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Abstract

This paper studies possibilities of using shrinkage methods for predictive regression. The

variable selection in predictive regression is important since there is a variety of potential pre-

dictor variables. The commonly used predictors typically have various degrees of persistence,

and exhibit low signal strength in explaining the dependent variable. We investigate the pitfalls

and possibilities of the LASSO methods in this predictive regression framework with mixed de-

grees of persistence. We show that the adaptive LASSO methods have the consistent variable

selection and the oracle properties under the presence of stationary, unit root and cointegrated

predictors. The conventional LASSO methods under this environment are also studied, signi-

fying some practical concerns. Exploratory simulation results are reported, and some empirical

practices are performed for illustration.
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1 Introduction

Predictive regression models are extensively used in empirical macroeconomics and �nance. A

leading example is the stock return regression model where predictability has been a long standing

goal. The �rst central econometric issue in these models is severe test size distortion in the presence

of highly persistent predictors coupled with the regression endogeneity. When persistence and

endogeneity are present, the conventional inferential tools designed for stationary data are no longer

valid. Another major challenge in predictive regression is the well-known low signal-to-noise ratio

(SNR). The regression coe�cient representing the predictive relation is small albeit it could be

statistically signi�cant. Thus it is hard to detect the signi�cant relation, and is often dominated

by the estimation error when the predictive relation is exploited for forecasting. The predictive

regression literature has developed econometric methods for overcoming the inferential di�culties

and for improving prediction.

The shrinkage methods have been popular in the era of high dimensional data. We have wit-

nessed unprecedented abundance of data sources across many disciplines such as computer science,

neuroscience, engineering and statistics. This data-rich environment also provides new challenges

and opportunities in using machine learning technique for economic data analysis. Machine learning

methods, in particular, the shrinkage methods are increasingly popular for the econometric inference

and prediction in view of its variable selection and regularization property. A leading technique in

the shrinkage methods is the least absolute shrinkage and selection operator (LASSO; Tibshirani,

1996), which has received much attention in the past two decades.

This paper stuides the property of LASSO methods in predictive regression. The intrinsic low

SNR in predictive regression creates challenges hence naturally calls for a shrinkage method. A

researcher may throw in ex ante a pool of candidate regressors hoping to catch a few important

predictors. The more variables the researcher attempts, the more important is a data-driven method

for variable screening, since many of these variables ex post demonstrate little to none predictability.

LASSO-type shrinkage methods are therefore attractive in the predictive regression as they enable

researchers to select the important predictors and excluding the irrelevant or unimportant ones.

However, time series regressors in predictive regressions have heterogeneous degrees of persistence.

Some may exhibit short memory (e.g., T-bill), while others are highly persistent (e.g., most of

�nancial/macro predictors). Moreover, the multiple persistent predictors can be cointegrated. For

example, DP ratio is essentially a cointegrating residual between the dividend and price. The so-

called cay data (Lettau and Ludvigson, 2001) is another cointegrating residual between consumption,

asset holdings and labor income. The property of LASSO methods under the mixed regressor

persistence has not been systematically studied yet.

The performance of LASSO procedure crucially relies on the choice of the tuning parameter. In

this paper, we examine whether a single tuning parameter can cope with the heterogeneous degrees

of regressors. In particular, we explore the plain LASSO (Tibshirani, 1996), the standardized

LASSO (see below for the de�nition) and the adaptive LASSO (Zou, 2006) with three categories of

regressors; non-cointegrated unit root (I(1)) regressors, cointegrated regressors, and short memory

1



(I(0)) regressors. The di�erent degrees of persistence of the regressors challenges the conventional

wisdom of the variable screening property of the plain LASSO and the standardized LASSO. We �nd

that the last two methods with the commonly used tuning parameter cannot deliver proper variable

screening. In contrast, the adaptive LASSO with the proper choices of the tuning parameter and the

weights is shown to achieve the oracle property and consistent variable selection. Our exploration

in this paper paves a stepping stone toward the automated variable selection in a high-dimensional

predictive regression with heterogeneously persistent regressors.

Literature Review Since the seminal LASSO paper by Tibshirani (1996), a variety of nontrivial

extension of LASSO has been proposed; the adaptive LASSO (Zou, 2006) and Elastic net (Zou

and Hastie, 2008), to name a few. In econometrics, Caner (2009) and Caner and Zhang (2014)

employ the LASSO-type procedures in GMM contexts. Belloni and Chernozhukov (2009), Belloni,

Chen, Chernozhukov and Hansen (2012), Belloni, Chernozhukov and Hansen (2014), Belloni, Cher-

nozhukov, Chetverikov and Wei (2015) develop new methodology and uniform statistical theory for

estimation and inference in various microeconometric settings.

In comparison with the vast literature of LASSO in cross sectional regressions, shrinkage methods

are less studied in time series context. Medeiros and Mendes (2016) study the adaptive LASSO

method in high-dimensional stationary time series models. Kock and Callot (2015) discuss LASSO

in a VAR system. In the time series forecasting context, Inoue and Killian (2006) apply various

model selection and model averaging methods to forecast U.S. consumer price in�ation. Hirano and

Wright (2017) develop a local asymptotic framework with iid orthonormalized predictors to study

the risk properties of various machine learning estimators.

There are also a few papers on LASSO with nonstationary data. Caner and Knight (2013)

discuss the bridge estimator, a generalization of LASSO, for the augmented Dicky-Fuller test in

autoregression. Under the same setting, Kock (2016) investigates consistent variable selection by

adaptive LASSO. In a VECM framework, Liao and Phillips (2015) use the adaptive LASSO for

cointegration rank selection.

In predictive regression context, Kostakis et al.(2014), Lee (2016) and Phillips and Lee (2013,

2016) provide some valid inference in the presence of multiple predictors with various degrees of

persistence. Xu (2017) studies variable selection and inference in predictive regression with possible

cointegration among the I(1) predictors. Koo et al. (2016) recently investigates the property of

the plain LASSO in predictive regressions, in which they invoke the restricted eigenvalue condition

(Bickel, Ritov and Tsybakov, 2009). The last two papers are closely related to this paper. We,

however, advocate the usage of adaptive LASSO in predictive regression under mixed degrees of

persistence.

The paper is organized as follows. Section 2 introduces the unit root regressors into a simple

LASSO framework to clarify the idea. Section 3 substantially generalizes the model to include I(0),

I(1) and cointegrated regressors. The theoretical results are explored through a set of empirically

relevant simulation designs in Section 4. We also examine the stock return regressions via these
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LASSO methods in Section 5.

Notation We use standard notation. We de�ne ‖·‖1 and ‖·‖2 as the usual vector l1-norm and

l2-norm respectively. =⇒ , −→p and −→a.s. represent convergence in distribution, convergence

in probability and almost sure convergence, respectively. All limit theory assumes n → ∞ so we

oftentimes omit this condition. ∼ signi�es "being distributed as" either exactly or asymptotically,

depending on the contexts. O (1) and o(1) (Op (1) and op(1)) are (stochastically) asymptotically

bounded or negligible quantities.

2 LASSO Theory with Unit Roots

In this Section, we study the theory of LASSO with p-dimensional unit root regressors. To �x ideas,

we investigate the asymptotic behavior of the adaptive LASSO, plain and standardized LASSO

under a simple nonstationary regression model. This simple framework helps us understand the

technical issues in LASSO arising from nonstationary predictors with the conventional choices of

tuning parameters. Section 3 generalizes the simplistic model to include I(0), I(1) and cointegrated

predictors altogether.

Assume the dependent variable yi is from the linear model

yi =

p∑
j=1

xijβ
∗
jn + ui, i = 1, . . . , n. (1)

Let y = (y1, . . . , yn)′ be the response vector, and X = [x1, . . . , xp] be the predictor matrix, where

each xj = (x1j , ..., xnj)
′ for j = 1, . . . , p are unit root predictors with xij = xi−1,j + eij =

∑i
k=1 ekj ,

eij ∼ iid (0, σ2
ej ). For simplicity, let e0j = 0 for all j. In a p× 1 vector notation

x′i· =

i∑
k=1

e′k· (2)

where ek· = (ek1, ..., ekp).

We assume the following iid assumption on innovations. This assumption will be substantially

generalized to the linear process assumption in Section 3.

Assumption 2.1 The vector of innovation ei· = (ei1, . . . , eip) (1× p vector) and ui (scalar) follow

the joint iid distribution:(
e′i·
ui

)
(p+1)×1

∼ iid

(
0,Σ =

(
Σee Σeu

Σ′eu σ2
u

))
.
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Under Assumption 2.1, the following functional central limit theorem holds:

1√
n

bnrc∑
k=1

(
e′k·
uk

)
(p+1)×1

=⇒

(
Bx(r)

Bu(r)

)
≡ BM (Σ) (3)

The regression equation (1) can be equivalently written as

y =

p∑
j=1

xjβ
∗
jn + u = y = Xβ∗n + u. (4)

where β∗n =
(
β∗1n, . . . , β

∗
pn

)′
. The true coe�cient in (1) β∗jn = β∗0j/n

δj , where β∗0j ∈ R is a �xed

constant independent of the sample size, and δj ∈ [0, 1). Here β∗jn varies with the sample size if

β∗0j 6= 0 and δj ∈ (0, 1)1. Let δ = maxj≤p δj .

Note that the pure I(1) regressor model in (4) is a direct extension of the common predictive

regression application with a single unit root predictor (e.g., D/P-ratio). The mixed roots case in

Section 3 will be more relevant in practical applications with multivariate predictors.

The literature of predictive regression focuses on the non-standard statistical inference caused

by persistent regressors and weak signal; the discussion is usually con�ned to a reasonable number

of candidate predictors, but not with a huge number of them. Following this literature, we also

consider the asymptotic framework in which p is �xed and the sample size n → ∞2. This simple

asymptotic framework allows us to concentrate on the contrast between the stationary regressors and

the nonstationary ones in the penalized estimation methods. We need not introduce the complex

and unstable large sample Gram matrix theory, for which the restriction on the eigenvalues must

be imposed (Bickel et al., 2009).

Under this framework, one can learn about the unknown coe�cients β∗n from the data by running

the OLS

β̂
ols

= arg min
β∈Rp

‖y −Xβ‖22.

whose asymptotic behavior is now well understood (Phillips, 1987). Let Ω =
∫ 1

0 Bx(r)Bx(r)′dr,

where Bx is the p×1 vector Brownian motion, BM (Σee), as given in (3). Let W =
∫ 1

0 Bx(r)dBu(r)

is a stochastic integral whose distribution depends on Σ. Then we have

n
(
β̂
ols
− β∗n

)
=

(
X ′X

n2

)−1 X ′u

n
=⇒ Ω−1W.

1This type of local-to-zero coe�cient is designed to balance the I(0)-I(1) relation between the stock return and
the unit root predictors, as well as modeling the weak SNR in predictive regressions. See Phillips and Lee (2013) and
Timmermann and Zhu (2017) for the recent discussion. Note that the case of δj = 1 (Pitman drift) is excluded not
to have the e�ect of nuisance parameter in the limit, unilke Hirano and Wright (2016). Please see Remark 3.7 below
for the related discussion and clari�cation.

2Koo et al. (2016) allow the number of I(0) regressors to increase while still having the number of I(1) regressors
�xed.
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In addition to the low SNR in predictive regressions, some true coe�cients β∗0j in (4) could be

identically zero. Let A∗ = {j : β∗0j 6= 0} be the set of the relevant regressors and A∗c = {1, . . . , p} \A∗

be the set of the redundant regressors. Let p∗ = |A∗| be the number of relevant regressors. If we

have prior knowledge about A∗, ideally we can estimate the unknown parameter by OLS

β̂
oracle

= arg min
β∈Rp∗

‖y −
∑
j∈A∗

xjβj‖22.

We call this the oracle estimator. The oracle information about A∗ is infeasible in practice. Since

β̂
oracle

is estimated by OLS, it is straightforward to see that its asymptotic distribution is

n
(
β̂
oracle

− β∗n
)

=⇒ Ω−1
A∗WA∗ ,

where ΩA∗ is the p
∗ × p∗ submatrix

(
Ωjj′

)
j,j′∈A∗ and WA∗ is the p

∗ × 1 subvector (Wj)j∈A∗ .

2.1 Adaptive LASSO with Unit Root Regressors

The adaptive LASSO is known to enjoy the oracle property in regressions with stationary and weakly

dependent regressors (Medeiros and Mendes, 2016). To accommodate the predictive regression

applications, we investigate whether the adaptive LASSO maintains the oracle property in the

regression with p-dimensional unit root regressors.

The adaptive LASSO estimator for (1) is given by

β̂
alasso

= arg min
β∈Rp

‖y −Xβ‖22 + λn

p∑
j=1

ŵj |βj |, (5)

where the weight is ŵj = |β̂
init

j |−γ for some initial estimator β̂
init

. In this paper we discuss the case

with γ ≥ 1 and β̂
init

= β̂
ols
.

We introduce additional notation. An index set associated with non-zero coe�cients is called

an active set in the literature of variable selection. Denote An = {j : β̂
alasso

j 6= 0} as the selected
active set by the adaptive LASSO (5), while let A∗ = {j : β∗0j 6= 0} be the true active set. For a

generic index set A and vector an p× 1 vector β, we denote βA = (βj)j∈A.

We provide a modi�ed version of Zou (2006, Theorem 2) in the presence of unit root regressors.

Theorem 2.1 Suppose the linear model (1) satis�es Assumption 2.1. If the tuning parameter λn

is chosen such that λn →∞ and λn
n1−γ·δ + 1

λnnγ−1 → 0, then

(a) Variable selection consistency: P (An = A∗)→ 1.

(b) Asymptotic distribution of β̂
alasso

A∗ : n(β̂
alasso

− β∗n)A∗ =⇒ Ω−1
A∗WA∗ .

Theorem 2.1 con�rms the oracle property of the adaptive LASSO with unit root regressors. The

�rst result indicates that the selected active set coincides with the true active set with probability
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approaching to one. The second result shows that the asymptotic distribution of adaptive LASSO

estimator in the true active set is the same as the oracle estimator.

This delicate adaptive argument is only valid through the proper choice of ŵj = |β̂
ols

j |−γ in this

nonstationary regression. In essence, when the true coe�cients are not zero, ŵj provides a penalty

of the order λnn
γδ−1 = o(1) so is negligible, recovering OLS limit theory. On the other hands, if the

true coe�cients are zero, ŵj provides a heavier penalty of the order λnn
γ−1 →∞ thereby achieving

consistent variable selection. This intuition was originally provided in Zou (2006, Remark 2) in the

deterministic regressor design.

Remark 2.2 In Theorem 2.1, we observe some interconnected rate conditions between λn, δj and

γ. To achieve the oracle property in the active set, we need a rate condition of λn
n1−γ·δ → 0. In the

meantime, λnn
γ−1 → ∞ is required to penalize the zero coe�cients. Consider the formulation of

the usual tuning parameter λn = cλbnn
1
2 , then we need

bn

n1/2−γ·δ
+
n1/2−γ

bn
→ 0.

When γ = 1, and δ = 1/2 (a balancing order for I(0)-I(1) regression), the corresponding condition is

bn+ 1
bnn1/2 → 0 so a slowly shrinking sequence such as bn = (log log n)−1 satis�es the rate condition.

This is a commonly imposed rate condition in the adaptive LASSO literature.

Since we now have the positive results about adaptive LASSO with unit root regressors, we

continue to study the plain LASSO (Tibshirani, 1996), and a simple variant, which we call the

standardized LASSO.

2.2 Plain LASSO with Unit Roots

The plain LASSO can be viewed as a special case of the penalized estimation in (5) with the weights

ŵj , j = 1, . . . , p, �xed at unity. In this paper, we call it the plain LASSO estimator

β̂
lasso

= arg min
β∈Rp

‖y −Xβ‖22 + λn ‖β‖1 . (6)

LASSO is proposed by Tibshirani (1996) to produce a parsimonious model as it tends to select the

relevant variables. The following results characterize the asymptotic behavior of the conventional

LASSO according to various choices of λn when we use unit root regressors. For exposition, we

de�ne a function D :
(
Rdim(θ)

)3 7→ R+ as

D (s, v, θ) :=

p∑
j=1

sj (vjsgn (θj) I (θj 6= 0) + |vj | I (θj = 0))

for three generic vectors s, v, and θ of the same dimension.

Corollary 2.3 Suppose the linear model (1) satis�es Assumption 2.1.
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(a) If λn →∞ and λn/n→ 0, then

n(β̂
lasso

− β∗n) =⇒ Ω−1W

(b) If λn →∞ and λn/n→ cλ ∈ (0,∞), then

n(β̂
lasso

− β∗n) =⇒ arg min
v

{
v′Ωv − 2v′W + cλD(1p, v, β

∗
0)
}
.

(c) If λn/n→∞, and λn/n
2−δ̄ → 0,

n2

λn
(β̂
lasso

− β∗n) =⇒ arg min
v

{
v′Ωv +D(1p, v, β

∗
0)
}

Remark 2.4 Corollary 2.3 extends the results of Zou (2006, Section 2) to the unit root regressor

case. Following the same discussion as Zou's, we conclude that the plain LASSO's variable selections

are in general inconsistent when the unit root regressors are present.

The above Corollary 2.3 shows that the conventional tuning parameter λn ∼
√
n is too small

for variable selection with nonstationary regressors. Moreover, without the adaptive argument as

in the adaptive LASSO case, the consistent variable selection is not guaranteed. In this paper, we

call the phenomenon that LASSO shrinks some estimated coe�cient to exactly zero (whether or

not the true coe�cients are zeros) as the variable screening e�ect, instead of the variable selection

e�ect (which means that LASSO shrinks those truly zero coe�cients). Such e�ect will be further

discussed in the paragraphs following Corollary 3.8.

2.3 Standardized LASSO with Unit Roots

In view of the problem that the usual choice of λn is too small for LASSO to conduct variable

screening in nonstationary regression, one may consider an alternative implementation which is

common in practice. LASSO is scale-variant in the sense that if we change the unit of xj by

multiplying with a non-zero constant c, such a change is not re�ected in the penalty term in (6) so

the LASSO estimator does not change proportionally to β̂
lasso

j /c. To keep LASSO scale-invariant

to the choice of unit of xj , which can be arbitrary, researchers often scale-standardize LASSO as

β̂
slasso

= arg min
β∈Rp

‖y −Xβ‖22 + λn

p∑
j=1

σ̂j |βj | . (7)

where σ̂j =
√

1
n

∑n
i=1 (xij − x̄j)2 is the sample standard deviation of (xij)

n
i=1. In this paper, we

call (7) the standardized LASSO. Such standardization is the default option for LASSO in many
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statistical packages, for example the R package glmnet.

We can view the standardized LASSO is another alternative of (5) by setting ŵj = σ̂j . When

such a scale standardization is carried out with stationary and weakly dependent regressors, these

σ̂j 's converge in probability to the �nite population variance. As it does not change the rate of the

tuning parameter, it has no asymptotic e�ect to the estimation. In contrast, when xj has a unit

root, from (3) we have

σ̂j√
n

=

√√√√ 1

n2

n∑
i=1

(xij − x̄j)2 =⇒ dj =

√∫
B2
xj (r)dr −

(∫
Bxj (r) dr

)2

(8)

so that σ̂j = Op (
√
n). It thus imposes a much heavier penalty on the associated coe�cients with unit

root regressors than the stationary ones. Adopting a standard argument for LASSO as in Knight

and Fu (2000) and Zou (2006), we have the following asymptotic distribution for n(β̂
slasso

− β∗n).

Let d = (d1, . . . , dp)
′ be the corresponding random vector.

Corollary 2.5 Suppose the liner model (1) satis�es Assumption 2.1.

(a) If λn →∞ and λn/
√
n→ cλ ∈ [0,∞), then

n(β̂
slasso

− β∗n) =⇒ arg min
v

{
v′Ωv − 2v′W + cλD(d, v, β∗0)

}
,

where cλ = 0 case restores OLS limit theory.

(b) If λn/
√
n→∞ and λn/n

3
2
−δ̄ → 0,

n3/2

λn
(β̂
slasso

− β∗n) =⇒ arg min
v

{
v′Ωv +D(d, v, β∗0)

}
Remark 2.6 In Corollary 2.5, D(d, v, β∗0) is the term that generates the variable screening e�ect.

In Corollary 2.5(a), D(d, v, β∗0) appears under the usual choice of tuning parameter λn ∼
√
n. In

contrast, its counterpart D(1p, v, β
∗
0) emerges in Corollary 2.3 when λn ∼ n. The random vector d,

the �rst argument of D(·, v, β∗0), introduces an extra source of randomness in the variable screening

in the standardized LASSO, whereas its counterpart in the plain LASSO is the unit vector 1p. We

con�rm that the standardized LASSO cannot achieve consistent variable selection in general.

To summarize, in the regression with unit root predictors, the adaptive LASSO retains the

oracle property under the usual choice of the tuning parameter. For the plain LASSO to exhibit

the variable screening e�ect, we need to lift the tuning parameter up to the order of n. For the

standardized LASSO, although λn ∼
√
n is su�cient for variable screening, the sample variance of

the nonstationary regressors brings the random vector d into the limit theory, a�ecting the variable

screening.

The unit root regressors are shown to alter the asymptotic properties of the conventional LASSO

methods. In practice, we often encounter a multitude of candidate predictors, exhibiting various
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dynamic patterns. Some are stationary, while others can be highly persistent and may be cointe-

grated. In the following section, we will show that the conventional LASSO methods behave even

more irregularly under the mixed persistence environment.

3 LASSO Theory with Mixed Roots and Cointegration

In this section, we generalize the model of Section 2 by considering I(0) and I(1) regressors with

possible cointegration among those I(1) regressors. In applications of predictive regression with

multiple predictors, the model and LASSO theory of this section can provide a general guidance.

3.1 OLS theory with mixed roots

We �rst study OLS theory since OLS estimator is used as the initial estimator for the adaptive

LASSO. The dependent variable yi is generated from the linear model

yi =

pz∑
j=1

zijα
∗
j +

pc∑
j=1

xcijφ
∗
jn +

px∑
j=1

xijβ
∗
jn + ui = α∗′Zi + φ∗′nX

c
i + β∗′nXi + ui, (9)

for i = 1, . . . , n, where Zi = (zi1, ..., zipz)
′, Xc

i =
(
xci1, ..., x

c
ipc

)′
, and Xi = (xi1, ..., xipx)′ represent

the stationary, cointegrated and unit root regressors, respectively. Equivalently,

y = Zα∗ +Xcφ∗n +Xβ∗n + u := Wθ∗n + u, (10)

where the response vector y = (y1, . . . , yn)′, the observation matrix of predictors

W
n×p

=

[
Z

n×pz
, Xc

n×pc
, X
n×px

]
,

and the stacked parameter of θ∗n
p×1

= (α∗′, φ∗′n , β
∗′
n )′ with p = pz + pc + px.

As in Section 2, each xj = (x1j , ..., xnj)
′ for j = 1, . . . , px is a unit root predictor (initialized at

zeros for simplicity) with xij = xi−1,j + eij =
∑i

k=1 ekj where the DGP for e′i· = (ei1, ..., eipx)′ is

given in Assumption 3.1 below. In a px× 1 vector notation x′i· =
∑i

k=1 e
′
k·. On the other hand, the

pc × 1 predictor Xc
i has the triangular representation (Phillips, 1991)

A
p1×pc

Xc
i = Xc

1i − A1
p1×p2

Xc
2i = v1i , (11)

4Xc
2i = v2i ,

where A = [Ip1 ,−A1], Xc
i = (Xc′

1i, X
c′
2i)
′, and pc = p1 + p2. Hence p1 is the cointegration rank, and

p2 is the number of unit roots in the system. This is a convenient but general representation of

cointegrated system, and Xu (2017) recently used this structure in predictive regression framework.

Now we let φ∗n =
(
φ∗1, . . . , φ

∗
p1
, φ∗p1+1,n, ..., φ

∗
p1+p2,n

)′
so that, for j ∈{p1 + 1, ..., p1 + p2} the coe�-
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cient φ∗jn = φ∗0j/n
δj with δj ∈ [0, 1) to ensure the regression model validity, similarly to Section 2.

Recall δ = maxj≤p δj .

We stack the cointegrating residual vector and the innovation from (11) and de�ne pc×1 vector

vi = (v′1i, v
′
2i)
′. We then assume the following linear process for innovation and cointegrating residual

vectors. In contrast to the unrealistic iid assumption in Section 2, the linear process assumption is

fairly general, including many practical dependent processes (stationary AR and MA processes, for

example) as special cases.

Assumption 3.1 [Linear Process] The vector of stacked innovation follows the linear process:

ξi
(p+1)×1

:=


z′i·
vi

e′i·
ui

 = F (L)εi =
∞∑
j=0

Fjεi−j ,

εi
(p+1)×1

=


εzi

εvi

εei

εui

 ∼ iid
0, Σε

(p+1)×(p+1)
=


Σzz Σzv Σze 0

Σ′zv Σvv Σve 0

Σ′ze Σ′ve Σee Σeu

0′ 0′ Σ′eu Σuu


 ,

where F0 = Ip+1,
∑∞

j=0 j ‖Fj‖ <∞, F (z) =
∑∞

j=0 Fjz
j and F (1) =

∑∞
j=0 Fj > 0.

Remark 3.1 Our empirical model is

y = Wθ∗n + u = Zα∗0 +Xcφ∗n +Xβ∗n + u,

where the rightmost expression represents possible mixed roots. By assuming a convenient cointe-

grating system (11), we interpret the empirical relation as

y = Zα∗0 +Xc
1φ
∗
10 +Xc

2φ
∗
2n +Xβ∗n + u

= Zα∗0 +
(
Xc

1 −Xc
2A
′
1

)
φ∗01 +Xc

2(A′1φ
∗
10 + φ∗2n) +Xβ∗n + u

= Zα∗0 + v1φ
∗
10 +Xc

2

(
A′1φ

∗
10 + φ∗2n

)
+Xβ∗n + u.

Then, to ensure our empirical model validity, we allow (A′1φ
∗
10 + φ∗2n) and β∗n to be small enough

to keep y stationary. As an asymptotic mechanism, we introduce a local-to-zero modeling for the

coe�cients in front of I(1) regressors, so φ∗2 is supposed to o�-set the non-zero full rank component

A′1φ
∗
1, leading to A′1φ

∗
1 + φ∗2 ' 0. We model this small component φ∗2 as φ∗2,n =

(
φ∗2,j0

nδj

)pz+pc

j=pz+p1+1
.

However, we do not really assume that the "true coe�cients" are shrinking to zero as n increases.

This is rather a way of modeling small coe�cients with any given n, facilitating our logic on the

empirical model.

Remark 3.2 Following the cointegration and predictive regression literature, we allow the correla-

tion between the regression error εui and the innovation of nonstationary predictors εei. However,

10



in order to ensure identi�cation we rule out the correlation between εui and either the innovation of

stationary or the cointegrated predictors.

De�ne the long-run covariance matrices associated with the innovation vector as Ω =
∑∞

h=−∞ E
(
ξiξ
′
i−h
)

=

F (1)ΣεF (1)′, where F (1) = (F ′z (1) , F ′v (1) , F ′e (1) , Fu (1))′. Moreover, de�ne the sum of one-sided

autocovariance as Λ =
∑∞

h=1 E
(
ξiξ
′
i−h
)
, and ∆ = Λ +E (ξiξ

′
i). We use the functional law (Phillips

and Solo, 1992) under Assumption 3.1 to derive

1√
n

bnsc∑
j=1

ξj =
1√
n

bnsc∑
j=1


z′i·
vi

e′i·
ui

 =


Bzn(r)

Bvn (r)

Ben (r)

Bun(r)

 =⇒


Bz(r)

Bv (r)

Be (r)

Bu(r)

 ≡ BM (Ω) .

Note that the observation matrix W can be decomposed as

[
Z

n×pz
, Xc

1
n×p1

, Xc
2

n×p2

, X
n×px

]
. From (11),

v1 = Xc
1 −Xc

2A
′
1 is an n× p1 matrix of I(0) cointegrating residuals. De�ne

Rn =

( √
n · Ipz+p1 0

0 n · Ip2+px

)
,

which will serve as a normalizing matrix for any cointegrating rank p1 with 0 < p1 < pc. We

�extend� the I(0) regressors as Z+ = [Z, v1] and the I(1) regressors as X+ := [Xc
2, X] . Let us denote

Ω =


Ωzz Ωzv Ωze 0

Ω′zv Ωvv Ωve 0

Ω′ze Ω′ve Ωee Ωeu

0′ 0′ Ω′eu Ωuu


according to the explicit form of Σε. Then the left-top p × p submatrix of Ω, which we denote as

[Ω]p×p, can be also represented conformably,

[Ω]p×p =

 Ωzz Ωzv Ωze

Ω′zv Ωvv Ωve

Ω′ze Ω′ve Ωee

 =

(
Ω+
zz Ω+

zx

Ω+′
zx Ω+

xx

)
.

Using the BN decomposition and weak convergence to stochastic integral, it is easy to show(
Z+′u/

√
n

X+′u/n

)
=⇒

(
ξZ+ ∼ N (0,ΣuuΩ+

zz)

ξX+ ∼
∫
B+(r)dBε(r)

′Fu(1)′ + ∆+u

)
:= ξ+ (12)

where the one-sided long-run covariance matrix ∆+u =
∑∞

h=0 E (ũiui−h) with ũi = (v′2i, ei·)
′.

Give the de�nition of these quantities, we establish the following theorem about the asymptotic

distribution of the OLS estimator θ̂
ols

n = (W ′W )−1W ′y.

11



Theorem 3.3 If the linear model (9) satis�es Assumption 3.1, then

Rn

(
θ̂
ols

n − θ∗n
)

=⇒
(
Ω+
)−1

ξ+.

where Ω+ =

(
Ω+
zz 0

0 Ω+
xx

)
, and ξ+ is given in (12) above.

Remark 3.4 Theorem 3.3 shows that an asymptotic bias term ∆+u appears in the limit distribution

of OLS with nonstationary predictors. This asymptotic bias arises from the serial dependence in the

innovations. However, the asymptotic bias does not a�ect the rate of convergence, so θ̂
ols

n − θ∗n =

Op(R
−1
n ). This rate of convergence is critical in the study of the asymptotic behavior of the adaptive

LASSO using θ̂
ols

n as the initial estimator.

Next, we study the asymptotic behavior of the adaptive LASSO in this mixed roots scenario.

3.2 Adaptive LASSO with mixed roots

Similarly to Section 2.1, we de�ne the adaptive LASSO estimator under the system of (10) as

θ̂
alasso

= arg min
β∈Rp

‖y −Wθ‖22 + λn

p∑
j=1

ŵj |θj |, (13)

where ŵj = |θ̂
ols

j |−γ . The following theorem con�rms that the adaptive LASSO maintains the oracle

property and variable selection consistency in the presence of stationary, unit root and cointegrated

regressors. With some abuse of notation, we keep using An = {j : θ̂
alasso

j 6= 0} as the selected active

set by the adaptive LASSO (13), while let A∗ = {j : θ∗0j 6= 0} be the true active set.

Theorem 3.5 Suppose that the linear model (9) satis�es Assumption 3.1. If the tuning parameter

λn is chosen such that λn →∞ and

λn

n(1/2)∧(1−γ·δ)
+

1

λnn(γ−1)/2
→ 0, (14)

then, we have

(a) Variable selection consistency: P (An = A∗)→ 1.

(b) Asymptotic distribution of θ̂
alasso

A∗ : [Rn(θ̂
alasso

− θ∗n)]A∗ =⇒
(
Ω+
A∗
)−1

ξ+
A∗ .

Remark 3.6 The rate condition for the tuning parameter λn in Theorem 3.5 implies the conditions

in Theorem 2.1 as a special case, as long as γ ≥ 1, and δ ≥ 1/2. The condition (14) is reasonable

because, (i) we choose γ ≥ 1 in practice to prevent the adaptive LASSO implementation from being

non-convex optimization, and (ii) δ ≥ 1/2 is the balancing order of I(0)-I(1) predictive regression
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applications. Being agnostic to the presence of stationary, unit root and cointegrated regressors, we

can choose the tuning parameter λn following the guidance in Theorem 3.5.

Remark 3.7 Another related results in the literature are uniformly valid inference and forecasting

after the LASSO model selection, see Belloni, Chernozhukov and Kato (2015, 2018) or Hirano and

Wright (2016), for example. These papers allow the so-called model selection mistake by LASSO,

and provide the valid inference or prediction by introducing local limit theory with small departures

from the true models. Combining these recent developments with our current LASSO theory with

mixed roots would be interesting future research but we do not pursue here.

Given what we learn from Caner and Knight (2013) and Kock (2016), the theoretical results in

Theorem 3.5 may be expected. These papers, however, work in the pure autoregressive setting with

iid error processes. We complement this line of nonstationary LASSO literature by allowing a general

regression framework with mixed degrees of persistence. We also generalize the error processes to the

commonly used dependent processes, which is important in practice. For example, the long-horizon

return regressions in Section 5 requires this type of dependence in their error structure because of the

overlapping return construction. Moreover, our research provides a valuable guidance for practice.

Faced with a variety of potential predictor variables with uncertain orders of integration, we may

not be able to sort them into di�erent persistence categories in predictive regressions. Theorem 3.5

provides a simple condition leading to a desriable oracle property without requiring prior knowledge

on multivariate regressors persistence.

3.3 Conventional LASSO with mixed roots

We now study the asymptotic theory of the plain LASSO estimator

θ̂
lasso

= arg min
θ∈Rp
‖y −Wθ‖22 + λn ‖θ‖1 , (15)

under the system of (10). Following the notation in Section 3.1, let

θ∗n =
(
α∗′, φ∗′n , β

∗′
n

)′
:=
(
α+∗′, β+∗′

n

)′
,

where α+∗ is the (pz + p1) × 1 parameter vector associated with the stationary and cointegrated

predictors, and β+∗′
n is the (p2 +px)×1 local-to-zero parameter vector associated with the unit root

predictors.

Corollary 3.8 Suppose the linear model (9) satis�es Assumption 3.1.

(a) If λn →∞ and λn/
√
n→ 0, then Rn(θ̂

lasso
− θ∗n) =⇒ (Ω+)

−1
ξ+.

(b) If λn/
√
n→ cλ ∈ (0,∞), then

Rn(θ̂
lasso

− θ∗n) =⇒
(
v′I(0), v

′
I(1)

)′
13



where

vI(0) ≡ arg min
v∈Rpz+p1

{
v′Ω+

zzv − 2v′ξZ+ + cλ ·D
(
1pz+p1 , v, α

+∗)} ,
vI(1) ≡

(
Ω+
xx

)−1
ξX+ .

(c) If λn/
√
n→∞ and λn/n→ 0, then

√
n

λn
Rn(θ̂

lasso
− θ∗n) =⇒

(
w′I(0), w

′
I(1)

)′
where

wI(0) ≡ arg min
v∈Rpz+p1

{
v′Ω+

zzv +D
(
1pz+p1 , v, α

+∗)} ,
wI(1) ≡ 0.

Remark 3.9 In Corollary 3.8(a), the tuning parameter is too small and the limit theory of plain

LASSO is equivalent to that of OLS; there is no variable screening e�ect. When the tuning parameter

is raised to the case of (b), the plain LASSO screens variables in the stationary part, but the tuning

parameter is still too small for variable screening in the nonstationary part. Such di�culty is

caused by the di�erent rates of convergence between the estimated coe�cients associated with the

stationary regressors and the nonstationary ones. Since the plain LASSO has one single rate for

the tuning parameter, it is not adaptive to deal with these two types of predictors. There is no

way to achieve, simultaneously in both types of predictors, the same rate of convergence as OLS and

screening variables. If we further increase the tuning parameter as in the case of (c), then the slower

convergence rate of the I(0) part drags down the rate of β̂
+lasso

from n to n3/2/λn. Moreover, it

implies inconsistency of α̂+lasso if λn/n→ cλ ∈ (0,∞).

Let us now turn to standardized LASSO, de�ned as

θ̂
slasso

= arg min
θ∈Rp
‖y −Wθ‖22 + λn

p∑
j=1

σ̂j |θj | . (16)

We investigate whether the standardized LASSO restores the optimal rate of convergence and

variable screening e�ect in this linear regression with mixed roots. In standardized LASSO, the sta-

tionary regressors are accompanied with σ̂j = Op (1) for j = 1, . . . , pz + p1, while the nonstationary

regressors are coupled with σ̂j = Op (
√
n) for j = pz+p1 +1, . . . p. According to the following results

on the asymptotic properties of the standardized LASSO, we do not have the rate adaptiveness.

Corollary 3.10 Suppose the linear model (9) satis�es Assumption 3.1.
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(a) When λn = cλ ∈ [0,∞), then

Rn(θ̂
slasso

− θ∗) =⇒ arg min
v∈Rp

{
v′Ω+v − 2v′ξ+ + cλD

((
dj , vj , θ

∗
0j

)pz+p1

j=pz+1

)}
,

where cλ = 0 case restores OLS limit theory.

(b) When λn →∞ and λn/n
(1−δ̄)∧0.5 → 0, then

Rn
λn

(θ̂
slasso

− θ∗) =⇒ arg min
v∈Rp

{
v′Ω+v + cλD

((
dj , vj , θ

∗
0j

)pz+p1

j=pz+1

)}
.

Remark 3.11 The di�culty of standardized LASSO arises from the coe�cients associated with the

cointegrating residuals. In OLS, these estimates φ̂j, j = 1, . . . , p1, converges at
√
n rate. However, in

the standardized LASSO their corresponding penalty have the multipliers of σ̂j = Op (
√
n), instead

of the desirable Op (1). In other words, the penalty level is too heavy for these parameters. The

overwhelming penalty produces variable screening e�ect as soon as λn = cλ ∈ (0,∞), as shown

in Corollary 3.10(a). Moreover, (b) implies that for the consistency of φ̂1 the tuning parameter λn

must be small enough so that λn/
√
n→ 0. In this case, no variable screening is possible for all other

coe�cients in θ. If we further raise λn to λn/
√
n → cλ ∈ (0,∞), those φ̂1 will be an inconsistent

estimator for φ0
1.

To sum up this section, in the general model with various types of regressors, the adaptive

LASSO maintains the oracle property under the standard choice of the tuning parameter. It echoes

our �nding in Section 2, which is one special case of the model in this Section. In contrast, the plain

LASSO using the single tuning parameter does not adapt to the di�erent order of magnitudes of

the stationary and nonstationary regressors. The standardized LASSO su�ers from overwhelming

penalties for those coe�cients associated with the cointegration residuals. Keeping an agnostic

view about the persistence property of the regressors, we recommend the adaptive LASSO in the

multivariate predictive regression with mixed regressor persistence.

4 Monte Carlo Simulation

In this Section, we examine the performance of forecasting and variable screening of LASSO methods

via simulation. We consider the di�erent sample sizes n to demonstrate the validity of limit theory

as well as the �nite sample performance. All the comparison is based on the one-period-ahead

forecast ŷn+1.

4.1 Simulation Design

To evaluate the �nite sample performance of various estimators, we consider two data generating

processes (DGPs), one with unit root regressors and the other with mixed roots and cointegration.

In the Appendix B.1, two more DGPs using lagged dependent variables as regressors are included.
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DGP 1 (Unit roots). We consider a linear model with eight unit root predictors, xi =(
xi1 xi2 · · · xi8

)′
where xij are drawn from independent random walk processes xij = xi−1,j +

eij , eij ∼ i.i.d. N (0, 1). The dependent variable yi is generated by yi+1 = γ∗ + x′iβ
∗
n + ui where

the intercept γ∗ = 0.25, and β∗n = (1, 1, 1, 1, 0, 0, 0, 0)′ /
√
n. The idiosyncratic error ui follows i.i.d.

standard normal distribution, so does those ui's in the other three DGPs.

DGP 2 (Mixed roots and cointegration). This DGP corresponds to the generalized model

in Section 3. The dependent variable yi is generated by yi = γ∗ +
∑2

j=1 zijα
∗
j +

∑4
j=1 x

c
ijφ
∗
jn +∑2

j=1 xijβ
∗
jn + ui, where θ

∗ = (α∗, φ∗n, β
∗
n) =

(
0.4, 0, 0.3, −0.3, 0, 0, 1√

n
, 0
)
and γ∗ = 0.3. The

stationary regressors zi1 and zi2 follow two independent AR(1) processes with the same AR(1) coef-

�cient 0.5. Xc
i ∈ R4 is an I(1) process with cointegrating rank 2 based on the vector error correction

model (VECM) ∆Xc
i = Γ′ΛXc

i−1 +ei, where Λ =

(
1 −1 0 0

0 0 1 −1

)
and Γ =

(
0 1 0 0

0 0 0 1

)
are the

cointegrating matrix and the loading matrix, respectively. In the error term ei = (ei1, ei2, ei3, ei4)′,

we set ei2 = ei1−µi and ei4 = ei3−νi where µi and νi are AR(1) processes with the AR(1) coe�cient

0.2. xi1 and xi2 are independent random walk as those in DGP 1.

As we develop our theory with �xed-dimensional regressors, the OLS is a natural benchmark.

Another benchmark is the oracle OLS, in which the oracle reveals the true model. In reality, the ora-

cle OLS estimator is infeasible. The sample sizes in our exercise range from n = 40, 80, 120, 200, 400

and 800. For each simulation, we generate data with 1000 burn-in periods and run 1000 replications

for each sample size n.

For the shrinkage estimators, we do not penalize the intercept in the simulations as well as in

the empirical application. Each shrinkage estimator relies on its tuning parameter λn, which is the

convergence rate,
√
n for DGP 1 and

√
n/ log(log(n)) for DGP 2, multiplied by a constant cλ. We use

10-fold cross validation3 to guide the choice of cλ. Speci�cally, we set n = 200 and run an exploratory

simulation for 100 times for each method that needs a tuning parameter . In each replication, we

use the 10-fold cross-validation to obtain c
(1)
λ , . . . , c

(100)
λ . Then we �x cλ = median

(
c

(1)
λ , . . . , c

(100)
λ

)
in the full-scale 1000-time simulation. cplassoλ and cslassoλ are then determined correspondingly. The

OLS estimator is used as the initial estimator in the adaptive LASSO, and the tuning parameter

λn is set similarly.

4.2 Performance Comparison

Table 1 reports the out-of-sample prediction accuracy in terms of the mean prediction squared error

(MPSE), MPSE = E
[
(yn+1 − ŷn+1)2

]
. By the simulation design, the variance of the idiosyncratic

error is 1, which is the unpredictable part. Table 2 summarizes the variable screening performance.

Recall that the set of relevant regressors as A∗ =
{
j ∈ {1, . . . , p} : θ∗j 6= 0

}
and the estimated active

3In all simulation experiments as well as in the empirical application, we partition the sample into consecutive
blocks in cross-validation.
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set is Â =
{
j ∈ {1, . . . , p} : θ̂j 6= 0

}
. We de�ne two correct ratios for variable screening:

CR1 =
1

|A∗|
E
[∣∣∣{j : j ∈ Â, j ∈ A∗

}∣∣∣] , CR2 =
1

|A∗c|
E
[∣∣∣{j : j ∈ A∗c, j ∈ Âc

}∣∣∣] .
Here CR1 is the percentage of the correct selection in the active set, whereas CR2 is the percentage

of correct elimination of the zero coe�cients. We also report the overall correct ratio

CR =
1

p
E
[∣∣∣{j ∈ 1, . . . , p : I(θ∗0j 6= 0) = I(θ̂

∗
j 6= 0)}

∣∣∣] .
These expectations are computed by the average in the 1000 simulations replications.

Table 1: Mean Prediction Squared Error (MPSE)

n Oracle OLS alasso plasso slasso

DGP 1 40 1.2064 1.4841 1.3388 1.2259 1.2695
80 1.1886 1.2677 1.2540 1.2267 1.2294
120 1.1035 1.1710 1.1459 1.1340 1.1289

200 1.0940 1.1689 1.1429 1.1349 1.1303

400 0.9775 1.0047 0.9969 0.9941 0.9959
800 0.9855 0.9927 0.9879 0.9897 0.9896

DGP 2 40 1.2626 1.4900 1.3793 1.3638 1.4190
80 1.1029 1.2156 1.1903 1.2055 1.2100
120 1.0984 1.1640 1.1463 1.1565 1.1584
200 1.1017 1.1523 1.1241 1.1386 1.1388
400 0.9569 0.9722 0.9606 0.9662 0.9675
800 1.0102 1.0172 1.0125 1.0145 1.0175

Note: Bold numbers are for the best performance among all the feasible estimators.

According to Table 1, the plain LASSO and the standardized LASSO achieve better forecasting

performance than adaptive LASSO in DGP 1. As the sample size increases to n = 800, the adaptive

LASSO performs better. In DGP 2, adaptive LASSO outperforms the competitors in MPSE except

for the smallest sample size n = 40. The MPSE results can be explained by the variable screening

results in Table 2.

The parameter tuning in the adaptive LASSO is not as good as the plain LASSO and the

standardized LASSO due to the estimated weights from the �rst step estimation, which means the

adaptive LASSO achieves better variable screening at the cost of additional estimation errors in

�nite sample. In DGP 1 with pure unit-root regressors, the plain LASSO and the standardized

LASSO achieve good performance in terms of CR, not far behind the adaptive LASSO in large

sample size cases and even better than the adaptive LASSO in small sample size cases. Considering

the trade-o� between variable screening and coe�cient estimation accuracy, it is understandable

that the plain LASSO and the standardized LASSO have better forecasting performance in DGP

1. As the sample size increases, the di�erence in variable screening becomes signi�cant and the
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Table 2: Variable Screening

CR CR1 CR2

n alasso plasso slasso alasso plasso slasso alasso plasso slasso

D
G
P
1

40 0.5885 0.6366 0.6000 0.7653 0.6408 0.8178 0.4118 0.6325 0.3823

80 0.6606 0.6776 0.6339 0.8268 0.8248 0.8918 0.4945 0.5305 0.3760

120 0.7080 0.6860 0.6581 0.8868 0.9095 0.9395 0.5293 0.4625 0.3768

200 0.7619 0.6739 0.6735 0.9365 0.9673 0.9713 0.5873 0.3805 0.3758

400 0.8311 0.6361 0.6794 0.9810 0.9930 0.9930 0.6813 0.2793 0.3658

800 0.8874 0.6040 0.6883 0.9983 0.9998 0.9993 0.7765 0.2083 0.3773

D
G
P
2

40 0.6845 0.5953 0.5541 0.8018 0.8933 0.9525 0.5673 0.2973 0.1558

80 0.7719 0.6175 0.5773 0.9148 0.9835 0.9895 0.6290 0.2515 0.1650

120 0.8103 0.6045 0.5796 0.9580 0.9943 0.9963 0.6625 0.2148 0.1630

200 0.8378 0.5915 0.5834 0.9880 0.9990 0.9993 0.6875 0.1840 0.1675

400 0.8661 0.5840 0.5959 0.9980 1.0000 1.0000 0.7343 0.1680 0.1918

800 0.8846 0.5728 0.6111 1.0000 1.0000 1.0000 0.7693 0.1455 0.2223

Note: Bold numbers are for the best performance.

adaptive LASSO has better forecasting performance.

The advantage of the adaptive LASSO in variable screening is prominent in DGP 2 as the DGP

becomes more sophisticated with mixed roots and cointegration. The adaptive LASSO outperforms

the others in forecasting performance.

The adaptive LASSO outperforms the others in CR and CR2 in both DGPs. As sample size

increases, all CR, CR1 and CR2 of the adaptive LASSO increases in both DGPs, which veri�es the

variable screening consistency of the adaptive LASSO. The asymptotic theory suggests λn ∼
√
n is

too small for the plain LASSO to eliminate 0 coe�cients corresponding to I(1) regressors, which is

consistent to the CR2 results of the plain LASSO that CR2 decreases as the sample size increases.

The plain LASSO and the standardized LASSO achieve high CR1 at the cost of low CR2, i.e. they

tend to keep more regressors even some of the selected ones are redundant. As the sample size

increases, the di�erence in CR1 among methods becomes negligible.

According to Table 2, the standardized LASSO has the lowest variable elimination correct ratio

CR2, whereas in asymptotics it imposes heavier penalty on coe�cients of I(1) regressors than the

plain LASSO does due to the presence of ŵj = σ̂j = Op (
√
n) in the penalty term. The reason

is that we �x cplassoλ and cslassoλ by cross-validation separately. The cross-validation selects tuning

parameters based on the in-sample MSE and hence favors cλ achieving lower MPSE and adjusts cλ in

�nite sample. For example, in DGP 1, cplassoλ = 1.295 whereas cslassoλ = 0.265 which is much smaller

than cplassoλ . If we �x cplassoλ by cross-validation and let cslassoλ = cplassoλ , CR2 of the standardized

LASSO would become higher. We provide this simulation result in Appendix B.2.
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5 Empirical Application

To illustrate the performance of the adaptive LASSO in predictive regression and compare with that

of other common approaches, this section presents an empirical study on stock return predictability

with the updated Welch and Goyal (2008) dataset used in Koo et al. (2016).

5.1 Data

As in Koo et al. (2016), we use the monthly Welch and Goyal (2008) data from January 1945 to

December 2012, with the dependent variable, the excess return, de�ned as the di�erence between

the continuously compounded return on the S&P 500 index and the three-month Treasury bill rate

and 12 �nancial and macroeconomic variables as predictors.

The predictors include the Dividend Price Ratio (dp), the di�erence between the log of the 12-

month moving sum dividends and the log of the S&P 500 index; Dividend Yield (dy), the di�erence

between the log of the 12-month moving sum dividends and the log of lagged the S&P 500 index;

Earning Price Ratio (ep), the di�erence between the log of the 12-month moving sum earnings and

the log of the S&P 500 index; Term Spread (tms), the di�erence between the long-term government

bond yield and the Treasury Bill rate; Default Yield Spread (dfy), the di�erence between Moody's

BAA and AAA-rated corporate bond yields; Default Return Spread (dfr), the di�erence between

the returns of long-term corporate bonds and long-term government bonds; Book-to-Market Ratio

(bm), the ratio of the book value to market value for the Dow Jones Industrial Average; Treasury

Bill Rates (tbl), the 3-month Treasury Bill rates; Long-Term Return (ltr), the rate of returns of

long-term government bonds; Net Equity Expansion (ntis), the ratio of the 12-month moving sums

of net issues by NYSE listed stocks over the total end-of-year market capitalization of NYSE stocks;

Stock Variance (svar), the sum of the squared daily returns on the S&P 500 index; In�ation (in�),

the log growth of the Consumer Price Index (all urban consumers).

Over the whole sample period, the excess return has an estimated AR(1) coe�cient of 0.1494,

which indicates little persistence, similar to the long-term return of government bonds (ltr), stock

variance (svar) and in�ation (in�). The other predictors show high persistence, with AR(1) coef-

�cients greater than 0.95. The mixture of stationary predictors and persistent predictors �ts the

mixed roots environment that we studied in previous sections.

As recognized in the literature, the signal of persistent predictors may become stronger in long-

horizon return prediction; see Cochrane (2009). In addition to the one-month-ahead short-horizon

prediction, We also construct the long-horizon excess return as the sum of continuous compounded

monthly excess return on the S&P 500 index,

LongReturni =

i+12×h−1∑
k=i

ExReturnk

where h is the length of the forecasting horizon in terms of year and ranges from h = 1
12 ,

1
4 ,

1
2 , 1, 2, 3,

and the monthly excess return corresponds to h = 1
12 .
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Table 3: Mean Prediction Squared Error (MPSE)

MPSE Percentage relative to OLS

h OLS RWwD alasso plasso slasso OLS RWwD alasso plasso slasso

10-years
1
12 0.00209 0.00188 0.00187 0.00186 0.00187 1.00000 0.90189 0.89399 0.88889 0.89541
1
4 0.00936 0.00663 0.00615 0.00834 0.00758 1.00000 0.70822 0.65706 0.89042 0.80928
1
2 0.01835 0.01644 0.01316 0.01608 0.01534 1.00000 0.89558 0.71680 0.87582 0.83553

1 0.03404 0.04292 0.02882 0.03084 0.02951 1.00000 1.26089 0.84675 0.90605 0.86718

2 0.07708 0.12968 0.05398 0.07248 0.06261 1.00000 1.68233 0.70031 0.94033 0.81229

3 0.20066 0.27608 0.12125 0.15875 0.17730 1.00000 1.37586 0.60422 0.79110 0.88356

15-year
1
12 0.00203 0.00196 0.00182 0.00186 0.00187 1.00000 0.96935 0.89922 0.91664 0.92465
1
4 0.00826 0.00692 0.00605 0.00656 0.00654 1.00000 0.83711 0.73186 0.79379 0.79109
1
2 0.02009 0.01714 0.01548 0.01846 0.01697 1.00000 0.85304 0.77052 0.91870 0.84451

1 0.03996 0.04449 0.03013 0.02940 0.03686 1.00000 1.11338 0.75411 0.73572 0.92240

2 0.05947 0.13694 0.03887 0.05240 0.05392 1.00000 2.30285 0.65368 0.88111 0.90664

3 0.11166 0.29198 0.08014 0.10578 0.11163 1.00000 2.61489 0.71774 0.94737 0.99971

Note: Bold numbers are for the best performance.

5.2 Performance Comparison

We apply the set of feasible forecasting methods as in Section 4 to forecast both short-horizon and

long-horizon stock returns recursively with both 10-year and 15-year rolling windows. In addition

to OLS, we include the random walk with drift (RWwD), i.e. we take the historical average of the

excess returns, ŷn+1 = 1
n

∑n
i yi, as another benchmark . All variables are included in the predictive

regression, which is referred to the kitchen sink model in Welch and Goyal (2008). The forecasting

performance is evaluated based on the out-of-sample MPSE and percentage de�ned as the ratio of

the MPSE of a particular method over that of OLS.

The tuning parameter for shrinkage estimators are determined by 10-fold cross-validation with

consecutive partitions in each estimation window.

The forecasting performance results are summarized in Table 3. All three shrinkage methods

can improve the OLS and RWwD benchmarks, and the adaptive LASSO outperforms the others in

most cases. In short-horizon (h = 1
12) prediction with 10-year rolling window, the plain LASSO

performs the best. As the signal accumulates in the long-horizon prediction, the adaptive LASSO

achieves smaller MPSE.

The exceptional case with 15-year rolling window and h = 1 is due to that the adaptive LASSO

fails to track the recovery trend after the �nancial crisis. As shown in Figure 1, the plain LASSO

provides better forecasts during the periods after the �nancial crisis whereas the adaptive LASSO

gives the opposite prediction. With 10-year rolling window, all three methods fail to provide sound

forecasts after the �nancial crisis.

We use the case with 10-year rolling window and h = 1 as an example and plot the estimated

coe�cients in Figure 2. The unstable nature of the predictive model is clear. The shrinkage
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Figure 1: True Return v.s. Predicted Return

methods select di�erent variables in di�erent estimation windows. The adaptive LASSO eliminates

more variables than the plain LASSO and the standardized LASSO does and hence provides more

parsimonious models. Similar patterns can be found in other cases.
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Figure 2: Estimated Coe�cients (10-year rolling window, h = 1)
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A Technical Appendix

A.1 Proofs in Section 2

Proof. [Proof of Theorem 2.1] We modify the proof of Zou (2006, Theorem 2). Let βn = β∗n+n−1v

be a perturbation from the original parameter β∗n, and let

Ψn(v) = ‖Y −
p∑
j=1

xj(β
∗
jn +

vj
n

)‖2 + λn

p∑
j=1

ŵj |β∗jn +
vj
n
|.

De�ne v̂(n) = n(β̂
alasso

− β∗n). Since β̂
alasso

is the minimizer of (5), v̂(n) = arg minv Ψn(v). Let

Vn(v) = Ψn(v)−Ψn(0)

= ‖u− X ′v

n
‖2 − ‖u‖2 + λn

 p∑
j=1

ŵj |β∗jn +
vj
n
| −

p∑
j=1

ŵj |β∗jn|


= v′(

X
′
X

n2
)v − 2

u
′
X

n
v + λn

p∑
j=1

ŵj(|β∗jn +
vj
n
| − |β∗jn|). (17)

By FCLT and the continuous mapping theorem, the �rst term and the second term of (17) converge

in distribution, X
′X
n2 =⇒ Ω and u′X

n = 1
n

∑n
i=1 x

′
i·ui =⇒W , respectively. We thus focus on the third

term.

The third term involves the weight for each j, ŵj = |β̂
ols

j |−γ . Since the OLS estimator n
(
β̂
ols
− β∗n

)
=⇒

Ω−1W = Op(1), we have

ŵj =
∣∣β∗jn +Op

(
n−1

)∣∣−γ = |β∗0j/nδj +Op
(
n−1

)
|−γ , (18)

for all j. If β∗0j 6= 0, as the β∗jn dominates n−1vj for a large n,

(|β∗jn + n−1vj | − |β∗jn|) = n−1vjsgn(β∗jn) = n−1vjsgn(β∗0j). (19)

(18) and (19) now imply

λnŵj · (|β∗jn +
vj
n
| − |β∗jn|) =

λn
|β∗0j/nδj +Op (n−1) |γn

vjsgn(β∗0j) =
λnn

δj ·γ−1

|β∗0j + op (1) |γ
vjsgn(β∗0j)

≤ λnn
γδ−1

|β∗0j + op (1) |γ
vjsgn(β∗0j) = Op

(
λnn

γδ−1
)

= op (1) , (20)

by the given rate of λn. On the other hand, if β∗0j = 0, then (|β∗jn + n−1vj | − |β∗jn|) = n−1|vj |. For
any �xed vj 6= 0,

λnŵj · n(|β∗j + n−1vj | − |β∗j |) =
λn

n|β̂
ols

j |γ
|vj | =

λnn
γ−1

|nβ̂
ols

j |γ
|vj | =

λnn
γ−1

Op (1)
|vj | → ∞. (21)
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as λnn
γ−1 →∞. Thus we have Vn(v) =⇒ V (v) for every �xed v, where

V (v) =

v′Ωv − 2v′W, if vA∗c = 0

∞, otherwise.

Both Vn (v) and V (v) are strictly convex in v, and V (v) is uniquely minimized at

(
vA∗ = Ω−1

A∗WA∗ , vA∗c = 0
)
.

Applying the Convexity Lemma (Pollard, 1991), we have

v̂
(n)
A∗ = n(β̂

alasso

A∗ − β∗A∗) =⇒ Ω−1
A∗WA∗ and v̂

(n)
A∗c =⇒ 0. (22)

The �rst part of the above result establishes Theorem 2.1(b).

Next we show variable selection consistency. We have P (A∗ ⊆ An) → 1 immediately follows

from the �rst part of (22) as v̂
(n)
A∗ converges in distribution to a non-degenerate continuous random

variable. For those j /∈ A∗, if the event {j ∈ An} occurs, then the KKT optimality condition entails

2

n
x′j(y −Xβ̂

alasso
) =

λnŵj
n

. (23)

Notice that on the right-hand side of the KKT condition

λnŵj
n

=
λn

n|β̂
ols

j |γ
=
λnn

γ−1

|nβ̂
ols

j |γ
=
λnn

γ−1

Op (1)
→∞, (24)

from the given rate condition. However, looking at the left-hand side of (23), using y = Xβ∗n + u

and (22) we have

2

n
x′j(y −Xβ̂

alasso
) =

2

n
x′j(Xβ

∗
n −Xβ̂

alasso
+ u) = 2

(
x′jX

n2

)
n(β∗n − β̂

alasso
) + 2

x′ju

n

= 2

(
x′jX

n2

)(
v̂

(n)
A∗ + v̂

(n)
A∗c

)
+ 2

x′ju

n

=⇒ 2Ω·j · (Ω−1
A∗WA∗ + op(1)) + 2Wj . (25)

In other words, the left-hand side of (23) remains as a non-degenerate continuous random variable in

the limit. For any j ∈ A∗c, the disparity of the two sides of the KKT condition implies P (j ∈ An) =

P
(

2
nx
′
j(y −Xβ̂

alasso
) =

λnŵj
n

)
→ 0. That is, P (A∗c ⊆ Acn) → 1 or equivalently P (An ⊆ A∗) → 1.

We thus conclude the variable selection consistency P (An = A∗)→ 1.

Proof. [Proof of Corollary 2.3] The proof is a simple variant of that of Theorem 2.1 by setting
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ŵj = 1 for all j. For Part(a), the counterpart of (17) is

Vn(v) = v′(
X
′
X

n2
)v − 2

u
′
X

n
v + λn

p∑
j=1

(|β∗jn +
vj
n
| − |β∗jn|).

For a �xed vj and a su�ciently large n,

λn(|β∗jn +
vj
n
| − |β∗jn|) =

λnvj
n

sgn(β∗0j) = O

(
λn
n

)
, if β∗0j 6= 0;

λn(|β∗jn +
vj
n
| − |β∗jn|) = λn

|vj |
n

= O

(
λn
n

)
, if β∗0j = 0.

Since λn/n → 0, the e�ect of the penalty term is negligible. We have Vn(v) =⇒ V (v) for every

�xed v, and furthermore V4(v) = v′Ωv− 2v′W . Due to the strict convexity of Vn (v) and V (v), the

Convexity Lemma implies

n
(
β̂
lasso

− β∗n
)

= v̂(n) =⇒ Ω−1W.

In other words, the LASSO estimator has the same asymptotic distribution of the OLS estimator.

For Part (b), as λn/n→ cλ ∈ (0,∞), the e�ect of the penalty emerges as

Vn(v) = v′(
X
′
X

n2
)v − 2

u
′
X

n
v +

λn
n
D (1p, v, β

∗
0) =⇒ v′Ωv − 2v′W + cλD (1p, v, β

∗
0) .

The conclusion of the statement again follows by the Convexity Lemma.

For Part (c), we de�ne a new perturbation βn = β∗n + λn
n2 v, and

Ψn(v) = ‖Y −X
(
β∗n +

λn
n2
v

)
‖2 + λn

p∑
j=1

|β∗jn +
λn
n2
vj |,

Vn (v) = Ψn(v)−Ψn(0) =
λ2
n

n4
v′(X

′
X)v − λn

n2
2u
′
Xv + λn

p∑
j=1

(|β∗jn +
λn
n2
v| − |β∗jn|).

Given the rate λn
n2−δ̄ → 0, λn

n2 v is dominated by any β∗jn = β∗0j/n
δj if β∗0j 6= 0 in the limit. So, for a

su�ciently large n,

Vn(v) =
λ2
n

n2
v′(
X
′
X

n2
)v − λn

n
2

(
u
′
X

n

)
v +

λ2
n

n2
D (1p, v, β

∗
0)

=
λ2
n

n2

[
v′(
X
′
X

n2
)v − 1

λn/n
2

(
u
′
X

n

)
v +D (1p, v, β

∗
0)

]

=
λ2
n

n2

[
v′(
X
′
X

n2
)v + op(1) +D (1p, v, β

∗
0)

]
.

Notice that the scaled di�erence v̂(n) = λ−1
n n2(β̂

lasso
−β∗n) can be expressed as v̂(n) = arg minv Ψn(v).
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By the strict convexity of Vn (v) and V (v) = v′Ωv+D (1p, v, β
∗
0), we invoke the Convexity Lemma

to obtain n2

λn
(β̂
lasso

− β∗n) =⇒ arg minv V (v).

Proof. [Proof of Corollary 2.5] The standardized LASSO di�ers from the plain LASSO by setting

the weight ŵj = σ̂j . For Part (a), we use the perturbation βn = β∗n + n−1v, and

Ψn(v) = ‖Y −X
(
β∗n +

v

n

)
‖2 + λn

p∑
j=1

σ̂j |β∗jn +
vj
n
|,

Vn(v) = Ψn(v)−Ψn(0) = v′(
X
′
X

n2
)v − 2

u
′
X

n
v + λn

p∑
j=1

σ̂j(|β∗jn +
vj
n
| − |β∗jn|).

When λn/
√
n→ cλ ≥ 0 and

σ̂j√
n

=⇒ dj as in (8), the penalty term

λn

p∑
j=1

σ̂j(|β∗jn +
vj
n
| − |β∗jn|) =

λn√
n
D

(
σ̂√
n
, v, β∗0

)
=⇒ cλ

p∑
j=1

D (d, v, β∗0)

where σ̂ = (σ̂j)
p
j=1. Part (a) follows by the same argument in the proof of Corollary 2.3(b).

Part (b) here is similar to the proof of Corollary 2.3(c) by introducing a new perturbation

βn = β∗n + λn
n3/2 v, and

Ψn(v) = ‖Y −X
(
β∗n +

λn

n3/2
v

)
‖2 + λn

p∑
j=1

σ̂j |β∗jn +
λn

n3/2
vj |,

Vn (v) = Ψn(v)−Ψn(0) =
λ2
n

n3
v′(X

′
X)v − λn

n3/2
2u
′
Xv + λn

p∑
j=1

σ̂j(|β∗jn +
λn

n3/2
vj | − |β∗jn|).

Given the rate λn/n
3
2
−δ̄ → 0, for a su�ciently large n we have

λnσ̂j

(
|β∗jn +

λn

n3/2
vj | − |β∗jn|

)
= λnD

(
σ̂j ,

λn

n3/2
vj , β

∗
0j

)
=
λ2
n

n
D

(
σ̂j√
n
, vj , β

∗
0j

)
,

so that

Vn(v) =
λ2
n

n

[
v′(
X
′
X

n2
)v − 1

λn/
√
n

2

(
u
′
X

n

)
v +D

(
σ̂√
n
, v, β∗0

)]

=
λ2
n

n

[
v′(
X
′
X

n2
)v +D

(
σ̂√
n
, v, β∗0

)
+ op(1)

]
.

De�ne V (v) = v′Ωv+D (d, v, β∗0), and the conclusion follows by the same Convexity argument.
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A.2 Proofs in Section 3

Proof. [Proof of Theorem 3.3] The OLS estimator

Rn

(
θ̂
ols

n − θ∗n
)

= Rn
(
W ′W

)−1
W ′u

= Rn (RnQ)−1RnQ
(
W ′W

)−1
Q′Rn

(
Q′Rn

)−1
W ′u

= RnQ
−1R−1

n

[
R−1
n Q′−1W ′WQ−1R−1

n

]−1
R−1
n Q′−1W ′u, (26)

where Q =


Ipz 0 0 0

0 Ip1 0 0

0 A′1
(p2×p1)

Ip2 0

0 0 0 Ipx

. This Q is chosen so that

WQ−1 = [Z,Xc
1, X

c
2, X]


Ipz 0 0 0

0 Ip1 0 0

0 −A′1 Ip2 0

0 0 0 Ipx

 =
[
Z,Xc

1 −Xc
2A
′
1, X

c
2, X

]
= [Z, v1, X

c
2, X] ,

in which I(0) and I(1) components are separated. To keep the notations concise, let [Z, v1] := Z+

and [Xc
2, X] := X+. We have

R−1
n Q′−1W ′WQ−1R−1

n =

(
Z+′Z+

n
Z+′X+

n3/2

Z+′X+

n3/2
X+′X+

n2

)
=⇒

(
Ω+
zz 0

0 Ω+
xx

)
:= Ω+. (27)

Let the i-th column ofX+ be X+
i

(p2+px)×1

= [Xc′
2i , xi·]

′, which is a unit root vector with no cointegration

relationship. Using the component-wise BN decomposition, the scalar ui = Fu(1)
1×(p+1)

× εi
(p+1)×1

−4ε̃ui.

Thus we have

1

n
X+′u

(p2+px)×1

=
1

n

n∑
i=1

X+
i u
′
i =

(
1

n

n∑
i=1

X+
i ε
′
i

)
Fu(1)′ − 1

n

n∑
i=1

X+
i 4ε̃ui.

On the right-hand side of the above equation, 1
n

∑n
i=1X

+
i ε
′
i =⇒

∫
B+(r)dBε(r)

′, and summation

by parts implies

1

n

n∑
i=1

X+
i 4ε̃ui =

1

n

n∑
i=1

u+
xiε̃ui + op(1)

p→ ∆+u
(p2+px)×1

where ∆+u is the corresponding submatrix of the one-sided long-run covariance ∆ de�ned in (12,).

Combining these results, we have

X+′u/n =⇒
∫
B+(r)dBε(r)

′Fu(1)′ + ∆+u := ξX+ ,
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and furthermore

R−1
n Q′−1W ′u =

(
Z+′u/

√
n

X+′u/n

)
=⇒

(
ξZ+

ξX+

)
:= ξ+. (28)

Finally,

RnQ
−1R−1

n =


Ipz 0 0 0

0 Ip1
A1√
n

0

0 0 Ip2 0

0 0 0 Ipx

→ Ip. (29)

The conclusion follows by substituting (27), (28) and (29) into (26).

Proof. [Proof of Theorem 3.5] The basic idea of this proof is close to that of Theorem 2.1, but

there are some delicacy in the details. Let θn = θ∗n +R−1
n v be a perturbation from θ∗n, and

Ψn(v) = ‖Y −
p∑
j=1

xj(θ
∗
jn +R−1

jn vj)‖
2
2 + λn

p∑
j=1

ŵj

∣∣∣β∗jn +R−1
jn vj

∣∣∣
where Rjn = (Rn)jj is the j-th diagonal element of Rn. De�ne

Vn(v) = Ψn(v)−Ψn(0) =
∥∥u−R−1

n W ′v
∥∥2

2
− ‖u‖22 + λn

p∑
j=1

ŵj

(
|θ∗jn +R−1

jn vj)| − |θ
∗
jn|
)

= v′R−1
n W ′WR−1

n v − 2v′R−1
n W ′u+ λn

p∑
j=1

ŵj

(
|θ∗jn +R−1

jn vj)| − |θ
∗
jn|
)
.

The �rst term

v′R−1
n W ′WR−1

n v = v′
(
R−1
n Q′Rn

) (
R−1
n Q′−1W ′−1R−1

n

) (
RnQR

−1
n

)
v =⇒ v′Ω+v (30)

by (27) and (29) as we have shown in the proof of Theorem 3.3. Similarly, the second term

2v′R−1
n W ′u = 2v′

(
R−1
n Q′Rn

) (
R−1
n Q′−1W ′u

)
=⇒ 2v′ξ+. (31)

We focus on the third term. Theorem 3.3 and Remark 3.4 have shown the OLS estimator

θ̂
ols

j − θ∗jn = Op

(
R−1
jn

)
for each j. Given any �xed vj 6= 0 and a su�ciently large n:

• For j ∈ {1, . . . , pz + p1}, the coe�cients are invariant with the sample size. If θ∗j0 6= 0, we

have (|θ∗jn + n−1/2vj | − |θ∗jn|) = n−1/2vjsgn(θ∗0j) , and

λnŵj · (|α+∗
j +

vj√
n
| − |α+∗

j |) = Op

(
λnn

−1/2
)

= op (1)
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If θ∗j0 = 0, we have

λnŵj · (|θ∗jn + n−1/2vj | − |θ∗jn|) =
λnn

γ−1
2

Op (1)
|vj | = Op

(
λnn

(γ−1)/2
)
→∞

given the rate of λn.

• For j ∈ {pz + p1 + 1, . . . , p}, the coe�cient θ∗jn = θ∗0j/n
δj depending on n. If θ∗0j 6= 0, then θ∗jn

dominates n−1vj in the limit. We have (|θ∗jn+n−1vj |−|θ∗jn|) = n−1vjsgn(θ∗0j) = n−1vjsgn(θ∗0j),

and

λnŵj · (|θ∗jn +
vj
n
| − |θ∗jn|) = Op

(
λnn

γδ−1
)

= op (1)

by the same derivation in (20). On the other hand, if θ∗0j = 0, then

λnŵj · (|θ∗jn + n−1vj | − |θ∗jn|) =
λnn

γ−1

Op (1)
|vj | = Op

(
λnn

γ−1
)
→∞,

according to the derivation in (21).

The above analysis indicates Vn(v) =⇒ V (v) for every �xed v, where

V (v) =

v′Ω+v − 2v′ξ+, if vA+∗c = 0.

∞, otherwise.

Let v̂(n) = R−1
n (θ̂

alasso
− θ∗n). By the same argument about the strict convexity of Vn (v) and V (v),

we have

v̂
(n)
A∗ = [R−1

n (θ̂
alasso

− θ∗n)]A∗ =⇒
(
Ω+
A∗
)
ξ+
A∗ and v̂

(n)
A∗c =⇒ 0. (32)

The �rst part of the above result establishes Theorem 3.5(b), and it also implies P (A∗ ⊆ An)→ 1.

For j /∈ A∗, if the event {j ∈ An} occurs, then the KKT condition entails

2

n
x+′
j (y −Wθ̂

alasso
) =

λnŵj
n

or
2√
n
z+′
j (y −Wθ̂

alasso
) =

λnŵj√
n
. (33)

We will invoke similar argument as in (24) and (25) to show the disparity of the two sides of the

KKT condition, but the rates are di�erent for the Z+ part and the X+ part:

• If j ∈ {1, . . . , pz + p1}, the right-hand side of (33) is
λnŵj√
n

= λnn(γ−1)/2

|
√
nθ̂

+ols
j |γ

= Op(λnn
(γ−1)/2),
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where as the left-hand side is

2√
n
z+′
j (y −Wθ̂

alasso
) =

2√
n
z+′
j (Wθ∗n −Wθ̂

alasso
+ u)

= 2

(
z+′
j W√
n
R−1
n

)
Rn(θ∗n − θ̂

alasso
) + 2

z+′
j u√
n

= 2

(
z+′
j W√
n
R−1
n

)(
v̂

(n)
A∗ + v̂

(n)
A∗c

)
+ 2

z+′
j u√
n

=⇒ 2Ω·j · (
(
Ω+
A∗
)−1

ξ+
A∗ + op(1)) +Op (1) ,

which converges in distribution to a non-degenerate continuous random variable.

• If j ∈ {pz + p1 + 1, . . . , p}, the right-hand side of the KKT condition is
λnŵj
n = λnnγ−1

|nθ̂+ols
j |γ

=

Op(λnn
γ−1), whereas the left-hand side

2

n
x+′
j (y −Wθ̂

alasso
) =

2

n
x+′
j (Wθ∗n −Wθ̂

alasso
+ u)

= 2

(
x+′
j W

n
R−1
n

)
Rn(θ∗n − θ̂

alasso
) + 2

x+′
j u

n

= 2

(
x+′
j W

n
R−1
n

)(
v̂

(n)
A∗ + v̂

(n)
A∗c

)
+ 2

x+′
j u

n

=⇒ 2Ω·j · (
(
Ω+
A∗
)−1

ξ+
A∗ + op(1)) +Op (1)

remains a non-degenerate continuous random variable asymptotically.

Given the speci�ed rate for λn, for any j ∈ A∗c we have

P (j ∈ An) = P

(
2

n
x+′
j (y −Wθ̂

alasso
) =

λnŵj
n

or
2√
n
z+′
j (y −Wθ̂

alasso
) =

λnŵj√
n

)
→ 0.

In other words, P (A∗c ⊆ Acn) → 1 or equivalently P (An ⊆ A∗) → 1. We therefore con�rm the

variable selection consistency.

Proof. [Proof of Corollary 3.8] For Part (a) and (b), let θn = θ∗n +R−1
n v for some v ∈ Rp. De�ne

Vn(v) = v′
(
R−1
n W ′WR−1

n

)
v − 2vR−1

n W ′u+ λn

p∑
j=1

(|θ∗jn +Rnjvj | − |θ∗jn|).

The limiting behavior of the �rst and the second terms are derived in (30) and (31). Since Ω+ is

block diagonal, the sample criterion function has a nice separation in the limit,

Vn(v) =⇒ V (v) = Vx+(vx+) + Vz+(vz+), (34)
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where vz+ = (vj)
pz+p1

j=1 , vx+ = (vj)
p
j=pz+p1+1, and

Vx+(vx+) = v′x+Ω+
xxvx+ − 2v′x+ξ

+
X + lim

n→∞

λn
n
·D
(
1px+p2 , vx+ , β+∗

0

)
Vz+(vz+) = v′z+Ω+

zzvz+ − 2v′z+ξ
+
Z + lim

n→∞

λn√
n
·D
(
1pz+p1 , vz, α

+∗
0

)
.

In (34) the limit V (v) is separable into two convex parts, implying

min
v∈Rp

V (v) = min
vz+∈Rpz+p1

Vz+(vz+) + min
vx+∈Rpx+p2

Vx+(vx+).

Invoking the Convexity Lemma for both parts we obtain Part (a) and (b) by the same argument as

in the proof of Corollary 2.3(a) and (b).

Part (c) needs more subtle investigation. De�ne

Ṽn(v) = v′
(
R̃−1
n W ′WR̃−1

n

)
v − 2vR̃−1

n W ′u+ λn

p∑
j=1

(|θ∗jn + R̃−1
nj vj | − |θ

∗
jn|)

where R̃n =
√
n

λn
Rn. Multiply n/λ2

n on both sides,(
n

λ2
n

)
Ṽn(v) = v′

(
R−1
n W ′WR−1

n

)
v − 2v′x+

X+′u

λn
√
n
− 2v′z+

Z+′u

λn

+
n

λn

pz+p1∑
j=1

(|θ∗jn +
λn
n
vj | − |θ∗jn|) +

n

λn

p∑
j=pz+p1+1

(|θ∗jn +
λn

n3/2
vj | − |θ∗jn|).

= v′
(
R−1
n W ′WR−1

n

)
v +

n

λn

pz+p1∑
j=1

(|θ∗jn +
λn
n
vj | − |θ∗jn|)

+
n

λn

p∑
j=pz+p1+1

(|θ∗jn +
λn

n3/2
vj | − |θ∗jn|) + op(1), (35)

from the given rate condition of λn. Given vj 6= 0 and n large enough:

• If j ∈ {1, . . . , pz + p1} we have

n

λn
|θ∗jn +

λn
n
vj | − |θ∗jn|) =

n

λn
D

(
1pz+p1 ,

λn
n
vj , θ

∗
0j

)
= D

(
1pz+p1 , vj , θ

∗
0j

)
(36)

as θ∗jn = θ∗0j is invariant with n.

• If j ∈ {pz + p1 + 1, . . . , p}, the coe�cient θ∗jn = θ∗0j/n
δj may shrink faster than λn

n3/2 . The

inequality ||a+ b| − |a|| ≤ |b| I (|b| ≥ |a|) + 3 |b| I (|a| < |b|) ≤ 3 |b| for any a, b ∈ R guarantees∣∣∣∣ nλn
(
|θ∗jn +

λn

n3/2
vj | − |θ∗jn|

) ∣∣∣∣ ≤ 3
n

λn

∣∣∣∣ λnn3/2
vj

∣∣∣∣ = O
(
n−1/2

)
. (37)
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(36) and (37) show that the �rst term in the second line of (35) asymptotically dominates the

second term. Thus(
n

λ2
n

)
Ṽn(v) =⇒ v′x+Ω+

xxvx+ +
[
v′z+Σ+

zzvz+ +D
(
1pz+p1 , vz+ , α+∗)] .

The above inequality indicates that the limiting behavior of the components associated with Z+

and the components associated with X+ are separable. Invoking the Convexity Lemma for both

parts, we obtain Part (c).

Proof. [Proof of Corollary 3.10] For Part (a) when λn = cλ ∈ [0,∞), let θn = θ∗n +R−1
n v for some

�xed v ∈ Rp. Let

Vn(v) = v′
(
R−1
n W ′WR−1

n

)
v − 2vR−1

n W ′u+ cλ ·
p∑
j=1

σ̂j(|θ∗jn +Rjnvj | − |θ∗jn|).

For vj 6= 0 and a su�ciently large n:

• if j ∈ {1, . . . , pz},

σ̂j

(
|θ∗jn +

vj√
n
| − |θ∗jn|

)
= D

(
σ̂j ,

vj√
n
, θ∗0j

)
= D

(
Op (1) , O

(
1√
n

)
, θ∗0j

)
p→ 0

as the index is associated with the stationary variable Z and therefore σ̂j = Op (1);

• if j ∈ {pz + 1, . . . , pz + p1},

σ̂j

(
|θ∗jn +

vj√
n
| − |θ∗jn|

)
= D

(
σ̂j ,

vj√
n
, θ∗0j

)
= D

(
σ̂j√
n
, vj , θ

∗
0j

)
=⇒ D

(
dj , vj , θ

∗
0j

)
= Op (1)

as the index is associated with unit root processes in Xc
1 and therefore

σ̂j√
n

=⇒ dj ;

• if j ∈ {pz + p1 + 1, . . . , p},

σ̂j

(
|θ∗jn +

vj
n
| − |θ∗jn|

)
= D

(
σ̂j ,

vj
n
, θ∗0j

)
= D

(
σ̂j√
n
,
vj√
n
, θ∗0j

)
= D

(
Op (1) , O

(
1√
n

)
, θ∗0j

)
p→ 0

as
σ̂j√
n

=⇒ dj = Op (1) for these regressors.

The above analysis of the third term implies

Vn(v) =⇒ V (v) = v′
(
R−1
n W ′WR−1

n

)
v − 2vR−1

n W ′u+ cλ

pz+p1∑
j=pz+1

D
(
dj , vj , θ

∗
0j

)
,
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and the conclusion follows.

For Part (b), let R̃n = Rn/λn and θn = θ∗n + R̃−1
n v for some v ∈ Rp. De�ne

Ṽn(v) = v′
(
R̃−1
n W ′WR̃−1

n

)
v − 2vR̃−1

n W ′u+ λn

p∑
j=1

σ̂j(|θ∗jn + R̃−1
jn vj | − |θ

∗
jn|).

Multiply 1/λ2
n on both sides,

Ṽn(v)

λ2
n

= v′
(
R−1
n W ′WR−1

n

)
v − 2v′x+

X+′u

λnn
− 2v′z+

Z+′u

λn
√
n

+
1

λn

p∑
j=1

σ̂j(|θ∗jn + R̃−1
jn vj | − |θ

∗
jn|)

= v′
(
R−1
n W ′WR−1

n

)
v +

1

λn

p∑
j=1

σ̂j(|θ∗jn + R̃−1
jn vj | − |θ

∗
jn|) + op(1).

from the given rate condition of λn. Again we study the last term. By the same reasoning as in

Part (a), for vj 6= 0 and a su�ciently large n we have:

• if j ∈ {1, . . . , pz},

1

λn
σ̂j

(
|θ∗jn +

λn√
n
vj | − |θ∗jn|

)
=

1

λn
D

(
σ̂j ,

λn√
n
vj , θ

∗
0j

)
= D

(
σ̂j ,

vj√
n
, θ∗0j

)
p→ 0;

• if j ∈ {pz + 1, . . . , pz + p1},

1

λn
σ̂j

(
|θ∗jn +

λn√
n
vj | − |θ∗jn|

)
=

1

λn
D

(
σ̂j ,

λn√
n
vj , θ

∗
0j

)
= D

(
σ̂j√
n
, vj , θ

∗
0j

)
= D

(
dj , vj , θ

∗
0j

)
= Op (1) ;

• if j ∈ {pz + p1 + 1, . . . , p}, the rate condition λn/n(1−δ̄)∧0.5 → 0 makes sure that θ∗jn = θ∗0j/n
δj

dominates λn
n so that

1

λn
σ̂j

(
|θ∗jn +

λn
n
vj | − |θ∗jn|

)
= D

(
σ̂j ,

vj
n
, θ∗0j

)
= D

(
σ̂j√
n
,
vj√
n
, θ∗0j

)
p→ 0.

We obtain Ṽn(v)
λ2
n

=⇒ v′Ω+v +
∑pz+p1

j=pz+p1+1D
(
dj , vj , θ

∗
0j

)
and the conclusion follows.

B Additional Simulations

B.1 More DGPs

In this section, we include two more DGPs to examine the forecasting performance and variable

screening in the presence of autoregression.
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DGP 3 (Unit-root autoregression). Motivated by Caner (2013) proposing to treat the

unit root test as a model selection problem by regressing ∆yi+1 on lags of yi, we come up with the

following DGP that extends their setting by including stationary regressors. The dependent variable

is generated from a unit-root autoregression yi+1 = yi + β∗1nxi + β∗2nxi−1 +
∑6

j=1 α
∗
jzij + ui, where

xi is a random walk. The stationary regressors Zi = (zij)
6
j=1 follow a stationary VAR(2) borrowed

from Koo et al. (2016, Section 5.1) 4. We include lag terms of yi as regressors. In the predictive

regression, we use ∆yi+1 = yt+1 − yt as the dependent variable, and the regression equation is

∆yi+1 = φ∗1nyi + φ∗2nyi−1 + β∗1nxi + β∗2nxi−1 +
6∑
j=1

α∗jzij + ui+1

where (φ∗, β∗, α∗) =
(

0, 0, 1√
n
, 1√

n
, 1, 1, 1, 0, 0, 0

)
. Notice that yi and yi−1 are inactive cointe-

grated regressors and this DGP also employs mixed roots and cointegration.

DGP 4 (Stationary autoregression). In addition to including lags of yi, it is also a common

practice to include lags of predictors in predictive regressions, for example Medeiros and Mendes

(2016). We propose the following DGP in which a stationary autoregression generates the dependent

variable

yi+1 = γ∗ + ρ∗yi +

2∑
j=1

φ∗jnx
c
ij + β∗1nxi + β∗2nxi−1 +

3∑
j=1

(
α∗j1zij + α∗j2zi−1,j

)
+ ui+1

where γ∗ = 0.3, (ρ∗, φ∗, β∗, α∗1, α
∗
2, α
∗
3) =

(
0.4, 0.75, −0.75, 1.5√

n
, 0.6, 0.4, 0.8, 0, 0, 0

)
. The cointe-

grated xci1 and x
c
i2 are generated by xci2 = xci1−µi where xci1 is a random walk and µi is a stationary

AR(1) process with AR(1) coe�cient 0.4. xi follows a random walk. zi1,zi2 and zi3 are three

independent AR(1) processes with AR(1) coe�cients 0.5,0.2 and 0.2, respectively.

The results summarized in Table 4 and 5 are similar to that in DGP 2, which demonstrates the

merits of the adaptive LASSO in the presence of autoregression.

B.2 Standardized LASSO

We determine calassoλ and cplassoλ as in Section 4 and let cplassoλ = cslassoλ . The results are summarized

in Table 6 and 7. The CR2 of the standardized LASSO is much higher than that of the plain

LASSO, which is consistent to what the asymptotic theory suggests.

4For completeness, the VAR(2) is Zi = Az1Zi−1 +Az2Zi−2 + vt, where

Az1 =


0 0 0 0.4 0 0

0.29 0.12 0 0 1.31 0.04
1.25 −0.24 0 0 −0.21 0.04
0.03 1.16 0 0 0.07 0.01
0.27 −0.07 0 0 0.08 1.25
0 0 0.4 0 0 0

 andAz2 =


0 0 0 0 0 0

−0.28 −0.07 0 0 −0.35 −0.02
−0.26 0.24 0 0 0.19 −0.05
−0.02 −0.16 0 0 −0.07 0.01
−0.23 0.03 0 0 −0.13 −0.31

0 0 0 0 0 0


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Table 4: Mean Prediction Squared Error (MPSE)

n Oracle OLS alasso plasso slasso

DGP 3 40 1.2041 1.6302 1.3955 1.4681 1.3407

80 1.1000 1.2244 1.1504 1.1823 1.1399

120 1.0703 1.1815 1.1022 1.1255 1.1084
200 0.9686 0.9962 0.9878 0.9942 0.9917
400 0.9971 1.0131 0.9986 1.0026 1.0023
800 1.0085 1.0175 1.0110 1.0162 1.0134

DGP 4 40 1.3062 1.5539 1.5104 1.4882 1.5178
80 1.2616 1.3047 1.2944 1.2879 1.2953
120 1.0529 1.0945 1.0783 1.0873 1.0933
200 1.0794 1.1202 1.1003 1.1083 1.1170
400 1.0055 1.0177 1.0110 1.0139 1.0153
800 1.0496 1.0537 1.0504 1.0535 1.0548

Note: Bold numbers are for the best performance among all the feasible estimators.

Table 5: Variable Screening

CR CR1 CR2

n alasso plasso slasso alasso plasso slasso alasso plasso slasso

D
G
P
3

40 0.6662 0.5957 0.6996 0.8300 0.8558 0.8918 0.5024 0.3356 0.5074

80 0.6846 0.5693 0.6753 0.8402 0.9092 0.9220 0.5290 0.2294 0.4286

120 0.6772 0.5544 0.6599 0.8448 0.9256 0.9278 0.5096 0.1832 0.3920

200 0.6878 0.5525 0.6515 0.8422 0.9450 0.9378 0.5334 0.1600 0.3652

400 0.6849 0.5481 0.6307 0.8350 0.9622 0.9548 0.5348 0.1340 0.3066

800 0.7010 0.5478 0.6270 0.8356 0.9742 0.9628 0.5664 0.1214 0.2912

D
G
P
4

40 0.8188 0.7446 0.6549 0.9449 0.9743 0.9921 0.5983 0.3428 0.0648

80 0.8547 0.7330 0.6558 0.9691 0.9900 0.9957 0.6545 0.2833 0.0610

120 0.8649 0.7273 0.6513 0.9684 0.9890 0.9937 0.6838 0.2693 0.0520

200 0.8773 0.7210 0.6546 0.9673 0.9910 0.9941 0.7198 0.2485 0.0605

400 0.9053 0.7137 0.6582 0.9711 0.9946 0.9947 0.7900 0.2223 0.0693

800 0.9242 0.7124 0.6605 0.9703 0.9943 0.9934 0.8435 0.2190 0.0780

Note: Bold numbers are for the best performance.
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Table 6: Mean Prediction Squared Error (MPSE)

n Oracle OLS alasso plasso slasso

DGP 1 40 1.1606 1.4861 1.3515 1.2109 1.2703
80 1.1275 1.2384 1.1990 1.1534 1.2136
120 1.0467 1.1328 1.1028 1.0768 1.1227
200 1.0977 1.1249 1.1157 1.1107 1.1959
400 1.0043 1.0400 1.0252 1.0296 1.0672
800 1.0848 1.0975 1.0902 1.0908 1.1098

DGP 2 40 1.1718 1.4403 1.3338 1.3188 1.2780

80 1.1271 1.2169 1.1939 1.1926 1.2315
120 0.9750 1.0753 1.0364 1.0494 1.0711
200 1.0845 1.1417 1.1132 1.1316 1.1734
400 1.0558 1.0728 1.0640 1.0669 1.1183
800 1.0286 1.0413 1.0338 1.0367 1.1040

Note: Bold numbers are for the best performance among all the feasible estimators.

Table 7: Variable Screening

CR CR1 CR2

n alasso plasso slasso alasso plasso slasso alasso plasso slasso

D
G
P
1

40 0.5923 0.6486 0.6459 0.7695 0.6535 0.4998 0.4150 0.6438 0.7920

80 0.6619 0.6831 0.6904 0.8308 0.8293 0.6205 0.4930 0.5370 0.7603

120 0.7089 0.6789 0.7243 0.8820 0.9068 0.6918 0.5358 0.4510 0.7568

200 0.7648 0.6764 0.7551 0.9408 0.9695 0.7740 0.5888 0.3833 0.7363

400 0.8318 0.6430 0.7939 0.9808 0.9955 0.8628 0.6828 0.2905 0.7250

800 0.8874 0.5994 0.8270 0.9988 0.9998 0.9370 0.7760 0.1990 0.7170

D
G
P
2

40 0.6953 0.6168 0.6191 0.7573 0.8518 0.6975 0.6333 0.3818 0.5408

80 0.7926 0.6425 0.6453 0.8818 0.9580 0.7490 0.7035 0.3270 0.5415

120 0.8436 0.6450 0.6726 0.9450 0.9895 0.7855 0.7423 0.3005 0.5598

200 0.8786 0.6466 0.6750 0.9760 0.9985 0.8078 0.7813 0.2948 0.5423

400 0.9150 0.6398 0.6896 0.9955 1.0000 0.8195 0.8345 0.2795 0.5598

800 0.9321 0.6296 0.6974 0.9995 1.0000 0.8260 0.8648 0.2593 0.5688

Note: Bold numbers are for the best performance.
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