. If 67, # 0, we

have (|67, + n1 2| — 107,1) = nil/ijsgn(Ha‘j) , and

o~ % Uj * _
My (o + ] = e ) = Op (Aan ™) = 0, (1)
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If 6*0 = 0, we have

~y—1
A 2

An; - (16, /2vj|_\9;fn|): .10 vj| = 0, (Ann(w)/z> e
p

given the rate of \,.

e Forj € {p. +p1+1,...,p}, the coefficient 0}, = Ga‘j/n‘sﬂ' depending on n. If 65, # 0, then 67,
dominates n~1v; in the limit. We have (]9;n+n*1vj]—]0;n\) = nilvjsgn(é?gj) = nilvjsgn(eaj),

and
v, . s
Al - (05 + 2] = 105,]) = Op (Aan™ ) = 0, (1)
by the same derivation in (20). On the other hand, if 65; = 0, then

Apn L

0,0) [vj| = Op ()‘nnv_l) — 00,

A - (105, +n" o] = 107,) =
according to the derivation in (21).

The above analysis indicates V,(v) = V' (v) for every fixed v, where

VT — 206, if vgiee = 0.

V(v) =
o0, otherwise.
Let 5" = R;l(galasso —0). By the same argument about the strict convexity of V,, (v) and V' (v),
we have
n _1 ~al % (n
50 = [RVO"™ = 09)] 4 = (QF.) €5 and 3. = 0. (32)

The first part of the above result establishes Theorem 3.5(b), and it also implies P(A* C A,,) — 1

For j ¢ A*, if the event {j € A,,} occurs, then the KKT condition entails

o~

2 ~alasso An 0 2 ~alasso )\nfU\
— —Wwe = J L4 = L,
20ty )= 2o )= 2
We will invoke similar argument as in (24) and (25) to show the disparity of the two sides of the
KKT condition, but the rates are different for the Z* part and the X part:

(33)

. ) .  AndD, n(—1)/2 _
e If j € {1,...,p.+p1}, the right-hand side of (33) is \/ﬁf = T\nf(:*“ls\ = 0,(A\yn=1/2)]
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where as the left-hand side is

~alasso 2 +/ ~alasso

jﬁj( = W) = = (W WO )

( J+/W 1 ~alasso Z}HU
— 2R Ry(0r — 0y 42T
\/ﬁ n n

W zt
_ J -1 (~n) | ~(n) J
_2< s >(A*+ o) +2
— 20 - (L) ed 4+ 0,(1) + 0, (1),

which converges in distribution to a non-degenerate continuous random variable.

o If j € {p. +p1+1,...,p}, the right-hand side of the KKT condition is A’fﬁ = |A§g§lsll =
i

Op(Ann?™1), whereas the left-hand side

2 ALasso ALasSso
“a iy — Wty = nxj’(we* Wo" "> 1)
o'W ~alasso '
=2<jRn1>R(9 _gl )+ 22—
n n

n n

W zu
=2 (jRnl <@£‘n) + 6&{1)0) 499
-1
= 20 - () €L +0p(1)) + 0, (1)
remains a non-degenerate continuous random variable asymptotically.

Given the specified rate for \,, for any j € A* we have

2 ! A 2 ! AnW;
P(] c An) _ ( J ( ~alasso n’LU] /\aasso) . nwj> S0

- Wwe )*Torsz "(y — W8 n

In other words, P(A* C A¢) — 1 or equivalently P(A4,, C A*) — 1. We therefore confirm the

variable selection consistency. =

Proof. [Proof of Corollary 3.8] For Part (a) and (b), let 6,, = 6 + R, 'v for some v € RP. Define

p
Va(v) =o' (RPW'WRLY) v — 20R, W+ A (165, + Rujoj] — 165,])-
j=1

The limiting behavior of the first and the second terms are derived in (30) and (31). Since Q7 is

block diagonal, the sample criterion function has a nice separation in the limit,

Vn(v) = V(U) = Vor (Uaﬁ) + Vo~ (Uz+)7 (34)
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Pz+p1

where v+ = (v;)0", v+ = ()8, ) 4y, and
A
_ L Of It o n +
Vir (0p) = v Qv+ — 20, 165 + nh_)rglo Pl D (1pm+p27 Vot B *)
Vo(v+) = vaQfvs =206 + lim =D (1, 4p,,v:,007).

noof

n (34) the limit V (v) is separable into two convex parts, implying

min V(v) = b Vo (ve+) + L Vi (Ug+).-

Invoking the Convexity Lemma for both parts we obtain Part (a) and (b) by the same argument as
in the proof of Corollary 2.3(a) and (b).

Part (c) needs more subtle investigation. Define

p
Vo(v) =0 (R;lw’WR;Ll) v = 20R W+ M Y (165, + Ry oj| = 165,])
j=1

where R,, = ‘)\/—fRn. Multiply n/A2 on both sides,

~ X—H Z—H
(”) Vaw) = o (RyW'WRYv—20, == —2/ 2"

)\% )\n\/ﬁ vz+ )‘"
n pz+pl n p )\
o > (1, v;| = [05,]) + o > (I9§n+wvjl—|9§n\)-
Jj=1 J=pz+p1+1
n pz+p1
= O (BAWWER vt = D0 (105 + il = 165,)
n P A
+t > (\9§n+n377}2vjl—l9}fnl)+op(1), (35)
" j=p.4p141

from the given rate condition of \,. Given v; # 0 and n large enough:

o If je{l,...,p, + p1} we have

)\

n A
050+ 2201650 = 5D (1.t

;vﬁeéj) =D (1Pz+P17Uj703j) (36)

v ok s . .
as Ojn = 90;‘ is invariant with n.

o If j € {p.+p1+1,...,p}, the coefficient 0;-‘n = ng/n‘% may shrink faster than n)‘” . The

3/2
inequality ||a + b| — |a|| < [b] I (|b] > |a]) +3|b| I (Ja] < |b]) < 3|b| for any a,b € R guarantees
n [ . An no| An ~1/2

= (1504 Syl = 1651 | <35 | S| =0 (). (37)
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(36) and (37) show that the first term in the second line of (35) asymptotically dominates the

second term. Thus

n Ve *
<)\2> Vo (v) = v/ QF v, + [ v S v +D ( potprs Vst T )] .
n

The above inequality indicates that the limiting behavior of the components associated with Z*
and the components associated with X are separable. Invoking the Convexity Lemma for both

parts, we obtain Part (c). =

Proof. [Proof of Corollary 3.10] For Part (a) when )\, = ¢ € [0,00), let 6,, = 0} + R, v for some
fixed v € RP. Let

p
Vo(v) =0 (R W'WR, Y v — 20R, " Wu+ex - Y 55105, + Rjnvj| — [05,]).
j=1

For v; # 0 and a sufficiently large n:

o ifje{l,....,p.},

as the index is associated with the stationary variable Z and therefore o; = O, (1);

eifje{p.+1,....p. +m},
55 (105 + =1 =105l ) = D35, L. 06 ) = D 75,0565

as the index is associated with unit root processes in X7 and therefore 2 f = dj;

eifje{p.+m+1,...,p}
N . Vi v Ti Vs
5 (10 + 21~ 18520) = D (35 2.03,) = D (% L 63,

—D<op(1),o<\/15> ,egj) 20

S % = d; = Op (1) for these regressors.

The above analysis of the third term implies

pz+p1
Vo(v) =V (v) =0 (R,'WWR, ") v—20R,"Wutcx Y D(dj,v;,6),
J=pz+1
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and the conclusion follows.

For Part (b), let R, = R,/A, and 6, = 6% + R, Lv for some v € RP. Define

Va(o) =o' (B W/WRL ) v = 20 W+ A, Zag! i Bjos] = 167,)-

Multiply 1/A2 on both sides,

XN/n v B B X 7 1 < . ~_ N
n n n nj:l
1 &
= o (R,'W'WR;* YZ i R, 1vj] = 10%,]) + op(1).
n]:l

from the given rate condition of A,. Again we study the last term. By the same reasoning as in

Part (a), for v; # 0 and a sufficiently large n we have:

o ifje{l,....p:},

L 1 (o A v
eifje{p:+1....,p:+p}
1~ )\ 1 (A i} 5.
= D (d;,v;,05;) = Op (1);

o ifjec{p.+ p1 +1,...,p}, the rate condition )\n/n(lfg)/\o'“r’ — 0 makes sure that 67, = 96‘j/n5j

dominates 22 so that

1. )\ U o;j v
s (\9 ul = 103,1) = D (55, 2.05) = D (22, 2L.05,) Bo.

V’f\%v) — Qv+ Z?Z:;firpﬁl D (dj, vj, 9&) and the conclusion follows. =

B Additional Simulations

B.1 More DGPs

In this section, we include two more DGPs to examine the forecasting performance and variable

screening in the presence of autoregression.

36



DGP 3 (Unit-root autoregression). Motivated by Caner (2013) proposing to treat the
unit root test as a model selection problem by regressing Ay;+1 on lags of y;, we come up with the
following DGP that extends their setting by including stationary regressors. The dependent variable
is generated from a unit-root autoregression y;4+1 = y; + 1,2 + B3, Ti—1 + 2521 ajzij + u;, where
x; is a random walk. The stationary regressors Z; = (Zij)?zl follow a stationary VAR(2) borrowed
from Koo et al. (2016, Section 5.1) *. We include lag terms of y; as regressors. In the predictive

regression, we use Ay;+1 = y+1 — ¥¢ as the dependent variable, and the regression equation is
Ayir1 = Ginli + $5pYi 1 + Binwi + Bopin + Y 2y + Uit
j=1

where (¢*, 8%,

grated regressors and this DGP also employs mixed roots and cointegration.

a¥) = (O 0, f f’ 1,1,1, 0,0, O) Notice that y; and y;—1 are inactive cointe-

DGP 4 (Stationary autoregression). In addition to including lags of y;, it is also a common
practice to include lags of predictors in predictive regressions, for example Medeiros and Mendes
(2016). We propose the following DGP in which a stationary autoregression generates the dependent

variable

2

Yi+1 = ’7 +p Yi +Z¢]n ’L] +51’nx7f +/82nx’b 1 +Z jlzlj +O(]221 17.7) +u7’+1
Jj=1 7=1

where v* = 0.3, (p*, 6%, 8%, al, a5, ) = (0.4, 0.75, =0.75, 1, 0.6, 0.4, 0.8, 0, 0, o) The cointe-
grated zf; and x§, are generated by %, = §; — p; where z§; is a random walk and p; is a stationary
AR(1) process with AR(1) coefficient 0.4. z; follows a random walk. 2z;1,2;2 and z;3 are three

independent AR(1) processes with AR(1) coefficients 0.5,0.2 and 0.2, respectively.

The results summarized in Table 4 and 5 are similar to that in DGP 2, which demonstrates the

merits of the adaptive LASSO in the presence of autoregression.

B.2 Standardized LASSO

We determine 445 and c’/{lasso as in Section 4 and let cglasso = c3lss0 The results are summarized
in Table 6 and 7. The CRy of the standardized LASSO is much higher than that of the plain
LASSO, which is consistent to what the asymptotic theory suggests.

4For completeness, the VAR(2) is Z; = Ax1Zi—1 + A2 Zi—2 + vt, where

0 0 0 04 0 0 0 0 0 0 0 0
0.29 0.12 0 0 1.31 0.04 -0.28 —-0.07 0 0 -0.35 -0.02
A, = 1.25 -024 O 0 -0.21 0.04 and Ay — -026 024 0 0 019 -0.05
* 0.03 1.16 0 0 0.07 0.01 * -0.02 -016 0 0 -—-0.07 0.01
0.27 —-0.07 0 0 0.08 1.25 -0.23 003 0 0 -013 -0.31

0 0 04 O 0 0 0 0 0 0 0 0
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Table 4: Mean Prediction Squared Error (MPSE)

n  Oracle OLS alasso  plasso slasso
DGP 3 40 1.2041 1.6302 1.3955 1.4681 1.3407
80 1.1000 1.2244 1.1504 1.1823 1.1399
120 1.0703 1.1815 1.1022 1.1255 1.1084
200 0.9686 0.9962 0.9878 0.9942 0.9917
400 0.9971 1.0131 0.9986 1.0026  1.0023
800 1.0085 1.0175 1.0110 1.0162 1.0134
DGP 4 40 1.3062 1.5539 15104 1.4882 1.5178
80 1.2616 1.3047 1.2944 1.2879 1.2953
120 1.0529 1.0945 1.0783 1.0873 1.0933
200 1.0794 1.1202 1.1003 1.1083 1.1170
400 1.0055 1.0177 1.0110 1.0139 1.0153
800 1.0496 1.0537 1.0504 1.0535 1.0548

Note: Bold numbers are for the best performance among all the feasible estimators.

Table 5: Variable Screening

CR CRy CRy
n alasso  plasso  slasso alasso  plasso  slasso alasso  plasso  slasso
40 0.6662 0.5957 0.6996 0.8300 0.8558 0.8918 0.5024  0.3356 0.5074
80 0.6846 0.5693  0.6753 0.8402 0.9092 0.9220 0.5290 0.2294  0.4286
™ 120 0.6772 0.5544  0.6599 0.8448 0.9256  0.9278 0.5096 0.1832 0.3920
% 200 0.6878 0.5525  0.6515 0.8422 0.9450 0.9378 0.5334 0.1600 0.3652
R 400 0.6849 0.5481 0.6307 0.8350 0.9622  0.9548 0.5348 0.1340 0.3066
800 0.7010 0.5478  0.6270 0.8356 0.9742  0.9628 0.5664 0.1214  0.2912
40 0.8188 0.7446  0.6549 0.9449 0.9743 0.9921 0.5983 0.3428 0.0648
80 0.8547 0.7330  0.6558 0.9691 0.9900 0.9957 0.6545 0.2833 0.0610
= 120 0.8649 0.7273  0.6513 0.9684  0.9890 0.9937 0.6838 0.2693 0.0520
%5 200 0.8773 0.7210 0.6546 0.9673  0.9910 0.9941 0.7198 0.2485 0.0605
A 400 0.9053 0.7137  0.6582 0.9711 0.9946 0.9947 0.7900 0.2223 0.0693
800 0.9242 0.7124  0.6605 0.9703 0.9943 0.9934 0.8435 0.2190 0.0780

Note: Bold numbers are for the best performance.
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Table 6: Mean Prediction Squared Error (MPSE)

n  Oracle OLS alasso  plasso slasso
DGP1 40 1.1606 1.4861 1.3515 1.2109 1.2703
80 1.1275 1.2384  1.1990 1.1534 1.2136
120 1.0467 1.1328  1.1028 1.0768  1.1227
200 1.0977 1.1249 1.1157 1.1107 1.1959
400 1.0043 1.0400 1.0252 1.0296 1.0672
800 1.0848 1.0975 1.0902 1.0908 1.1098
DGP 2 40 1.1718 1.4403 1.3338 1.3188 1.2780
80 1.1271 1.2169 1.1939 1.1926 1.2315
120 0.9750 1.0753 1.0364 1.0494 1.0711
200 1.0845 1.1417 1.1132 1.1316 1.1734
400 1.0558 1.0728 1.0640 1.0669 1.1183
800 1.0286 1.0413 1.0338 1.0367  1.1040

Note: Bold numbers are for the best performance among all the feasible estimators.

Table 7: Variable Screening

CR CRy CRy
n alasso  plasso  slasso alagso  plasso  slasso alagsso  plasso  slasso
40 0.5923 0.6486  0.6459 0.7695 0.6535  0.4998 0.4150 0.6438 0.7920
80 0.6619 0.6831 0.6904 0.8308 0.8293  0.6205 0.4930 0.5370 0.7603
— 120  0.7089 0.6789  0.7243 0.8820 0.9068 0.6918 0.5358  0.4510 0.7568
?5 200 0.7648 0.6764 0.7551 0.9408 0.9695 0.7740 0.5888 0.3833 0.7363
A 400 0.8318  0.6430 0.7939 0.9808 0.9955 0.8628 0.6828  0.2905 0.7250
800 0.8874  0.5994 0.8270 0.9988 0.9998 0.9370 0.7760 0.1990 0.7170
40  0.6953 0.6168 0.6191 0.7573 0.8518 0.6975 0.6333 0.3818  0.5408
80  0.7926  0.6425 0.6453 0.8818 0.9580 0.7490 0.7035 0.3270  0.5415
120 0.8436  0.6450 0.6726 0.9450 0.9895 0.7855 0.7423 0.3005  0.5598
% 200 0.8786 0.6466 0.6750 0.9760 0.9985 0.8078 0.7813 0.2948  0.5423
A 400 0.9150 0.6398 0.6896 0.9955 1.0000 0.8195 0.8345 0.2795  0.5598
800 0.9321  0.6296 0.6974 0.9995 1.0000 0.8260 0.8648 0.2593  0.5688

Note: Bold numbers are for the best performance.
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