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1 Introduction

Regime switching model is widely applicable when modeling abrupt shifts in macroeconomic

time series. For example, we consider an application a two-equation state space model of

regime switching Taylor rule and fiscal policy rule, with two dynamic latent factors. The

positions of the bivariate latent factors relative to a threshold vector define the strength

of regimes as well as the regimes themselves. It is noted in the literature that events

such as the sizeable monetary policy shift of U.S. in late 1979 are unlikely to be driven

by exogenous regime change. Moreover, despite the commonly presumed independence of

policy authorities, a substantive question pertains to the characterization of unobserved

(de)synchronization of these policy regime shifts. In this paper, we propose a threshold-

type regime-switching model with bivariate vector autoregressive dynamic factors, allowing

“endogenous feedback” modeled as an intertemporal correlation between shocks to the ob-

served time-series and those to the latent factors. Then upon the model, we devise a

modified Markov-switching filter.

The convential Markov-switching model proposed in the seminal work of Hamilton [1989]

is widely used and proven fruitful in many applications. It stipulates a sequence of regimes

following an exogenous, homogeneous Markov chain. Nonetheless, economic considerations

often render it more plausible and desirable to allow time-varying transition probabilities.

Many authors, including Kim [1994, 2004, 2009], Diebold et al. [1994], Chib [1996], Chib

and Dueker [2004], Kim et al. [2008], Bazzi et al. [2014], Kang [2014], Kalliovirta et al.

[2015], and Chang et al. [2017] (CCP, hereafter), among many others, explore along this

direction and introduce time-varying transition probabilities. For an overview of regime

switching models, the reader is referred to the monograph by Kim and Nelson [1999].

Our model is a vector extension of CCP, in which an autoregressive process of order

one (AR(1)) drives the two-state regime as it crosses a threshold parameter on the real line

R, with current shocks to measurement equation correlating with next periods innovations

to factors. We extend by considering stationary bivariate latent factors following vector

autoregression of order one (VAR(1)), with a vector of shocks to measurement correlated

with the vector of next periods factor innovations. CCP also allows I(1) latent factor,

which we will not explore in this paper. Instead, we argue stationarity is not a restrictive

assumption because one should otherwise expect very few switches: a data feature that is

better captured using other methods, such as a linear model with structural breaks. The

regime in our setup is a bivariate binary vector, determined as the latent factor moves

across quadrants defined by a pair of threshold parameters on the real plane R × R. Our

model nests CCP in the sense that stacking two unrelated univariate models corresponds to
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diagonal factor loading matrix and a restricted correlation matrix between vectors of shocks

and vectors of innovations.

A key feature of our model is the endogenously determined time-varying transition of

regimes. Rather than relying upon a transition equation augmented by exogenous variables,

this time-variation stems purely from the error terms in the regression, propagating through

intertemporal feedback. For a statistical model, we call this mechanism the endogenous

feedback.1 It is straightforward to observe that endogenous feedback results to the state of

the regime being a function of the entire history of shocks.

In addition to the apparent extension of methodology, vector specification has two es-

sential advantages in application over univariate modeling.

First, we identify coordination in the latent factors through the off-diagonal elements of

factor loading matrix as they represent the effects of the lagged factors onto current ones,

as well as through correlation of factor innovations. If interpreting policy factors as author-

ities’ implicit positions toward a particular regime, then the factor loading matrix describes

the extent to which their positions comove systematically, and the correlation of innovation

describes how much of their discretion of regime is based on shared information. The uni-

variate framework of CCP cannot consistently account for this level of policy interaction.

Indeed, factor dynamics and feedback together characterize the synchronization in regime

shifts, whereby our approach is flexible enough to capture a spectrum of synchronizations

between fully synchronized and unsynchronized switching. In contrast, CCP allows only

fully (un)synchronized regime switching, depending on model specification. One can ef-

fectively impose unsynchronized switching by considering two unrelated univariate models.

If one instead considers a vector of measurements with a single latent factor, then regime

switching must be fully synchronized. We argue this flexibility is vital as both extremities

as assumptions are dubious in applications.

Second, vector specification naturally introduces cross-equation feedback. The intertem-

poral correlation stipulated in CCP may be viewed as within-equation feedback because

shocks to the observed time series transmit only to its corresponding regime factors. In

comparison, we allow current shocks to the observed time series to transmit to both regime

factors in the next period. Empirically, one often interprets these shocks to measurement

equations as omitted and perhaps quantitatively important information orthogonal to the

independent variables included in the regression. Cross-equation feedback is thus desir-

able in a broad class of applications since these shocks are more plausibly stipulated to

be measurable with respect to a common information set of all equations due to certain

1For a dynamic stochastic general equilibrium (DSGE) model, this design in its strict form is still generally
considered exogenous unless regimes are shifted in part by agents’ optimal choice.
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misspecification.

A large literature studies various statistical properties of regime switching models such

as Hansen [1992], Hamilton [1996], Garcia [1998], Timmermann [2000], and Cho and White

[2007]. However, identification is often unclear. We report, to our knowledge, a novel

identification result for the regime-switching model with endogenous feedback. Specifically,

we collect the standard identification results for mixture models and establish a one-to-one

correspondence between our model parameters and the identified mixing distribution and

mixing components. Normality of factor innovations appears to be critical in our proof, but

the normality of shocks to measurements is less so. We acknowledge that a large class of

shock distributions also falls within the scope of our result.

As an illustration, we analyze a slight extension of Chang and Kwak [2017] to study

U.S. monetary-fiscal policy interactions. On top of rediscovering substantial size of within-

equation feedback,2 we report evidence of non-trivial synchronization between monetary and

fiscal factors, and non-trivial cross-equation feedback. Specifically, we report three primary

results. First, the impact of fiscal factor on monetary factor is twice in size compared to

the impact of monetary factor on the fiscal factor. Second, a common factor that drives

the shocks of both policy rules. Third, the common factor is fed mainly to next period

monetary factor innovation, whereas the fiscal factor is mainly influenced by its equation-

specific policy shocks. We also find the extracted latent factors from our model to be highly

positively correlated over the course of history with occasional exceptions in the 1950s,

1970s and early 2000s. The coherence of extracted latent factors suggests a substantial

correlation between policy factors over the typical business cycle frequency. These results

indicate a tighter connection between the monetary and fiscal regimes than those reported

by Chang and Kwak [2017].

We simulate at ML estimates to evaluate the performance of our approach against

CCP. Our results suggest that ignoring cross-equation interaction inflicts substantial bias

for the threshold values, the size of interaction and feedback channels, and the correlation

of shocks. Nevertheless, we find relatively small bias for the coefficients in measurement

equations when the latent factors extracted from restricted and unrestricted models imply

similar regimes in timing and length. To supplement empirical exercises, we obtain stan-

dard errors of parameter estimates by simulation since it is computationally challenging

to evaluate Hessian matrix of the log-likelihood function. Using the simulated standard

error, we conclude improved efficiency after allowing cross-equation temporal dynamics and

feedback.

2Chang et al. [2017] document ubiquitous and robust feedback in both macro and financial time-series.
Chang and Kwak [2017] also report strong feedback in the series of monetary and fiscal policy instruments.
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The rest of the paper is organized as follows. Section 2 introduces the model and

characterize transition probabilities. Section 3 presents our modified Markov filter and

characterizes the likelihood function. In Section 4, we establish identification. In Section 5,

we examine a reduced form bivariate system of monetary and fiscal policy rules and an-

alyze the policy regime interactions. Moreover, Section 6 reports our simulation results

and supplements empirical section by evaluating the performance of our model relative

to the model without cross-equation interactions. Finally, Section 8 concludes the paper.

Appendix collects computational details, omitted proofs, additional tables, and figures.

2 The Model and Preliminaries

We consider

y1t = x′1tβ1t + σ1u1t

y2t = x′2tβ2t + σ2u2t

with exogenous variable xt = (x1t, x2t) and level functions

βit = β
i
(1− sit) + βisit

σit = σi(1− sit) + σisit

for i = 1, 2, where (sit) for i = 1, 2 are binary state variables taking values 0 and 1, denoting

respectively the low and high states and are generated as

sit = 1{wit ≥ τi}

with

wt = Awt−1 + vt,

where wt = (w1t, w2t)
′, vt = (v1t, v2t)

′ and

A =

(
α11 α12

α21 α22

)

such that both of its eigenvalues lie inside unit disk. With stationarity, wt ∼ N(0,Σw) such

that

Σww =

(
σ2

1 σ12

σ21 σ2
2

)
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Defining ut = (u1t, u2t)
′, we further specify

(u′t, v
′
t+1)′ =d N(0, P )

with

P =

(
Puu Puv

Pvu Pvv

)
=


1

ρu2u1 1

ρv1u1 ρv1u2 1

ρv2u1 ρv2u2 ρv2v1 1

 ,

and assume that (ut) and (vt) are i.i.d. and independent of each other at all other leads and

lags.

We say there is endogenous feedback in the regime switching if Pvu 6= 0, and say the

regime switching is exogenous if otherwise. Note in particular that ut is correlated with

vt+1, not vt, for all t = 1, 2, . . .. The unit variance in P is necessary because when A = 0,

the pair (τ, Pvv) and (cτ, cPvv) for any c > 0 imply identical state transition probabilities.

If we let

zt = vt − PvuP−1
uu ut−1,

it follows that zt is independent of ut−1, ut−2, . . ., and of vt−1, vt−2, . . ., and therefore, also

of wt−1, wt−2, . . ., and that

zt =d N (0, Pvv·u)

with

Pvv·u = Pvv − PvuP−1
uu Puv, (2.1)

i.e., the conditional variance of vt+1 given ut for each t = 1, 2, . . .. Therefore, we have

P
{
wt < τ

∣∣wt−1, yt−1, xt−1

}
= P

{
zt < τ − PvuP−1

uu ut−1 −Awt−1

∣∣wt−1, yt−1, xt−1

}
= Φv|u

(
τ − PvuP−1

uu ut−1 −Awt−1

)
,

where Φv|u is the distribution function of bivariate normal distribution with covariance

matrix Pvv·u defined in (2.1).

In what follows, we show more explicitly how we may obtain the probabilities required
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for our modified Markov filter. We may easily deduce that

P
{
wt < τ

∣∣wt−1 < τ, yt−1, xt−1

}
= P {wt < τ,wt−1 < τ |yt−1, xt−1}

/
P
{
wt−1 < τ

∣∣yt−1, xt−1

}
=

[∫ τ

−∞
Φv|u

(
τ − PvuP−1

uu ut−1 −Awt−1

)
φ(wt−1)dwt−1

]/
Φ(τ), (2.2)

where Φv|u is defined as above in (2.1), and φ and Φ are respectively the density and

distribution functions of (wt), which is bivariate normal distribution with covariance matrix

Σww, which is given by

vec Σww = (I −A⊗A)−1vecPvv,

where vec(·) is the operator stacking rows of a matrix and transforming it into a column

vector.

The transition probability (2.2) is time-invariant if Pvu = 0. In this case, our model re-

duces to the conventional Markov switching model after relabeling the states (0, 0)′, (0, 1)′, (1, 0)′

and (1, 1)′ to be 1, 2, 3 and 4.

For the actual computations of transition probabilities, we need to calculate

N(A, b, c,Σ1,Σ2) =

∫ c2

−∞

∫ c1

−∞
Φ1 (b−Ax)φ2(x)dx1dx2 (2.3)

for various sets of values of 2 × 2 matrix A, and two dimensional vectors b and c, where

Φ1 and φ2 are respectively the bivariate normal distribution and density functions with

covariance matrices Σ1 = Pvv·u and Σ2 = Σww. For this purpose, we note that

N(A, b, c,Σ1,Σ2) = P

{(
X1

X2

)
≤

(
c1

c2

)
,

(
Y1

Y2

)
≤ b−AX

}
,

where X = (X1, X2)′ is a bivariate normal random variate with mean zero and covariance

matrix given by Σ2, and Y = (Y1, Y2)′ is also a bivariate normal random variate, independent

of X, with mean zero and covariance matrix Σ1. However, we may rewrite

P

{(
X1

X2

)
≤

(
c1

c2

)
,

(
Y1

Y2

)
≤ b−AX

}
= P{X ≤ c, Y +AX ≤ b},
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and therefore, it follows that

N(A, b, c,Σ1,Σ2) =

∫ b2

−∞

∫ b1

−∞

∫ c2

−∞

∫ c1

−∞
pA,Σ1,Σ2(z1, z2, z3, z4)dz1dz2dz3dz4,

where pA,Σ1,Σ2 is the density function of a four-dimensional normal random variate with

zero mean and covariance matrix(
Σ2 Σ2A

′

AΣ2 Σ1 +AΣ2A
′

)

for given Σ1 and Σ2.

Note that∫ ∞
c2

∫ c1

−∞
Φ1 (b−Ax)φ2(x)dx1dx2

= N(A, b,

(
c1

∞

)
,Σ1,Σ2)−N(A, b, c,Σ1,Σ2),∫ c2

−∞

∫ ∞
c1

Φ1 (b−Ax)φ2(x)dx1dx2

= N(A, b,

(
∞
c2

)
,Σ1,Σ2)−N(A, b, c,Σ1,Σ2),∫ ∞

c2

∫ ∞
c1

Φ1 (b−Ax)φ2(x)dx1dx2

= N(A, b,

(
∞
∞

)
,Σ1,Σ2)−N(A, b,

(
∞
c2

)
,Σ1,Σ2)−N(A, b,

(
c1

∞

)
,Σ1,Σ2)

+N(A, b, c,Σ1,Σ2),

which can also be easily obtained, once we compute the integral in (2.3).3

3 A Modified Markov-Switching Filter

In this section, we characterize the likelihood function and extract latent factors by devel-

oping a modified Markov-switching filter.

3Calculation of (2.3) involves non-trivial randomness, since efficient implementations such as the Matlab
[Genz, 1992] employ Monte-Carlo integration techniques. The issue can be practically resolved by fixing the
random seed of Monte-Carlo integration. The disadvantage is that we lose control of precision. But our
limited experience suggests the resulting precision is roughly to the level of 10−4.
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3.1 Likelihood Function

Let information set F0 = ∅ and Ft = σ (y1:t, x1:T ) for t = 1, · · · , T and suppress xt in

all future notation for it is exogenous and will not change our arguments. The likelihood

function for a vector of parameters θ ∈ Θ takes form

`(θ) = p(Y1:T |θ) =
T∏
t=1

(∑
st

p(yt|st,Ft−1)p(st|Ft−1)

)
(3.1)

Equation (3.1) can be evaluated sequentially with following predict-update recursion. An

equivalent but parallelizable algorithm is proposed in Appendix A.

Algorithm 3.1 (Modified Markov-Switching Filter).

1. Initialization. If t = 0, set p(st) to be the unconditional state probabilities such that

P {s0 = (0, 0)′} = P
{
w1,0 < τ1, w2,0 < τ2

}
, in which (w1,0, w2,0)′ ∼ N(0,Σww).

2. Recursion. If t ≥ 1, repeat steps (a) - (c). Stop if t = T + 1.

(a) Forecasting. Predict the distribution of st given information set Ft−1

p(st|Ft−1) =
∑
st−1

p(st|st−1,Ft−1)p(st−1|Ft−1)

with time-varying transition probability p(st|st−1,Ft−1) characterized by (2.2).

(b) Evaluation. Calculate the conditional density of yt given information set Ft−1

p(yt|Ft−1) =
∑
st

p(yt|st,Ft−1)p(st|Ft−1).

(c) Updating. Update the distribution of st given information set Ft

p(st|Ft) =
∑
st−1

p(st, st−1|yt,Ft−1)

=
∑
st−1

p(yt|st,Ft−1)p(st|st−1,Ft−1)p(st−1|Ft−1)

p(yt|Ft−1)
.

Several remarks are in order. First, immediately useful byproducts of Algorithm 3.1 are

the time-varying transition probabilities p(st|st−1,Ft−1) and the filtered state probabilities

p(st|Ft), with which inferences of current and future states can be drawn. Second, an op-

tional step parallel in sequence to Updating can be easily implemented to extract conditional
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moments of latent factor wt given information Ft in each iteration of Recursion. In particu-

lar, we show in Subsection 3.2 the conditional density p(wt|Ft) is characterized by densities

and distributions computed in previous iterations. Finally, Algorithm 3.1 can be extended

to admit regime switching autoregression of order m by replacing conditional probabili-

ties p(st|Ft−1), p(st|st−1,Ft−1), p(st−1|Ft−1) and p(yt|st,Ft−1) for each t by p(st−m:t|Ft−1),

p(st|st−m−1:t−1,Ft−1), p(st−m−1:t−1|Ft−1) and p(yt|st−m:t,Ft−1), respectively. Accordingly,

the summations in Forecasting and Updating are to be adjusted to marginalize out st−m−1,

and the summation in Evaluation marginalizes out st:t−m. The characterization of transition

probability is invariant to this extension by Theorem 3.1 in CCP.

3.2 Extraction of Latent Factor

We now characterize the conditional density p(wt|Ft), with which the extraction of, for

example, E(wt|Ft) becomes a standard integration exercise. Applying Bayes formula to

write

p(wt|Ft) =
∑
st−1

p(wt|st−1,Ft−1)p(yt|st,Ft−1)p(st−1|Ft−1)

p(yt|Ft−1)
, (3.2)

in which all densities but p(wt|st−1,Ft−1) have been specified above.

For st−1 = (0, 0)′, there is

p(wt|st−1 = (0, 0)′,Ft−1) =
(
det Ω−1Q−1Pvv·uΣww

)−1/2

×
ΦQ

(
τ −QA′P−1

vv·u(wt − PvuP−1
uu ut−1)

)
ΦΣww(τ)

×φ
(
wt;PvuP

−1
uu ut−1,Ω

)
(3.3)

in which

Q = (A′P−1
vv·uA+ Σ−1

ww)−1,

Ω = (P−1
vv·u − P−1

vv·uAQA
′P−1
vv·u)−1,

with generic notation ΦM (·) denoting zero-mean bivariate normal distribution function

with covariance matrix M , and φ(·;µ,Ω) denoting bivariate normal density with mean µ

and covariance Ω. For a proof of (3.2) and (3.3), see Appendix C.1. Similar calculation

easily delivers the conditional densities p(wt|st−1,Ft−1) in which st−1 = (0, 1)′, (1, 0)′ and

(1, 1)′.

The calculation of E(wt|Ft) is computationally demanding due to both the non-standard
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shape of underlying distribution and high dimension. Many methods are available for

efficient calculation. For simplicity, we apply self-normalized importance sampler. The

detail of our sampler is reported in Appendix B.1 as the treatment is now standard in

literature.

4 Identification

In this section, we first bridge the standard theory of mixture distribution to show identifica-

tion of parameters in state transition. Then we show the parameters characterizing feedback

are identified through the interaction between transition and measurement. Finally, the pa-

rameter identification in the measurement equation follows trivially from Gaussianity of

regression errors.

4.1 Identification of Mixture Distribution

Following standard terminologies of mixture distribution, the likelihood function

p(y1, y2, · · · , yT ) =
∑

s1,··· ,sT

p(y1, y2, · · · , yT |s1, s2, · · · , sT )p(s1, s2, · · · , sT )

=
∑

s1,··· ,sT

(
T∏
t=1

p(yt|st,Ft−1)

)
p(s1, s2, · · · , sT ) (4.1)

is a finite mixture of normal densities with mixing distribution p(s1, s2, · · · , sT ) and mixing

components
∏
t p(yt|st,Ft−1).

The joint distribution p(st−1, st) is identifiable following a two-step argument.4 First,

the finite mixture ∑
st

p(yt|st,Ft−1)q(st),

with generic mixing distribution q(st) and mixing components p(yt|st,Ft−1), are identifiable

by Proposition 1 of Teicher [1963] provided a total ordering for the mixing components.

Following proof of Proposition 1, we may impose a lexicographical order such that

p(yt|(a1, a2)′,Ft−1) ≺ p(yt|(b1, b2)′,Ft−1)

if and only if a1 < b1 or a1 = b1 but a2 < b2 where ai, bi ∈ {0, 1} for i = 1, 2 by assuming

σ 6= σ and/or x′β < x′β almost surely X in each equation. Second, the mixture (4.1) is

4See Krolzig [1997], Section 6.2, for a relevant discussion
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identifiable by Theorem 1 of Teicher [1967] since its mixing component
∏T
t=1 p(yt|st,Ft−1)

is a T-fold product of p(yt|st,Ft−1). Then by Definition 12.4.3 of Cappé et al. [2005], the

mixing distribution p(s1, s2, · · · , sT ) of (4.1) is identifiable. It follows immediately that for

each st, mixing component
∏
t p(yt|st,Ft−1) is identifiable. By normality of the mixing

component, parameters in our measurement equations, (β, Puu), are identifiable.

Our argument may be extended to include Markov switching autoregression of order m

with a total ordering of mixing components such that

p

(
yt

∣∣∣∣∣
(
a1,1

a1,2

)
, · · · ,

(
am,1

am,2

)
,Ft−1

)
≺ p

(
yt

∣∣∣∣∣
(
b1,1

b1,2

)
, · · · ,

(
bm,1

bm,2

)
,Ft−1

)

if and only if (a1,1, a1,2, · · · , am,1, am,2)′ ≺ (b1,1, b1,2, · · · , bm,1, bm,2)′.

4.2 Identification of State Transition

In the sequel, we characterize parameters of regime switching, (τ,A, Pvv), in terms of joint

state distribution p(st, st−1). Note the transition of latent factor per se is a homogeneous

Markov process, thereby the sequence of state variables (st) by itself is an exogenous ho-

mogeneous Markov chain. Therefore the state transition probability p(st|st−1) carries the

same information of p(st, st−1).

4.2.1 Identification of Thresholds and Factor Correlation

From state distribution p(st), we identify threshold parameters τ up to constant multiples,

as well as the correlation matrix between latent factors.

Let Dw be the diagonal of Σww such that

D1/2
w =

(
σ1

σ2

)
,

in which σ1, σ2 are reparameterizations of (A,Pvv) given by

σ2
1 =

[
− α3

12α21 + α2
12(1 + α11α22) + (1− α11α22)(1− α2

22)− α12α21(1 + α2
22)

+2α12(α11 − α22 detA)ρv1,v2

]/
π(λ1, λ2), (4.2)

σ2
2 =

[
α3

11α22 − α2
11(1 + α12α21) + (1− α12α21)(1 + α2

21)− α11α22(1− α2
21)

+2α21(α22 − α11 detA)ρv1,v2

]/
π(λ1, λ2), (4.3)
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with

π(λ1, λ2) = (1− λ1λ2)(1− λ2
1)(1− λ2

2),

where λ1, λ2 are eigenvalues of A. Note the stability of A guarantees π(λ1, λ2) 6= 0. The

distribution of D
−1/2
w wt is standard bivariate normal with correlation ρ12, whose density is

denoted by φρ12(z1, z2). Then the state probability

P(st = (0, 0)′) = P
{
D−1/2
w wt < D−1/2

w τ
}

by construction.

Marginalizing p(st) along s2 to have p(s1,t) and

τ1

σ1
= Φ−1

1 (P(s1,t = 0))

in which Φ−1
1 (·) is the inverse of standard normal distribution function. Then the normalized

thresholds are

D−1/2
w τ =

(
Φ−1

1 (P(s1,t = 0))

Φ−1
1 (P(s2,t = 0))

)
.

For each D
−1/2
w τ , the function Ψ(ρ12) = P

{
D
−1/2
w wt < D

−1/2
w τ

}
is strictly increasing in ρ12

by the fact that

dΨ(ρ12)

dρ12
=

∂

∂ρ12

∫ τ2/σ2

−∞

∫ τ1/σ1

−∞
φρ12(z1, z2)dz1dz2

=

∫ τ2/σ2

−∞

∫ τ1/σ1

−∞

∂2

∂z1∂z2
φρ12(z1, z2)dz1dz2

= φρ12(τ1/σ1, τ2/σ2) > 0.

We thus have

ρ12 = Ψ−1
(
P(st = (0, 0)′)

)
.

This result alone establishes global identification for the stationary case of CCP: it

is directly recovered from p(st, st−1) the scaled threshold parameter τ
√

1− α2, and the

correlation coefficient α for (wt, wt−1)′.

4.2.2 Identification of Transition Equation

Extending results in the preceding section, we may identify all parameters in the state

transition. We first show the correlation matrix of (w′t−1, w
′
t)
′ is identified through the

joint state distribution p(st, st−1). Then we characterize (A,Pvv) in terms of the identified
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correlation matrix.

To begin with, observe (w′t−1, w
′
t)
′ ∼ N(0,Σ) such that

Σ =

(
Σww ΣwwA

′

AΣww Σww

)
.

We may write

Σ = D1/2
wwΓ(wt−1, wt)D

1/2
ww ,

such that D
1/2
ww = diag

(
D

1/2
w , D

1/2
w

)
and

Γ(wt−1, wt) =

(
Γ0 Γ′1
Γ1 Γ0

)
=


1

ρ12 1

ρ13 ρ23 1

ρ14 ρ24 ρ34 1

 ,

denoting the correlation matrix of (w′t−1, w
′
t)
′ with ρ12 = ρ34. As is clear, (D

−1/2
w τ, ρ12) is

identified through p(st−1). With identical arguments, the correlation matrix Γ(wt−1, wt) is

identified through p(st, st−1). Specifically, we obtain the marginal distributions p(s1,t−1, s1,t),

p(s1,t−1, s2,t), p(s2,t−1, s1,t) and p(s2,t−1, s2,t) and identify ρ13, ρ14, ρ23, and ρ24, respectively.

The correlation matrix Γ(wt−1, wt) provides 5 equations, i.e. ρ12, ρ13, ρ14, ρ23 and ρ24,

for 5 unknowns (α11, α12, α21, α22, ρv1,v2). We solve this system in part easily using the block

matrices of Σ. Note that

AΣww = D1/2
w Γ1D

1/2
w ,

with

Σww = D1/2
w Γ0D

1/2
w .

Therefore,

α11 =
ρ13 − ρ23ρ12

1− ρ2
12

α∗12 =
ρ23 − ρ13ρ12

1− ρ2
12

, α∗12 = α12
σ2

σ1

α∗21 =
ρ14 − ρ24ρ12

1− ρ2
12

, α∗21 = α21
σ1

σ2

α22 =
ρ24 − ρ14ρ12

1− ρ2
12
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Note α11, α22 and α12α21 are identified with the sign of α12 and α21, followed by trA and

detA. In particular, α12, α21 are directly identified at 0.

We may substitute α21, since the only non-trivial case concerns α12α21 6= 0. Hence the

remaining parameters (α12, ρv1v2) are characterized by the solution of the bivariate system

regarding ρ12 and α∗12. Note that ρ12 = σ12
σ1σ2

, in which

σ12 =
[
− α2

11α12α22 + α12(1 + α2
21)α22 + α11α21(1 + α2

12 − α2
22)

+(1− α2
11 − α2

22 + (α11α22)2 − (α12α21)2)ρv1,v2

]/
π(λ1, λ2).

It is easily solved that

α12 = sign(α12)

√[
(α12α21)2 − (1− α2

22)α∗12
2
]

(1 + trA+ detA) + 2α22α∗12ρ12α12α21

(α2
11 − 1 + α∗12

2)(1 + trA+ detA) + 2α11α∗12ρ12
,

ρv1,v2 =
[
α2

12

(
(1 + detA)(α21 − α∗12)2 + (1− detA)(1− α2

11)− 2α12α21

)
−α∗12

2 (1− α12α21 − α22(trA− α22 detA))
]

/[
2α12

(
α11(1− α2

22)α∗12
2 − α22(1− α2

11 − α∗12
2)(α12α21)− α11(α12α21)2

) ]
.

Finally, we conclude that τ1 and τ2 are identified since σ2
1, σ

2
2 are specified by (4.2) and

(4.3).

4.3 Identification of Endogenous Feedback

The identification of state transition implies the identification of endogenous feedback. By

the theory of mixture distribution, the joint density

p(y1, · · · , yT , s1, · · · , sT ) = p(y1, · · · , yT |s1, · · · , sT )p(s1, · · · , sT ),

is identifiable, followed by

p(st|st−1) =
p(st, st−1)

p(st−1)

and time-varying transition

p(st|st−1,Ft−1) =
p(y1, · · · , yt−1, st, st−1)

p(y1, · · · , yt−1, st−1)
.

On the one hand, all parameters except for Pvu are identifiable through the unconditional

transition probability p(st|st−1). On the other hand, suppose there exist Pvu and P ∗vu such
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that both induce the same time-varying transition probability p(st|st−1,Ft−1), then by (2.2),

it must be true that

PvuP
−1
uu ut−1 =a.s. P

∗
vuP

−1
uu ut−1,

followed by Pvu = P ∗vu.

5 Empirical Illustration

In this section, we examine a vector model for U.S. monetary and fiscal policy rules with

regime switching and feedback in policy regimes and analyzing the unobserved regime in-

teractions.

Main theoretical works on policy interactions include Sargent and Wallace [1981], Wal-

lace [1981], Aiyagari and Gertler [1985] and Leeper [1991]. The overriding message is that

monetary and fiscal policies together stabilizes real government debt and determines price

level. There are two main competing theories. The conventional theory describes an active

monetary authority, who systematically raise nominal interest rate more than one-for-one

in response to current inflation while the fiscal authority adjusts tax and spending passively

to maintain solvency. The alternative theory describes an active fiscal authority who spend

on its agenda, and a passive monetary authority generates seigniorage to maintain solvency.

Empirical works devote much attention to the dynamics of policy interactions. For

example, Favero and Monacelli [2005] consider regime switching policy rules and find little

evidence of synchronization in regime-switching; Bianchi and Ilut [2017] embed regime-

switching policy rules into a New-Keynesian dynamic stochastic general equilibrium (DSGE)

model and explain inflation drop in the 1980s concerning a policy shift. Two works are more

closely related to our exercise. Davig and Leeper [2006] study monetary and fiscal policy

rules jointly with exogenous Markov regime process. Moreover, Chang and Kwak [2017]

examine these rules separately and demonstrate the importance of allowing for endogenous

feedback to the latent regime factors, and in which it is argued that latent factor provide a

more plausible interpretation of sudden policy shifts because rarely do policymakers choose

to shift discretely to a new regime.

The primary advantage of our approach is that we provide a consistent framework for

analyzing policy interaction with the presence of feedback because the channels of interac-

tion are explicitly modeled. In what follows, we refer to the direct channel as the factor

loading A of latent factors, and the indirect channel as the feedback to regime factors from

a joint policy innovation, characterized by correlation matrix P .
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5.1 Interactions of U.S. Monetary and Fiscal Policies

We consider regime-switching monetary and fiscal policy rules

it = αc(s
M
t ) + απ(sMt )πt + σMu

M
t (5.1)

τt = βc(s
F
t ) + βb(s

F
t )bt−1 + βg(s

F
t )gt + σFu

F
t (5.2)

with latent regime factor

wt = Awt−1 + vt

sit = 1{wit ≥ τi}

for i = M,F such that wt = (wMt , w
F
t )′, vt = (vMt , v

F
t )′. In the policy rules, it and πt

represent nominal interest rate and inflation rate at time t; τt, bt−1 and gt represent rev-

enues net of transfer payments, government spending and debt held by public. The main

model we consider assumes both general stable A and unrestricted correlation matrix P ,

each characterizing a channel for policy interactions. In what follows, we use “main” and

“unrestricted” interchangeably.

We hereby view regression error ut = (uMt , u
F
t )′ as fundamental shocks or functions of

variables omitted by econometrician. Within-equation feedback thus arises naturally when

policy regime responds systematically to information available to policymakers. In such

case, size of responses are functions of both historical policy disturbances and exogenous

shocks. Also, since both authorities routinely project variables in the information set of the

other branch, the cross-equation feedback arises naturally as well.

Following Leeper [1991], regimes for monetary policy and fiscal policy depend upon

the parameter values in monetary and fiscal policy rules. The monetary policy is said to

be active if απ > 1, i.e., the policy rate respond more than one for one to inflation, and

passive if 0 ≤ απ < 1. The fiscal policy is said to be active if βb is less than the real

interest rate, and passive if otherwise. We follow Leeper [1991] and call Regime M and

Regime F to be “active-passive” and “passive-active” combinations of monetary and fiscal

regimes, respectively. Both regimes imply the existence of a determinate bounded rational

expectations equilibrium.

Additional identification issues may arise, because, in addition to Regime M/F, our

model allows both doubly active and passive regimes. Leeper [1991] argues that doubly ac-

tive regime leads to the nonexistence of a money-growth process that ensures consumer will

hold government debt unless policy innovations are correlated; and doubly passive regime

leads to multiple money-growth processes satisfying equilibrium conditions and, hence, in-
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determinate pricing function. Nonetheless, our model assumptions are different. First, we

allow shocks (uMt , u
F
t )′ to be correlated and assume independence over time, whereas Leeper

[1991] assumes uncorrelated innovations across equation, and AR(1) specification for uFt .

Second, provided a passive fiscal rule, Davig and Leeper [2007] show that monetary policy

can satisfy the Taylor principle in the long run, even while deviating from it substantially

for brief periods or modestly for prolonged periods. Empirically, we find doubly passives

regimes to be all relatively short-lived. We thus argue indeterminacy (hence, identification)

is not a major concern for our empirical exercise.

Davig and Leeper [2006] include output gaps and switching volatility in the regression,

but can otherwise be considered as a special case of our model since they estimate policy

rules with, equivalently,

A =

(
α11

α22

)
, P = I4.

Chang and Kwak [2017] is also a special case of our model since separate estimation of (5.1)

and (5.2) is equivalent to assuming only within-equation feedback, characterized by

A =

(
α11

α22

)
, P =


1

0 1

ρv1u1 0 1

0 ρv2u2 0 1

 .

In what follows, we call Chang and Kwak [2017] the “restricted” model.

5.2 Data and Identified Regimes

We use quarterly U.S. data from 1949:2 to 2014:2 for the empirical exercise. Figure 1

plots these time-series for policy instruments, on which we superimpose the Regime M and

Regime F identified using extracted latent factors E(wt|Ft) and estimated threshold τ from

the main model. The regimes are primarily M or F over the course of history with a brief

doubly active period in the 1980s and multiple brief doubly passive epochs in 1950s and

2000s.

For monetary policy (5.1), we define πt to be inflation rate over contemporaneous and

prior three quarters as in Taylor [1993] and obtain inflation each period as log difference

of GDP deflator. We use three-month Treasury bill (T-bill) rate in the secondary market

for nominal interest rate it. We choose T-bill rate over federal funds rate (FFR) mainly

due to its short series. On the other hand, T-bill rate is highly correlated with FFR with

sample correlation 0.988 over the period 1954:1-2014:2, and is available since 1949:1. Using
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Figure 1: Historical Data and Estimated Policy Regimes

T-bill rate allows us to study meaningful regime changes in monetary and fiscal policy rules

before 1954 which include critical historical episodes such as Treasury Accord of March 1951

leading to passive monetary policy and the wartime fiscal financing for Korean war leading

to active fiscal policy.

For fiscal policy (5.2), all variables are for the federal government only. τt is federal tax

receipts net of total federal transfer payments to GDP ratio, and bt−1 is the market value of

gross marketable federal debt held by the public to GDP ratio and gt is federal government

consumption plus investment expenditures to GDP ratio. Finally, we use average debt-

output ratio over previous four quarters as a measure of bt−1.

5.3 Estimation and Results

We perform ML estimation for a sequel of specifications with a detailed description of opti-

mization routine in Appendix B.2 and results in Table 1. Standard errors are reported for
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only the major cases, and are obtained by simulation since the hessian of log-likelihood is

difficult to compute. The regime-switching coefficients for both policies appear to be iden-

tified in all specifications. In the unrestricted model, the monetary rule responds actively

to inflation with coefficient 1.049(0.147) and passively with coefficient 0.640(0.044), while

the fiscal rule responds actively to debt with coefficient -0.029(0.004) and passively with

coefficient 0.050(0.011).

In estimation, we propose an error component parametrization for (u′t, v
′
t+1)′ with ex-

actly 6 parameters to identify structure of shocks and give proper correlation matrix P .

Let

uit = λiξt +
√

1− λ2
i ζit (5.3)

vi,t+1 = φiξt + ψiζit +
√

1− φ2
i − ψ2

i εit (5.4)

for i = 1, 2 such that (ξt), (ζit) and (εit) are independent standard normal, and −1 <

λi, φi, ψi < 1. We further assume λ1 ≥ 0 and φ2
i + ψ2

i < 1 for each i = 1, 2. The former

restriction is necessary since (ξt) paired with (λi, φi) gives identical transition as by (−ξt)
paired with (−λi,−φi). Channels for endogenous feedback are characterized by λi, φi and

ψi for i = 1 and 2. The within-equation feedback of equation i is determined by λiφi +

ψi

√
1− λ2

i for i = 1 and 2, whereas the cross-equation feedback is characterized by products

λ1φ2 and λ2φ1.

We report two main findings from ML estimation in addition to the improved efficiency

of the unrestricted model compared to the restricted one. On the one hand, the likelihood

ratio test gives evidence that restricted model is misspecified, and the estimates suggest

that the misspecifications lie in both channels of policy interaction we consider. Data favors

the direct channel of interaction, characterized by off-diagonal entries of A. Notably, the

impact of fiscal factor on monetary factor, α12, is twice in size compared to the effect in the

opposite direction, α21. Data also favors a non-trivial positive correlation between fiscal and

monetary information, ρu1,u2 , and positive cross-equation feedback from fiscal information

to monetary regime factor, ρu2,v1 , but not the opposite direction of cross-equation feedback,

ρu1,v2 . Both channels are essential in the sense that severing one leads to non-rejection in

likelihood ratio test (see (3) in Table 1). On the other hand, however, coefficient estimates

for the regime-switching policy rules are similar across all specifications considered.

Granger causality test is easily constructed for the direct channel of factor interaction.

The fiscal (monetary) factor Granger causes shifts in monetary (fiscal) factor if α12 6= 0

(α21 6= 0). Since the sampling distribution for our model is unclear, we formally test

the null hypothesis α12 = 0 (α21 = 0) with a bootstrap test. Data, however, generates
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Parameter (1)-Unres. S.E. (2) -Res. S.E. (3) (4)

Thresholds
τm 0.435 1.705 -0.389 1.648 0.802 0.533
τf -0.582 1.407 -0.600 1.551 -0.026 -0.462

Transition of Latent Factor
α11 0.956 0.248 0.984 0.420 0.975 0.961
α21 0.023 0.161 - - - 0.012
α12 0.056 0.249 - - - 0.050
α22 0.938 0.177 0.968 0.283 0.961 0.953

Endogenous Feedback
ρu1u2 0.178 0.066 - - 0.180 0.146
ρu1v1 0.997 0.418 0.999 0.470 0.943 0.982
ρu2v1 0.165 0.206 - - 0.322 -
ρu1v2 0.000 0.243 - - 0.225 0.136
ρu2v2 0.970 0.242 0.999 0.368 0.988 0.996
ρv1v2 0.000 0.245 - - 0.403 -

Regime-Switching Monetary Policy
αc(sm = 0) 0.533 0.265 0.443 0.529 0.456 0.528
αc(sm = 1) 2.524 0.477 2.601 0.607 2.531 2.564
απ(sm = 0) 0.640 0.044 0.661 0.095 0.658 0.647
απ(sm = 1) 1.049 0.147 1.039 0.183 1.049 1.047

σm 1.310 0.064 1.306 0.068 1.309 1.309

Regime-Switching Fiscal Policy
βc(sf = 0) -0.028 0.001 -0.028 0.003 -0.028 -0.028
βc(sf = 1) 0.011 0.003 0.014 0.011 0.011 0.012
βb(sf = 0) -0.029 0.004 -0.033 0.009 -0.028 -0.029
βb(sf = 1) 0.050 0.011 0.052 0.020 0.054 0.051
βg(sf = 0) 1.016 0.024 1.020 0.051 1.017 1.018
βg(sf = 1) 0.644 0.056 0.603 0.107 0.634 0.637

σf 0.014 0.001 0.014 0.001 0.014 0.014

log-likelihood 275.137 270.409 273.332 274.629
p-value (vs (2)) 0.051* - 0.211 0.077

Note:* indicates df = 4 in the likelihood ratio test against restricted (Res.) model.
Missing values are 0 in the shaded rows, and undefined if otherwise. Cyan high-

lights key model differences in transition and feedback. Rose highlights identified
regimes.

Table 1: Maximum Likelihood Estimates (1949:Q2-2014:Q2)
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insufficient evidence for interaction between policy factors (see Table 2).

Interestingly, the estimated main model suggests that fiscal information leads monetary

regime determination. Nonetheless, data is ambiguous about the leading role of monetary

and fiscal information since the monetary leading model also fits significantly better than the

restricted model (see (4) in Table 1). We formalize the statement by testing null hypothesis

that ρu2v1 = ρv1v2 = 0 and monetary information leads using a bootstrap test. The test

result is reported in Table 2.

Parameter Leading FP 90% Band Leading MP 90% Band

α11 0.956 0.230 0.987 0.961 0.031 0.993
α21 0.023 -0.087 0.085 0.012 -0.066 0.134
α12 0.056 -0.008 0.158 0.050 -0.029 0.209
α22 0.938 0.814 0.981 0.952 0.812 0.992
ρu1u2 0.178 0.069 0.288 0.146 0.025 0.253
ρu1v1 0.997 -0.186 1.000 0.983 -0.305 0.997
ρu2v1 0.165 -0.205 0.519 - -0.554 0.751
ρu1v2 - -0.393 0.465 0.137 -0.035 0.470
ρu2v2 0.970 0.390 0.996 0.996 0.488 1.000
ρv1v2 - -0.455 0.421 - -0.562 0.747

Note: The Granger causality tests are constructed using Cyan . All

missing values are 0 unless noted otherwise. And Rose is for bootstrap
test with H0 : ρu2v1 = ρv1v2 = 0 and ρu1v2 = 0.137.

Table 2: Leading FP vs. Leading MP

We also report the extracted latent factors for different specifications. Following Chang

and Kwak [2017], the monetary regime is defined to be active if wMt ≥ τm, whereas the fiscal

regime is active if wFt < τf , and the inferred regimes are determined by their estimates and

extracted conditional expectation. Figure 2 presents the extracted latent dynamic factors

with inferred active regimes indicated by the shaded area. The result suggests implied

regime strength are different between specification (1) and (2). However, nonetheless, the

implied regimes are similar in timing and length.

Without a suitable framework, Chang and Kwak [2017] use the extracted latent factors

to perform a second-stage inference on policy interactions by fitting them to a time-varying

coefficient vector autoregression (TVC-VAR). Their approach, however, is inconsistent with

the notion of interaction because none is actually accounted for. Figure 3 reports the impulse

responses of regime factors corresponds to MLE and second-stage inference, respectively.

There is notable difference between MLE implied impulse responses and estimated response
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Figure 2: Extracted Latent Factor (MLE)

from latent factors in the restricted model suggesting such practice is more appropriate in

our model since the interaction is reflected in the extracted latent factor.

The correlation of extracted factors is 0.43 for the restricted model, whereas it is 0.78

for the unrestricted model (see Table 7). Figure 4 examines the pattern of comovements for

extracted factor by comparing the 6-year rolling window correlation. This result shows the

regime factors move more closely in the unrestricted model than in the restricted model.

In terms of historical events, the restricted model suggests non-cooperative regime factors

in the 1950s and 1980s. In contrast, the unrestricted model presents evidence of non-trivial

cooperation through out the whole sample period with several exceptions. Nonetheless, It

must be noted such cooperation does not guarantee synchronization in the policy regimes.

We also characterize correlations of data and factors in frequency domain. Figure 5 com-

pares the coherence of policy rates and those implied by filtered latent factors in frequency

domain for different models, from which we summarize two results. First, our unrestricted



24

20 40

0

0.2

0.4

0.6

0.8

1

M
LE

 -
 J

oi
nt

(a)

20 40

0

0.2

0.4

0.6

0.8

1

(b)

20 40

0

0.2

0.4

0.6

0.8

1

M
LE

 -
 S

in
gl

e

(c)

20 40

0

0.2

0.4

0.6

0.8

1

(d)

20 40
-0.5

0

0.5

1

V
A

R
 -

 J
oi

nt

(e)

20 40
-0.5

0

0.5

1

(f)

Monetary
Fiscal

20 40
-0.5

0

0.5

1

V
A

R
 -

 S
in

gl
e

(g)

20 40
-0.5

0

0.5

1

(h)

Note: Panels (a) - (d) plot impulse responses of factors implied by MLE. And panels (e) - (h) plot
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Figure 3: Impulse Responses of Factors

model implies strong coherence between factors in business cycle frequency. In contrast,

policy rates display strong correlation at lower frequencies while restricted model attribute

rather weak correlation across the entire spectrum. Second, combining with parameter es-

Parameter Unres. S.E. Res. S.E.

λ1 0.744 0.234 - -
λ2 0.239 0.190 - -
φ1 0.691 0.469 - -
φ2 0.000 0.368 - -
ψ1 0.723 0.462 0.999 0.470
ψ2 0.999 0.283 0.999 0.368

Table 3: Selected Parameter Estimates for Error Component Model (1949:Q2-2014:Q2)

timates in Table 2, there is evidence of direct but weak interaction between factors. In

addition, our unrestricted model identifies shocks that propagate very differently to mone-

tary and fiscal factors. It is tempted to regard (λi, φi, ψi) in Equation 5.3 and 5.4 as relative
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panels to the restricted model.

Figure 4: Comovements and Correlation of Extracted Latent Factors

importance of components identified in shocks. The common factor of shocks accounts for

a large proportion in monetary rule and is much weaker in fiscal rule (Table 3). It is then

largely propagated to monetary factor in next period, whereas its impact to fiscal factor

is negligible. Fiscal factor innovation, on the other hand, is mainly driven by last period

equation-specific factor to fiscal rule.

6 Simulation

6.1 Simultaneity Bias Reduction

Simultaneity bias is well expected if the conventional approach is applied when the data

generating process (DGP) entails interacting latent factors, correlated error terms or cross-

equation feedback. In this section, we draw a comparison between the unrestricted model

and the restricted model by simulation. Using this result, we supplement the empirical
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Figure 5: Magnitude-Squared Coherence of Extracted Latent Factors

exercise in the preceding section.

We simulate data from our empirical model (5.1) and (5.2) at its ML estimates. And

as before, the correlation matrix P is parameterized by error component model (5.3) and

(5.4). The exogenous variables are fixed to be the full sample data with sample size is 262.

The number of iteration is set to be 1,000.

Table 4 reports the simulation results. We measure bias reduction with the restricted

model as benchmark using a simple metric

%Bias Reduction = |%BiasRes.| − |%BiasUnres.|.

Column 5 of Table 4 shows that the estimates in the restricted model suffer heavy simultane-

ity bias when ignoring the off-diagonal elements of A and the non-trivial cross-equation en-

dogenous feedback, and the correlation in the shocks. Individually, ignoring cross-equation

interaction inflicts (i) sizable bias for threshold values, (ii) substantial bias in the size of
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Parameter DGP % Bias %Bias Reduction

(1)-Unres. (2)-Res.

Thresholds
τm 0.435 -28.627 74.016 45.389
τf -0.582 -1.589 -133.315 131.726

Transition of Latent Factor
α11 0.956 -7.210 -15.945 8.734
α21 0.023 6.138 -100.000 93.862
α12 0.056 79.508 -100.000 20.492
α22 0.938 -2.641 -6.339 3.699

Endogenous Feedback
ρu1u2 0.178 -0.504 -100.000 99.496
ρu1v1 0.997 -27.336 -28.332 0.996
ρu2v1 0.165 -5.163 -100.000 94.837
ρu1v2 0.000 - - -
ρu2v2 0.970 -14.159 -19.089 4.930
ρv1v2 0.000 - - -

Regime-Switching Monetary Policy
αc(sm = 0) 0.533 11.008 25.428 14.419
αc(sm = 1) 2.524 -2.889 -6.482 3.593
απ(sm = 0) 0.640 0.401 1.238 0.837
απ(sm = 1) 1.049 -1.906 -3.524 1.618

σm 1.310 -1.227 -1.159 -0.068

Regime-Switching Fiscal Policy
βc(sf = 0) -0.028 -0.188 -0.107 -0.080
βc(sf = 1) 0.011 0.048 -1.540 1.492
βb(sf = 0) -0.029 -0.443 1.516 1.073
βb(sf = 1) 0.050 -0.284 -0.938 0.654
βg(sf = 0) 1.016 0.382 1.233 0.852
βg(sf = 1) 0.644 -1.062 -2.581 1.519

σf 0.014 -1.213 -1.238 0.026

Note: We suppress results for ρu1,v2 and ρv1,v2 for their relative biases are
not defined.

Table 4: Relative Bias against DGP at Joint MLE

interaction and feedback channels, (iii) substantial bias in the correlation of shocks, but

lead to (iv) relatively small bias for the coefficients in the measurement equation.

The implication is twofold. First, one should consider unrestricted model whenever
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possible since, otherwise, the channels for interaction may be distorted. In consequence,

making an inference of interaction by examining latent factors from individual rules is

inconsistent with the notion of interactions. Second, estimating a single equation model may

be worthwhile because the parameters in the measurement equation are not very sensitive to

the dynamics of latent factors and it is much less computationally intensive than estimating

the unrestricted model. An efficient strategy is to learn from data incrementally by starting

from estimating the model equation by equation, followed by a joint estimation with the

first-stage ML estimates as the initial guess.

7 Extension

8 Conclusion

We have shown the regime-switching model driven by latent VAR(1) factors is a powerful

tool. We allow rich temporal dynamics of factors and both within-equation and between-

equation feedback, so a shock to one observed time series or factor may transmit to both

regime factors. Our model provides a proper treatment for empirical works in which we

explicitly account for channels of regime interactions. In our exercises, we find evidence

suggests the presence of regime factor coordination and cross-equation feedback in U.S.

monetary and fiscal policy regimes. Moreover, our simulation makes it clear that neglecting

simultaneity in regime-switching incurs substantial bias for parameters of regime switching,

but relatively small bias for parameters in the measurement equation.
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Appendices

A A Parallelizable Algorithm for Likelihood Evaluation

With 2 regimes for each equation, the computational complexity for Equation (3.1) is

O(42T ). However, practical issue arises from the calculation of (2.3). Its time-varying

nature entails heavy and repeated evaluations of 4-dimensional multivariate normal distri-

bution. This motivates a simpler and parallelizable characterization of the log-likelihood

function. Here, we devise a parallelizable algorithm of complexity O(42T ), in which calcu-

lations of conditional density p(yt|Ft−1) for each t can be distributed to separate CPUs.

Note the likelihood function can be written in form

`(θ) =
T∏
t=1

 ∑
st,st−1

p(yt|st, st−1,Ft−1)p(st, st−1|Ft−1)

 (A.1)

with p(yt|st, st−1,Ft−1) = p(yt|st,Ft−1) by construction. From Equation (A.1),

Algorithm A.1 (Parallelizable Modified Markov-Switching Filter).

1. Initialization. For t = 0, set p(st, st−1) to be the unconditional state probabilities

such that

P{s0 = (0, 0)′, s−1 = (0, 0)′} = P
{
w1,0 < τ1, w2,0 < τ2, w1,−1 < τ1, w2,−1 < τ2

}
in which

(w′0, w
′
−1)′ ∼ N

(
0,

(
Σww ΣwwA

′

AΣww Σww

))

2. Parallelization. For each t ≥ 0, calculate p(st, st−1|Ft−1) using (2.3) for each pos-

sible realization of (st, st−1), and evaluate p(yt|st,Ft−1) for each possible realization

of st. Then

p(yt|Ft−1) =
∑
st,st−1

p(yt|st,Ft−1)p(st, st−1|Ft−1)

3. Combination. Combining conditional density for each t ≥ 0 to have the log-likelihood

log `(θ) =

T∑
t=1

log

 ∑
st,st−1

p(yt|st,Ft−1)p(st, st−1|Ft−1)


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B Computation

B.1 Computation of Latent Factor

The computation of latent factor wt is costly by integration techniques such as Newton-

Cotes method (e.g. Riemann sum) due to curse of dimensionality. A standard alternative

is Monte Carlo integration by importance sampling. The extracted latent factor at time t

can be written as

E(wt|Ft) =

∫
R2

wt
p(wt|Ft)
q(wt)

q(wt)dwt

where q(wt) is any proposal such that p(wt|Ft) > 0 implies q(wt) > 0. An obvious candidate

for q(wt) is the stationary distribution of wt. The self-normalized importance sampling

estimator of E(wt|Ft) is thus given by

Ê(wt|Ft) =

∑n
i=1w

i
tω
i
t∑n

i=1 ω
i
t

where (wit) is a sequence of draws generated from the proposal q(wt), and ωit = p(wit|Ft)/q(wit)
is the importance weight associated with the i-th draw. It is obvious that the p(wt|Ft)/q(wt)
is a proper density with respect to the measure q(wt)dwt. We use self-normalized estima-

tor to control the finite sample behavior. The conditions above are sufficient to imply

Ê(wt|Ft) →a.s. E(wt|Ft). Central limit theorem holds for Ê(wt|Ft). We thus can measure

the approximation precision of Ê(wt|Ft) by constructing a confidence interval around it

using approximated variance

v̂ar(Ê(wt|Ft)) =
1

n

1
n

∑n
i=1 ω

i
t
2
(wit − Ê(wt|Ft)2)(

1
n

∑n
i=1 ω

i
t

)2 .

Note this confidence interval is different in concept to the confidence interval for parameter

inference. It merely provides a measurement of approximation precision.
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B.2 Optimization

In ML estimation, we propose the use of pattern search optimization. There are three

arguments that favors pattern search over derivative-based methods (who are usually more

efficient).

1. The numerical likelihood surface is expected to be rough. This roughness renders

derivative-based optimizer less robust. In contrast, patterns search is documented to

have more robustness since it is derivative-free.

2. We can easily impose nonlinear constraints such as ‖A‖ < 1 in pattern search. This

is not so easy in other methods.

3. Pattern search is a global method as the likelihood surface is known to have multiple

local maxima.

Our exercises as of now suggests that pattern search can robustly reproduce estimates

in Chang and Kwak [2017]. It also appears that pattern search is more viable than other

methods we considered in joint estimation. For instance, our exercise shows joint estimation

with pattern search yields estimates close to those of the single equation models, whereas

derivative-based methods failed to find any local optimum.

We also proposed a strategy to reduce the chance of being stranded at a local minimum.

Specifically, pattern search is called recursively with initial guess being the last stage local

minimum θ̂n and stopping criteria that sup-norm ‖θ̂n− θ̂n+1‖ < ε for some prescribed ε. In

our exercises, we set ε = 10−5.
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C Omitted Proofs

C.1 Extraction of Latent Factor

Apply Bayes formula to p(wt|Ft) and have

p(wt|Ft) = p(wt|yt,Ft−1)

=
p(yt|st(wt),Ft−1)

∑
st−1

p(wt, st−1|Ft−1)

p(yt|Ft−1)

=
∑
st−1

p(yt|st(wt),Ft−1)p(wt|st−1,Ft−1)p(st−1|Ft−1)

p(yt|Ft−1)
.

It thus amounts to specify conditional density function p(wt|st−1,Ft−1). By the decompo-

sition of vt,

p(wt|st−1 = (0, 0),Ft−1) = p(wt|st−1 = (0, 0), ut−1)

=

[∫ τ

−∞
φv|u(wt − PvuP−1

uu ut−1 −Awt−1)φ(wt−1)dwt−1

]/
Φ(τ)

=
[ ∫ τ

−∞
(2π)−1(detPvv·u)−1/2

× exp
(
− 1

2
(wt − PvuP−1

uu ut−1︸ ︷︷ ︸
wu,t

−Awt−1)′P−1
vv·u(wt − PvuP−1

uu ut−1 −Awt−1)
)

×(2π)−1(det Σww)−1/2 exp

(
−1

2
w′t−1Σ−1

wwwt−1

)
dwt−1

]/
Φ(τ)

= (2π)−2(detPvv·uΣww)−1/2

×
[ ∫ τ

−∞
exp

(
− 1

2
(wt−1 −QA′P−1

vv·uwu,t)
′Q−1(wt−1 −QA′P−1

vv·uwu,t)
)

exp

(
−1

2

(
w′u,tP

−1
vv·uwu,t − w′u,tP−1

vv·uAQA
′P−1
vv·uwu,t

))
dwt−1

]/
Φ(τ)

=

(
det Ω−1Q−1

detPvv·uΣww

)1/2

φ(wt;PvuP
−1
uu ut−1,Ω)

×
[ ∫ τ

−∞
φQ(wt−1 −QA′P−1

vv·uwu,t)dwt−1

]/
Φ(τ)

=

(
det Ω−1Q−1

detPvv·uΣww

)1/2 [
ΦQ(τ −QA′P−1

vv·uwu,t)

Φ(τ)

]
×φ(wt;PvuP

−1
uu ut−1,Ω) (C.1)
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where

Q = (A′P−1
vv·uA+ Σ−1

ww)−1

Ω = (P−1
vv·u − P−1

vv·uAQA
′P−1
vv·u)−1

and Φ is the unconditional distribution function for (wt), whereas φQ (ΦQ) denotes the zero-

mean bivariate normal density (distribution) function with covariance matrix Q. Similar

results are easily obtained for cases in which st−1 = (0, 1), (1, 0) and (1, 1).



37

D Additional Tables and Graphs

D.1 ML Estimates of Error Component

The error component form estimates of different specifications are reported in Table 5. And

we report quasi-Bayesian MLE results (Table 6) as a mean to test sensitivity.

Parameter (1) - Unres. . (2) - Res. (3) (4)

τm 0.435 -0.389 0.802 0.533
τf -0.582 -0.600 -0.026 -0.462
λ1 0.744 - 0.364 0.182
λ2 0.239 - 0.494 0.803
φ1 0.691 - 0.652 0.000
φ2 0.000 - 0.618 0.747
ψ1 0.723 0.999 0.758 0.999
ψ2 0.999 0.999 0.785 0.665
α11 0.956 0.984 0.975 0.961
α21 0.023 - - 0.012
α12 0.056 - - 0.050
α22 0.938 0.968 0.961 0.953

αc(sm = 0) 0.533 0.443 0.456 0.528
αc(sm = 1) 2.524 2.601 2.531 2.564
απ(sm = 0) 0.640 0.661 0.658 0.647
απ(sm = 1) 1.049 1.039 1.049 1.047

σm 1.310 1.306 1.309 1.309
βc(sf = 0) -0.028 -0.028 -0.028 -0.028
βc(sf = 1) 0.011 0.014 0.011 0.012
βb(sf = 0) -0.029 -0.033 -0.028 -0.029
βb(sf = 1) 0.050 0.052 0.054 0.051
βg(sf = 0) 1.016 1.020 1.017 1.018
βg(sf = 1) 0.644 0.603 0.634 0.637

σf 0.014 0.014 0.014 0.014

log-likelihood 275.137 270.409 273.332 274.629

Table 5: MLE for Error Component Model (1949:Q2-2014:Q2)
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D.2 Quasi-Bayesian Estimates

Parameter Prior Mean Var (1) (2) (3)

τm Normal 0.000 1.000 0.541 0.427 0.090
τf Normal 0.000 1.000 -0.467 -0.323 0.121
λ1 Beta 0.330 0.100 0.357 - 0.750
λ2 Beta 0.540 0.100 0.430 - 0.728
φ1 Beta 0.240 0.100 0.235 - 0.267
φ2 Beta 0.290 0.100 0.306 - 0.318
ψ1 Beta 0.998 0.100 0.972 0.999 0.960
ψ2 Beta 0.998 0.100 0.952 0.999 0.946
α11 Normal 0.940 0.300 0.946 0.957 0.999
α21 Normal 0.000 0.300 -0.007 0.004 -
α12 Normal 0.100 0.300 0.069 0.049 -
α22 Normal 0.970 0.300 0.974 0.964 0.990

ac(sm = 0) Gamma 0.570 0.300 0.548 0.547 1.297
ac(sm = 1)− ac(sm = 0) Gamma 1.500 1.000 2.029 2.030 2.446

aπ(sm = 0) Gamma 0.640 0.300 0.637 0.645 0.615
aπ(sm = 1)− aπ(sm = 0) Gamma 0.410 0.300 0.404 0.399 0.401

σm Gamma 1.320 0.200 1.310 1.311 1.439
bc(sf = 0) Normal 0.000 0.300 -0.010 -0.009 0.001

bc(sf = 1)− bc(sf = 0) Gamma 0.040 0.030 0.031 0.030 0.022
bb(sf = 0) Normal 0.000 0.300 -0.037 -0.043 -0.019

bb(sf = 1)− bb(sf = 0) Gamma 0.100 0.300 0.078 0.086 0.112
bg(sf = 0) Normal 1.010 0.300 0.854 0.871 0.717

bg(sf = 1)− bg(sf = 0) -Gamma -0.380 0.100 -0.276 -0.304 -0.307
σf Gamma 0.014 0.003 0.014 0.014 0.016

Table 6: Quasi-Bayesian Maximum Likelihood Estimates (1949:Q2-2014:Q2)
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D.3 VAR(1) Estimates of Extracted Latent Factor

Table 7: VAR(1) Fit for Extracted Latent Factor

Parameter (1)-Unres. (2)-Res.

α11 0.989 (0.026) 0.975 (0.017)
α21 0.037 (0.020) 0.028 (0.014)
α12 -0.038 (0.036) -0.023 (0.025)
α22 0.921 (0.028) 0.942 (0.020)

corr b/w factors 0.780 0.428
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D.4 Coherence and Correlation of Data

We collect a panel of coherence estimated pairwise for variables considered in our empirical

exercise Figure 6. And we report the filtered probability of active regimes in Figure 8.
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Note: Magnitude-squared coherence at frequency λ is defined to be |fxy(λ)|2/[fxx(λ)fyy(λ)], with
fxy(λ) denoting the cross-spectral-density, and estimated using Welch’s method with window size
24. The dashed vertical lines indicate the frequencies associated with 6Q and 32Q. The red line
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Figure 6: Coherence of Variables
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D.5 Fitted Time-Series
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Figure 7: Fitted Policy Instruments
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D.6 Filtered State Probability

Pr[Active MP|Ft]
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Figure 8: Filtered Probability of Active Regime
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