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Abstract. We introduce a notion of conditionally decisive powers of which the
exercise depends on social consent. Decisive powers, or the so-called libertarian
rights, are examples and much weaker forms of powers are covered by our notion.
We provide an axiomatic characterization of existence of a system of powers and its
uniqueness as well as characterizations of various families of rules represented by
systems of powers. Critical axioms are monotonicity, independence, and symmetric
linkage (person i and i’s issues should be treated symmetrically to person j and
j’s issues for at least one linkage between issues and persons). We reconsider Sen’s
paradox of Paretian liberal in our framework. On a domain of simple preference
relations (trichotomous or dichotomous preferences), we show under a certain as-
sumption on the model that a rule satisfies Pareto efficiency, independence, and
symmetric linkage if and only if it is represented by a “quasi-plurality system of
powers”. For the exercise of a power under a quasi-plurality system, at least either
a majority (or (n + 1)/2) consent or a 50% (or (n− 1)/2) consent is needed.
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1. Introduction

Numerous decision rules in social or political institutions feature some sorts of
individual or positional powers. Exercising these powers is often conditional upon
obtaining sufficient social consent and the level of the sufficiency may vary across
powers. To take an example, the Constitution of United States describes powers
of the President and how much degree of social consent is required for exercising
presidential powers; for instance, ‘power, by and with the advice and consent of the
Senate, to make treaties, provided two thirds of the Senators present concur’.1 The
main objective of this paper is to formalize a notion of individual powers of which the
exercise depends on social consent and to give axiomatic characterizations of some
families of rules represented by a system of powers.2

We consider a simple opinion aggregation model. There is a society consisting of
at least two members. There are a finite number of issues. The society needs to
make a decision on each issue either positively (acceptance) or negatively (rejection),
reflecting members’ opinions that are expressed in one of the three ways, positively
or negatively or neutrally (we also consider separately the case when opinions are
either positive or negative). A decision rule associates with each profile of members’

Date: February 3, 2009.
Acknowledgment will be added in the final version.
1The United States Constitution, Article II, Section 2, Clause 2.
2Thomson (2001) offers an extensive survey and useful guidelines for the axiomatic method in

game theory.
1
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opinions, namely, a problem, a profile of decisions on the issues. An example is the
model of qualification problems studied by Kasher and Rubinstein (1997) and Samet
and Schmeidler (2003), where a society needs to identify a group of qualified members.

Building on Samet and Schmeidler (2003), we say that person i has the power on
the kth issue if social decision on the kth issue is made according to i’s opinion when
and only when i’s opinion obtains sufficient social consent. The sufficiency means
that the number of persons with the same opinion as i’s is greater than or equal to a
certain level, called a consent quota.3 For example, decisive powers, or the so-called
libertarian rights by Sen (1970, 1976) and Gibbard (1974), have the minimum consent
quota of 1.4 The above mentioned Presidential power has the consent quota of 2/3 of
the number of the Senators. A system of powers is a function associating with each
issue a person who has the power on this issue and the corresponding consent quotas.

Samet and Schmeidler (2003, Theorem 1), in our terminology, provide an axiomatic
characterization of existence of a system of powers which gives each person the power
of qualifying himself. We extend this result in our generalized model by considering
the following modification of their three main axioms. Monotonicity says that the
rule should respond non-negatively whenever the set of members with the positive
opinion on each issue expands and the set of members with the negative opinion
shrinks. Independence says that the decision on each issue should be based only on
members’ opinions on this issue and not on their opinions on the other issues.5 A
rather drastic modification is in their symmetry axiom. We consider an environment
where issues have some connections or linkages with persons. For example, each
person has his own areas of specialty and each issue falls on an area of at least one
person. Thus our model has a fixed (non-empty) set of possible linkages associating
with each issue a person. Symmetric linkage says that the rule should treat person i
and i’s areas symmetrically to any other person j and j’s areas, under at least one
linkage in the model. Samet and Schmeidler’s (2003) model of qualification problems
has the unique linkage associating each person with the issue of qualifying the person
himself. For this reason, symmetric linkage in this special model reduces to their
symmetry axiom.

We show that a rule satisfies monotonicity, independence, and symmetric linkage
if and only if there is a system of powers representing the rule and that the system
is unique up to a natural equivalence relation. Adding anonymity (names of opinion
holders should not matter), we establish a necessary and sufficient condition for
existence of a non-exclusive system of powers, under which everyone has the equal
power on every issue. Adding neutrality (names of issues should not matter either)

3When i’s opinion is neutral, this description does not match exactly to our definition because
decision on each issue cannot be neutral.

4Extending basic formulations in Sen (1970, 1976) and Gibbard (1974), Samet and Schmeidler
(2003) define libertarian rights in qualification problems by the assignment to each person the
decisive power to qualify himself; that is, one is qualified (resp. disqualified) whenever he qualifies
(resp. disqualifies) himself.

5These two axioms are also studied by Rubinstein and Fishburn (1986), Kasher and Rubin-
stein (1997), and Ju (2003, 2005). Miller (2008) also considers a related model and shows that
certain “separability” axioms in his model imply monotonicity. Unlike other works, he does not
impose independence.
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instead of anonymity, we characterize rules represented either by a constant non-
exclusive system of powers (“constant” means constant consent quotas across issues)
or by a monocentric system of powers, under which one and only one person has
powers on all issues.

Our definition of a system of powers allows for a wide spectrum of examples that
were not captured in the earlier studies. On the one extreme, we have monocentric
systems of powers giving only a single person powers on all issues. On the other
extreme, we have non-exclusive systems of powers giving everyone the equal power
on every issue. We also find that on the trichotomous domain, rules represented by
a system of powers may quite differ from plurality rule, while, on the dichotomous
domain, they are close to plurality (or majority) rule. Much richer variety of rules
emerge after admitting neutral opinions. Incorporating neutral opinions, we think,
is important because neutral opinions are common in realistic decision procedures
(abstention can be viewed as an expression of a neutral opinion).

When issues are associated with personal matters such as believing in a religion,
planting a tree in one’s own backyard, etc., our powers and systems of powers can
be interpreted as a weak notion of rights and systems of rights. In the Arrovian
framework, Sen (1970, 1976, 1983) and many of his critics formulate individual rights
based on (i) existence of the so-called recognized personal spheres (Gaertner, Pat-
tanaik, and Suzumura 1992), and (ii) individuals’ decisiveness on personal spheres
(social decision on an issue in someone’s sphere is decided by the person himself).
Our definition of a system of powers is similar to this formulation with regard to
aspect (i). This is because a system of powers links issues with persons who have
the powers on these issues. However, with regard to aspect (ii), our definition is
substantially weaker and flexible. Our powers, interpreted as rights, are just rights
to influence social decision, not necessarily decisive but conditionally decisive (deci-
siveness is one extreme case in our definition). They are alienable as in Blau (1975)
and Gibbard (1974). But, alienation of rights in this paper relies on the degree of
social consent.

Motivation for our weakening decisiveness component in the earlier definition comes,
first of all, from realistic rights that are often conditionally decisive. For example,
consider rights for smoking or for clean air. There are some places where smoking is
prohibited and other places where smoking is allowed. A person’s desire is not deci-
sive in his own smoking. In order for a person to exercise his right, he needs to find a
place where his desire can get sufficient consent from others. Motivation comes also
from the so-called paradox of Paretian liberal. As pointed out by Sen (1970, 1976,
1983), Gibbard (1974) and other subsequent works,6 existence of decisive rights is
incompatible with Pareto efficiency. Sen (1983, p.14) proposed studying this com-
patibility issue in restricted preferences domains. However, we show that the paradox
prevails even on the extremely restricted domains of trichotomous preferences (or di-
chotomous preferences). Thus, unless we are willing to abandon Pareto efficiency, it
is inevitable to think about weakening “decisiveness” component in the definition of
rights. How much weakening is necessary to escape from the paradox? Our character-
ization of the quasi-plurality systems shows that the weakening should be substantial

6See Deb, Pattanaik, and Razzolini (1997) for the paradox in a framework where rights are
represented as a game form.
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because a person’s power only has a tie-breaking role when the number of persons
supporting an issue equals the number of persons opposing it; when there is no such
tie, the social decision is ruled by plurality.

The rest of the paper is organized as follows. In Section 2, we define the model
and basic concepts. In Section 3, we define main axioms. In Section 4, we state
preliminary results. In Section 5, we state main results. We conclude with a few
remarks in Section 6. Some proofs are relegated to the appendix for smooth passage.

2. Model and Basic Concepts

Let N ≡ {1, · · · , n}, n ≥ 2, be the set of persons and M ≡ {1, · · · , m} the set of
issues. Each person i ∈ N has his opinion on issues in M , represented by an 1×m row
vector Pi consisting of 1, 0, or −1.7 A problem is an n×m opinion matrix P consisting
of n row vectors P1, · · · , Pn. Let PTri be the set of problems, called, the trichotomous
(opinion) domain. An alternative is a list of either positive or negative decisions on
all issues, formally, a vector of 1 and −1, x ≡ (x1, . . . , xm) ∈ {−1, 1}M , where 1
(resp. −1) in the kth component means accepting the kth issue (resp. rejecting the
kth issue). For each P ∈ PTri and each k ∈ M , P k denotes the kth column vector of
P . Let

||P k
+|| ≡

∑

i∈N :Pik=1

Pik , ||P k
−|| ≡

∑

i∈N :Pik=−1

−Pik , and ||P k
+,−|| ≡ ||P k

+|| + ||P k
−||.

Let PDi be the subset of PTri, consisting of the opinion matrices whose entries are
either 1 or −1, called the dichotomous (opinion) domain. Let D be either one of
the two domains. Samet and Schmeidler (2003) consider the dichotomous domain in
qualification problems.8

A decision rule on D, f : D → {−1, 1}M , associates with each problem in the
domain a single alternative.9 We are interested in rules that are represented by a
“system of powers” defined as follows. We present the definition, first, focusing on
dichotomous opinions. After this, we give the general definition.

Given a rule f defined on the dichotomous domain PDi, person i ∈ N has the
“power to influence the social decision on the kth issue”, briefly, the power on the
kth issue if the decision on the kth issue is made following person i’s opinion when-
ever person i’s opinion obtains sufficient consent from society: formally, there exist
q+, q− ∈ {1, · · · , n + 1} such that for each P ∈ PDi,

(1) (i) when Pik = 1, fk (P ) = 1 ⇔ ||P k
+|| ≥ q+ ;

(ii) when Pik = −1, fk (P ) = −1 ⇔ ||P k
−|| ≥ q− .

The two numbers q+ and q− are called consent-quotas. The greater q+ or q− is, the
higher social consent is required for the exercise of the power. There are two extreme

7Notation ‘P ’ for ‘oPinion’.
8Dichotomous opinions in Samet Schmeidler (2003) are described by vectors of 1 and 0, where

number 0 has the same meaning as −1 in our model.
9When there is a single issue, our model is similar to the models of May (1952) and Mu-

rakami (1966, 1968) except that our decision rules take values from {−1, 1}, while May’s or Mu-
rakami’s decision rules can take zero value. Our decision rules are social choice functions of which
the values are social alternatives instead of social preference relations as in May (1952) and Mu-
rakami (1966, 1968).
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cases. When q+ = q− = 1, i’s opinion determines social decision independently of
social consent. Thus the power is decisive. When q+ = n + 1 and q− = n + 1, the
power is anti-decisive because i’s opinion is reflected reversely in the social decision.

The total number of positive or negative votes always equals n on the dichotomous
domain. However, on the trichotomous domain, it is variable. Thus, we allow consent-
quotas to vary relative to the total number of votes. Given a rule f defined on
PTri, a person i ∈ N has the power on the kth issue if there exist three functions
q+ : N ∪ {0} → N ∪ {0, n + 1}, q0 : N ∪ {0} → N ∪ {0, n + 1}, and q− : N ∪ {0} →
N ∪ {0, n + 1} such that for each ν ∈ N ∪ {0}, and each P ∈ PTri with ||P k

+,−|| = ν
(thus, ν denotes the number of positive or negative votes),

(2)
(i) when Pik = 1, fk (P ) = 1 ⇔ ||P k

+|| ≥ q+ (ν) ;
(ii) when Pik = 0, fk (P ) = 1 ⇔ ||P k

+|| ≥ q0 (ν) ;
(iii) when Pik = −1, fk (P ) = −1 ⇔ ||P k

−|| ≥ q− (ν) .

We call the list of the three functions q (·) ≡ (q+ (·) , q0 (·) , q− (·)) the consent-quotas
function. The power is decisive if for each ν ∈ N , both q+ (ν) and q− (ν) take the
value of 1. The power is anti-decisive if for each ν, both q+ (ν) and q− (ν) take the
value of ν + 1. Note that for each ν ∈ N, there is no difference between q+(ν) = 0
and q+(ν) = 1 because in both cases, part (i) of (2) holds always with fk(P ) = 1;
similarly for q−(ν). Note also that all cases with q+(ν) ≥ ν + 1 are identical because
in any of these cases, part (i) always holds with fk(P ) = −1; similarly for q−(ν) and
q0(ν). Thus to avoid unnecessary complication, we assume that for each ν ∈ N,

q+(ν), q−(ν) ∈ {1, . . . , ν + 1}, q0(ν) ∈ {0, 1, . . . , ν + 1}, and q0(0) ∈ {0, 1}.
Note that q+(0), q−(0), q0(n) do not play any role in (2); thus, what values they take
does not make any difference in the definition of the power. Therefore, we may also
assume that

q+(0) = q+(1), q−(0) = q−(1), and q0(n) = q0(n− 1).

Let Q be the family of consent-quota functions satisfying these assumptions.

Definition. [System of Powers] A system of powers representing a rule f on PTri is
a function W : M → N × Q mapping each issue k ∈ M into a pair of the person,
W1 (k), who has the power on the kth issue, and the consent-quotas function, W2 (k) =
(q+ (·) , q0 (·) , q− (·)), associated with the power.10 That is, when W1 (k) = i, for each
ν ∈ {0, 1, . . . , n} and each P ∈ PTri with ||P k

+,−|| = ν, the social decision on the kth

issue is made as described in (2).11

10Notation ‘W ’ for ‘poWer’.
11Our systems of powers designate one person for each issue. Thus systems designating a subgroup

for an issue cannot be accommodated by our definition. A direct extension of our definition to deal
with this limitation is by allowing W2(·) to take values from the set of subsets of N, 2N , replacing
“when Pik = 1” in part (i) of (2) with “when all persons in the subgroup, say S, (with the power on
the kthissue) agree to accept the issue” and replacing the corresponding components of parts (ii)
and (iii) in the same manner as for part (i). Note that with this extension, a system of powers
may not be associated with a unique rule. This is because the above extension of (2) does not
determine a social decision in the case that there is a disagreement among persons in the subgroup
S. Note also that in this extension, unanimity within the subgroup S was essential for the definition
of powers. One may come up with other extensions depending on how opinions of persons in S
are processed. These observations exhibit some complications involved with formulating powers of
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Issue 1 Issue 2
John 1 -1
Paul 1 1

Others 1 -1
Decision 1 -1

(a)

Issue 1 Issue 2
John 1 1
Paul -1 1

Others -1 1
Decision 1 1

(b)
Table 1. When issue 1 is in John’s area and issue 2 is in Paul’s, the
social decisions in the two cases exhibit a violation of symmetric linkage.

A rule may be represented by multiple systems of powers, although all these systems
will be shown to be equivalent under a natural equivalence relation to be defined in
Section 4.

3. Axioms

In this section, we define axioms for rules, which are crucial in this paper.
The first axiom says that rules should not respond negatively when the opinion

matrix increases.
Monotonicity For each P, P ′ ∈ D, if P ! P ′, f (P ) ! f (P ′).
The second axiom says that decisions on different issues should be made indepen-

dently: decision on the kth issue should rely only on the kth column of the opinion
matrix.

Independence For each P, P ′ ∈ D and each k ∈M , if P k = P ′k, fk (P ) = fk (P ′).

We refer readers to Rubinstein and Fishburn (1986), Kasher and Rubinstein (1997),
and Samet and Schmeidler (2003) for more discussion on the two axioms.

To introduce the next axiom, suppose that members of society have their own areas
of specialty and each issue lies in some of these areas. Ideally, it is important that
society treats all members and their areas of specialty in a symmetric manner. To
illustrate this idea, suppose that the first issue is in John’s area and the second issue
is in Paul’s. Consider the case depicted in Table 1-(a). Both John and Paul have
positive opinions on their own issues and John is negative on Paul’s issue while Paul
is positive on John’s issue. Everyone else is positive on John’s issue and negative
on Paul’s. Suppose, as in the bottom row of Table 1-(a), that the social decision
on Paul’s issue, in this case, is against Paul’s opinion (so negative). Now consider
the case when John and Paul face the reverse situation as depicted in Table 1-(b),
that is, John faces the same situation regarding his area as Paul faced in the earlier
case. If the social decision on John’s issue in this case follows John’s opinion (so it
differs from the decision on Paul’s issue in the earlier case), one could argue that the
rule favors John and John’s area relative to Paul and Paul’s area. Our next axiom
prevents such an asymmetric treatment.

subgroups extending our definition. It seems that rather a drastic shift from the current framework
is needed. Thus, further investigation in this direction is left for future research.
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An issue may lie in multiple areas and so there may exist multiple linkages between
issues and persons. Requiring symmetric treatment with respect to all possible link-
ages can be too strong. The next axiom requires symmetric treatment for at least
one linkage.

To define this axiom formally, call a function λ : M → N mapping each issue into
a person a linkage. Let Λ be the non-empty set of possible linkages in the model. A
linkage may have different interpretations depending on applications. In the above
mentioned application, a linkage describes areas of specialties. In the qualification
problem studied by Samet and Schmeidler (2003), M = N and the identity function
from N to N is the linkage describing the nominal correspondence between person i
and the qualification of i.12 When issues in M are proposals made by some members in
N , a linkage may describe who proposed what issues. When the problem is to approve
candidates in M , a linkage may describe a personal relation between candidates in M
and voters in N . When issues are private properties, a linkage may describe initial
ownership (who owns what properties).

The next axiom says that for at least one linkage in Λ, the rule should treat each
person i and i’s issues symmetrically to any other person j and j’s issues. Technically,
when names of person i and all i’s issues are switched simultaneously to names of
person j and all j’s issues, social decision should also be switched accordingly. Given
a linkage λ ∈ Λ, for each i ∈ N , let us call elements in λ−1 (i) person i’s issues. Let
π : N → N and δ : M → M are permutations on N and on M such that δ maps the
set of each person i’s issues onto the set of person π (i)’s issues. Let δ

πP be the matrix
such that for each i ∈ N and each k ∈ M , δ

πPik ≡ Pπ(i)δ(k). Then each person i and
his issue k play the same role in δ

πP as person π (i) and his issue δ (k) do in P .
Symmetric Linkage There is λ : M → N in Λ such that for each permutation

π : N → N and each permutation δ : M → M , if for each i ∈ N , δ maps the set
of i’s issues λ−1 (i) onto the set of π (i)’s issues λ−1 (π (i)), then for each k ∈ M ,
fk

(
δ
πP

)
= fδ(k) (P ).

Next are two standard axioms of social choice, known as anonymity and neutrality.
The former says that social decision should not depend on names of opinion holders
and the latter says that social decision should not depend on how issues are labeled.

Anonymity For each P ∈ PTri and each permutation π : N → N , f (πP ) = f (P ),
where πP ∈ PTri is such that for each i ∈ N and each k ∈M , πPik ≡ Pπ(i)k.

Neutrality For each P ∈ PTri, each permutation δ : M → M , and each k ∈ M ,
fk

(
δP

)
= fδ(k) (P ), where δP ∈ PTri is such that for each i ∈ N and each k ∈ M ,

δPik ≡ Piδ(k).
Clearly, the combination of anonymity and neutrality implies symmetric linkage

but the converse does not hold.

4. Preliminary Results

We distinguish powers into two types. The power on the kth issue is (fully) exclusive
if there is a person i who has the power on the kth issue and no one else has the power
on the kth issue. It is (fully) non-exclusive if all agents have the “equal” power on the

12In their model, Λ is the singleton containing the identify function and our axiom reduces to
their “symmetry” axiom.
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kth issue associated with a single consent-quotas function (or, on the dichotomous
domain, a list of consent-quotas). We will show that the power on an issue is either
exclusive or non-exclusive: see Remark 1. Thus either only one person has the power
or all persons have the equal power.

Given a system of powers W , when the power on the kth issue is non-exclusive,
who has the power on this issue is not essential. By changing W1 (k), we may find
other systems representing the same rule. Thus the following equivalence relation
on systems of powers is natural. Two systems of powers W and W ′ are equivalent,
denoted by W ∼ W ′, if for each k with W1 (k) *= W ′

1 (k), the power on the kth issue
is non-exclusive (so, W2 (k) = W ′

2 (k)); otherwise, W2(k) = W ′
2(k). The following two

extreme systems are notable. Under a non-exclusive system of powers, everyone has
the non-exclusive power on every issue. Under a monocentric system of powers, one
person has the exclusive power on every issue.
Lemma 1. Assume that a rule f is represented by a system of powers W . Let k ∈M ,
i ≡ W1 (k), and q (·) ≡ W2 (k). Then for each ν ∈ {1, . . . , n}, (i) q+ (ν) + q− (ν) =
ν + 1 and when ν ≤ n − 1, q+ (ν) = q0 (ν) if and only if for each P ∈ PTri with
||P k

+,−|| = ν,

(3) fk (P ) = 1 ⇔ ||P k
+|| ≥ q+ (ν) .

(ii) q (ν) = (ν + 1, ν + 1, 1) if and only if for each P ∈ PTri with ||P k
+,−|| = ν,

fk(P ) = −1. (iii) q (ν) = (1, 0, ν+1) if and only if for each P ∈ PTri with ||P k
+,−|| = ν,

fk(P ) = 1. Thus, if for each ν ∈ {1, . . . , n}, one of the above three cases holds, then
the power on the kth issue is non-exclusive.
Proof. Let ν ∈ {1, . . . , n}. Assume q+ (ν) + q− (ν) = ν + 1 and q+ (ν) = q0 (ν). Then
the three parts (i)-(iii) in (2) collapse into (3). Conversely, if (3) holds, then from
parts (ii) and (iii) in (2), q0(ν) = q+(ν) and q+(ν) = ν + 1− q−(ν).

Parts (ii) and (iii) are straightforward. Note that if any of the three cases (i)-(iii)
holds, who has the power on the kth issue is not essential. Changing W1 (k) into any
other person does not affect the rule the system represents, which means everyone
has the power on the kth issue associated with the same consent-quotas function.
Thus the power is non-exclusive. "

We now show that the three cases of non-exclusive powers in Lemma 1 characterize
non-exclusive powers.
Proposition 1. The power on an issue associated with (q+ (·) , q0 (·) , q− (·)) is non-
exclusive if and only if for each ν ∈ {1, . . . , n}, (i) q+ (ν) + q− (ν) = ν + 1 and when
ν ≤ n − 1, q0 (ν) = q+ (ν),13 or (ii) (q+ (ν) , q− (ν)) ∈ {(ν + 1, 1) , (1, ν + 1)} and
when ν ≤ n− 1, (q+ (ν) , q0 (ν) , q− (ν)) ∈ {(ν + 1, ν + 1, 1) , (1, 0, ν + 1)}.

The proof is in Appendix A.1. On the dichotomous domain PDi, This condition
for non-exclusive power can be simplified into the following: for each k ∈ M , letting
(q+, q−) ≡ W2 (k), (i) q+ + q− = n + 1 or (ii) (q+, q−) ∈ {(n + 1, 1), (1, n + 1)}.

The next result is uniqueness of systems of powers representing a rule.
Proposition 2. Assume n ≥ 4. If a rule is represented by a system of powers, then
the system is unique up to the equivalence relation ∼.

13Part (i) implies q+ (ν) ≤ ν and q− (ν) ≤ ν.
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The proof is in Appendix A.1.
We next state necessary and sufficient conditions on a system of powers which

guarantee monotonicity or symmetric linkage of the rule the system represents.
A consent-quotas function q (·) ≡ (q+ (·) , q0 (·) , q− (·)) has component ladder prop-

erty if for each ν ∈ {1, . . . , n}, the following three inequalities hold:

(4)
(i) q+ (ν − 1) ≤ q+ (ν) ≤ q+ (ν − 1) + 1;
(ii) q0 (ν − 1) ≤ q0 (ν) ≤ q0 (ν − 1) + 1;
(iii) q− (ν − 1) ≤ q− (ν) ≤ q− (ν − 1) + 1.

The function has intercomponent ladder property if for each ν ∈ {1, . . . , n},
(5) q+ (ν) ≤ q0 (ν − 1) + 1 ≤ ν − q− (ν) + 2.

The function has ladder property if it has the above two properties. We also say that
a system of powers W has ladder property if its consent-quotas functions have ladder
property. On the dichotomous domain, component ladder property has no bite and
intercomponent ladder property reduces to q+ + q− ≤ n + 2.

Proposition 3. A rule represented by a system of powers satisfies monotonicity if
and only if the system of powers has ladder property.

The proof is given in Appendix A.2.
Symmetric linkage requires existence of a linkage “in Λ”. Thus, the systems of

powers in our main results in Section 5 are in
WΛ ≡ {W (·) : W (·) is a system of powers such that W1 (·) ∈ Λ}.

The condition on the systems in WΛ, necessary and sufficient for symmetric linkage,
is horizontal equality : for each pair of persons i and j ∈ N with the same number of
issues under W1, that is, |W−1

1 (i) | = |W−1
1 (j) |, their powers are associated with the

same consent-quotas function, that is, for each k ∈ W−1
1 (i) and each l ∈ W−1

1 (j),
W2 (k) = W2 (l). When i = j, this property says that person i’s powers on two
different issues are associated with the same consent-quotas function.

Proposition 4. A rule represented by a system of powers in WΛ satisfies symmetric
linkage if and only if the system of powers satisfies horizontal equality.

The proof is given in Appendix A.2.

5. Main Results

5.1. Existence of A System of Powers and Uniqueness. If a rule is represented
by a system of powers, decisions on different issues are made independently and so
the rule satisfies independence. By Propositions 3 and 4, if the system of powers is in
WΛ and satisfies both ladder property and horizontal equality, the rule also satisfies
monotonicity and symmetric linkage. Our first main result says that the converse
also holds. That is, the combination of the three axioms is sufficient for existence of
a system of powers in WΛ.

Theorem 1. Let D ∈ {PDi,PTri}. A rule on D satisfies monotonicity, independence,
and symmetric linkage if and only if it is represented by a system of powers in WΛ

satisfying ladder property and horizontal equality. Moreover, the system is unique up
to the equivalence relation ∼.
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The proof is in Appendix A.3. We will check independence of the three axioms by
investigating the consequences of dropping any one of monotonicity, independence
and symmetric linkage in Section 6.

Adding anonymity, we obtain:

Theorem 2. Let D ∈ {PDi,PTri}. The following are equivalent. (i) A rule on D
satisfies monotonicity, independence, symmetric linkage, and anonymity. (ii) A rule
on D is represented by a non-exclusive system of powers in WΛ satisfying ladder
property and horizontal equality. (iii) A rule on D is represented by a system of
powers W ∈WΛ satisfying ladder property and horizontal equality such that for each
k ∈M , the consent-quotas function for k satisfies the two properties in Proposition 1.

Proof. Let k ∈ M and i ≡ W1 (k). By anonymity, when i has the power on the kth

issue, then every other agent should have the same power too. Thus the power on the
kth issue is non-exclusive. The proof for the reverse direction is straightforward. This
proves the equivalence between (i) and (ii). We obtain the remaining equivalence
from Proposition 1. "

Adding neutrality to the three axioms of Theorem 1, we characterize two extreme
types of systems of powers, monocentric systems and non-exclusive systems.

Theorem 3. Let D ∈ {PDi,PTri}. A rule on D satisfies monotonicity, indepen-
dence, symmetric linkage, and neutrality if and only if it is represented either by a
monocentric system of powers in WΛ or by a constant non-exclusive system of powers
in WΛ satisfying, in either case, ladder property and horizontal equality.14

Proof. If f is represented by a monocentric system of powers, then one and only
one agent has the power on each issue. By horizontal equality, the consent-quotas
functions for all issues are identical. Hence decisions on different issues are made
neutrally. If f is represented by a constant non-exclusive system of powers, then
because of the constancy and non-exclusiveness, f satisfies neutrality.

To prove the converse, let f be a rule satisfying the stated axioms. By Theorem 1,
there is a system of powers W ∈ WΛ representing f . Suppose that there is i ∈ N
who has an exclusive power on the kth issue. Then by neutrality, i should have the
same exclusive power on every other issue. Thus, the system is monocentric. If there
is no exclusive power, then by Proposition 2, the system is non-exclusive. And by
neutrality, it is constant. "

We next consider duality (Samet and Schmeidler 2003). Each issue may be defined
as representing a certain statement (a proposal) or its negation (the anti-proposal):
e.g. qualification or disqualification. Which representation is taken does not matter
if the rule satisfies:

Duality For each P ∈ PTri, f (−P ) = −f (P ).
On the trichotomous domain PTri, duality is incompatible with the combination

of the three axioms in Theorem 1. To show this, consider a rule f represented by a
system of powers, W (·), and let λ ≡ W2(·). Then for each i ∈ N , each k ∈ λ−1 (i),
and each P ∈ PTri with Pik = 0 and ||P k

+|| = ||P k
−||, fk(−P ) = fk(P ), violating

duality. However, on the dichotomous domain PDi, adding duality allows us to pin
14Here a constant system of powers means that the system is a constant function.
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down a smaller family of rules. A system of powers W has quotas duality if for
each issue k ∈M , the consent-quotas function (q+ (·) , q0 (·) , q− (·)) ≡ W2 (k) satisfies
q+ (·) = q− (·).

Theorem 4. On the dichotomous domain PDi, a rule satisfies monotonicity, inde-
pendence, symmetric linkage, and duality if and only if it is represented by a system
of powers in WΛ satisfying ladder property, horizontal equality and quotas duality.

Proof. Let f be a rule and W ∈WΛ a system of powers of f such that for each k ∈M ,
if we let (q+, q−) ≡ W2 (k), q+ = q−. Let i ∈ N and k ∈ W−1

1 (i). Let P ∈ PDi. Note
(−P )ik = −Pik, ||(−P )k

+|| = ||P k
−||, and ||(−P )k

−|| = ||P k
+||. Therefore, ||(−P )k

−|| ≥
q− ⇔ ||P k

+|| ≥ q+ and ||(−P )k
+|| ≥ q+ ⇔ ||P k

−|| ≥ q−. Then f (−P ) = −f (P ). Hence
f satisfies duality.

Conversely, let f be a rule satisfying the four axioms. By Theorem 1, there exists
a system of powers W ∈ WΛ representing f . Let k ∈ M , i ≡ W1 (k), and (q+, q−) ≡
W2 (k). Suppose, by contradiction, that q+ *= q−, say, q+ > q− (the same argument
applies when q+ < q−). Let r be the number such that q+ > r ≥ q−. Then there exists
P ∈ PDi such that Pik = −1 and ||P k

−|| = r. Then fk (P ) = −1. Since (−P )ik = 1

and || (−P )k
+ || = ||P k

−|| = r < q+, fk (−P ) = −1, contradicting duality. "
When n is even, no system of powers satisfies both part (i) of Proposition 1 and

quotas duality. However, when n is odd, the two properties imply majority rule.
Thus we get:

Corollary 1. Assume that n is odd. On the dichotomous domain PDi, major-
ity rule is the only rule satisfying monotonicity, independence, symmetric linkage,
anonymity, and duality.

Replacing anonymity with neutrality, we get:

Corollary 2. Assume that n is odd. On the dichotomous domain PDi, a rule satisfies
monotonicity, independence, symmetric linkage, neutrality, and duality if and only
if it is majority rule or is represented by a monocentric system of powers in WΛ

satisfying ladder property, horizontal equality and quotas duality.

Proof. To prove the nontrivial direction, let f be a rule satisfying the five axioms.
Then by Theorem 3, it is represented by a monocentric system of powers or by a
constant non-exclusive system of powers. In the former case, we are done. In the
latter case, the rule satisfies anonymity. Thus it follows from Corollary 1 that f is
majority rule. "

5.2. Models with A Unique Linkage between Issues and Persons. Consider
the model with a unique linkage in Λ, denoted by λ : M → N. For example, in the
group identification problem studied by Kasher and Rubinstein (1997) and Samet and
Schmeidler (2003), M = N and the unique linkage λ is the identity function. The
earlier results in this section give characterizations of rules represented by systems of
powers W (·) conforming to the unique linkage, that is, W1 (·) = λ (·). Some of these
results can be strengthened when the unique linkage λ is not a constant function.
When λ is not constant, no system of powers conforming to λ (·) can be monocentric.
Thus, it follows from Theorem 3 that:
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Corollary 3. Assume that there is a unique linkage λ : M → N in Λ and λ is
not constant. A rule over D ∈ {PTri,PDi} satisfies monotonicity, independence,
symmetric linkage, and neutrality if and only if it is represented by a constant non-
exclusive system of powers conforming to λ (·) and satisfying ladder property and
horizontal equality. Thus the four axioms together imply anonymity.

Also it follows from Corollary 2 that:

Corollary 4. Assume that there is a unique linkage λ : M → N in Λ and λ is not
constant. When n is odd, majority rule is the only rule on PDi satisfying monotonic-
ity, independence, symmetric linkage, neutrality, and duality.

5.2.1. Group Identification and Liberal Rules. In the group identification model, Samet
and Schmeidler (2003) propose the following two interesting axioms.15

The first axiom says, in their words, that non-Hobbits’ opinions about Hobbits do
not matter in determining who are Hobbits.

Exclusive Self-Determination If P, P ′ ∈ D are such that for each i, j ∈ N,
Pij *= P ′

ij only if fi(P ) = −1 and fj(P ) = 1, then f(P ) = f(P ′).

The second axiom says that the two groups, of Hobbits and of qualifiers of Hobbits,
should coincide.

Affirmative Self-Determination For each P ∈ D, f(P ) = f(P t), where P t is
the transpose of P.

They also consider the following basic axiom:
Non-Degeneracy For each k ∈ M , there are P, P ′ ∈ D such that fk(P ) = 1 and

fk(P ′) = −1.

These three axioms are used in their paper to characterize the “liberal rule”. In our
model, liberal rules are the rules represented by a system of decisive powers in WΛ.
There can be multiple liberal rules depending on how the case with zero opinion is
treated in the definition of powers. A liberal rule has zero-constancy if all cases with
zero opinion about oneself is resolved in the same way, that is, for each pair P, P ′ ∈ D
and each pair i, j ∈ N with Pii = P ′

jj = 0, fi(P ) = fj(P ′). Zero-constancy of a liberal
rule guarantees horizontal equality of the system of powers and so symmetric linkage;
it guarantees ladder property and so monotonicity. Zero-constancy is also important
for exclusive self-determination.16 We establish two characterizations of liberal rules
on both PTri and PDi as corollaries to our main results.

Corollary 5. In the group identification model, liberal rules with zero-constancy are
the only rules over D ∈ {PTri,PDi} satisfying monotonicity, independence, symmetric
linkage, non-degeneracy, and exclusive self-determination.17

Proof. It is easy to show that a liberal rule with zero-constancy satisfies the five
axioms.18

15See Samet and Schmeidler (2003), pp.222-224, for detailed discussion and motivation for the
two axioms.

16See Footnote 18.
17A similar proof to Samet and Schmeidler (2003, Theorem 3, pp.231-232) can be used here. Our

proof is slightly different and applies to both domains PTri and PDi.
18For liberal rules, zero-constancy is equivalent to the combination of the following two properties;

(i) for each i ∈ N and each pair P, P ′ ∈ D with Pii = P ′
ii = 0, fi(P ) = fi(P ′); (ii) horizontal equality



INDIVIDUAL POWERS AND SOCIAL CONSENT 13

! !



P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
...

...
Pn1 Pn2 · · · Pnn



 P̄ =





P11 −1 · · · −1
P21 −1 · · · −1
...

...
...

...
Pn1 −1 · · · −1



 P̂ =





P11 −1 · · · −1
−1 −1 · · · −1
...

...
...

...
−1 −1 · · · −1





f(P ) f(P̄ ) = (f1(P ),−1, . . . ,−1) f(P̂ ) = (f1(P ),−1, . . . ,−1)

Figure 1

In order to prove the converse, let f be a rule satisfying the five axioms. By
Theorem 1, f is represented by a system of powers W in WΛ satisfying ladder property
and horizontal equality. We show that person 1’s power to qualify or disqualify
himself is decisive. By non-degeneracy, there is P ∈ D such that f1(P ) = 1. Let
P̄ be the matrix obtained from P by replacing all components of P except the first
column with −1: that is, P̄ 1 ≡ P 1 and for each k *= 1, P̄ k is the column vector
of −1’s as illustrated in Figure 1. Then since P̄ 1 = P 1, f1(P̄ ) = f1 (P ) = 1. By
monotonicity, independence, and non-degeneracy, for each k *= 1, fk(P̄ ) = −1. Let
P̂ be the matrix obtained from P̄ by replacing all components in the first column of
P̄ except P11 with −1 (see Figure 1). Then by exclusive self-determination, f(P̂ ) =
f(P̄ ) = (1,−1, . . . ,−1). If P11 = −1, then by monotonicity and independence, for all
P ′ ∈ D, f1(P ′) = 1 contradicting non-degeneracy. Thus P11 = 0 or 1. In either case,
by ladder property, we can deduce that when everyone votes (that is, ν = n), the
consent quota person 1 needs to exceed to qualify himself is the minimum level 1,
that is, q+ (n) = 1. The same argument can be used to show that the consent quota
for disqualification is also the minimum level, that is, q− (n) = 1. Finally, ladder
property implies that for each ν ∈ {1, . . . , n}, q+ (ν) = q− (ν) = 1. Thus person 1’s
power to qualify or disqualify himself is decisive. This result can be extended to any
person i by horizontal equality.

Finally, to show zero-constancy, let P, P ′ ∈ D and i ∈ N be such that Pii = P ′
ii = 0.

Consider P̂ constructed in the same way as before from P or P ′,19 replacing all
components in P or P ′ other than Pii = P ′

ii with -1. Using monotonicity, independence
and non-degeneracy as before, we can show fi(P ) = fi(P̂ ) = fi(P ′). This means that
if fi(P̂ ) = 1, then for each ν ∈ {0, 1, . . . , n − 1}, q0(ν) = 0 (always qualified) and if
fi(P̂ ) = −1, then for each ν ∈ {0, 1, . . . , n − 1}, q0(ν) = ν + 1 (always disqualified).
This result and horizontal equality together yield zero-constancy. "

Corollary 6. In the group identification model, liberal rules with zero-constancy are
the only rules over D ∈ {PTri,PDi} satisfying monotonicity, independence, symmetric
linkage, non-degeneracy, and affirmative self-determination.20

of the system of powers. Property (i) is needed for exclusive self-determination and property (ii)
for symmetric linkage.

19By construction of P̂ , both P and P ′ lead to the same P̂ as long as Pii = P ′
ii.

20A similar proof to Samet and Schmeidler (2003, Theorem 4, p.232) can be used here. Our proof
is slightly different and applies to both domains PTri and PDi.
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! !



P11 P12 · · · P1n

P21 P22 · · · P2n
...

...
...

...
Pn1 Pn2 · · · Pnn



 P̄ =





P11 −1 · · · −1
P21 −1 · · · −1
...

...
...

...
Pn1 −1 · · · −1



 P̄ t =





P11 P21 · · · Pn1

−1 −1 · · · −1
...

...
...

...
−1 −1 · · · −1





f(P ) f(P̄ ) = (f1(P ),−1, . . . ,−1) f(P̄ t) = (f1(P ),−1, . . . ,−1)

Figure 2

Proof. Let f be a rule satisfying the five axioms. By Theorem 1, f is represented
by a system of powers W in WΛ satisfying ladder property and horizontal equality.
We show that person 1’s power to qualify or disqualify himself is decisive. By non-
degeneracy, there is P ∈ D such that f1(P ) = 1. Let P̄ be the same matrix obtained
from P as in the proof of Corollary 5. Then since P̄ 1 = P 1, f1(P̄ ) = f1 (P ) = 1. By
monotonicity, independence, and non-degeneracy, for each k *= 1, fk(P̄ ) = −1. Note
that the first column of P̄ t has all −1’s except the first component P11 (see Figure 2).
Then by affirmative self-determination, f1(P t) = f1(P̄ ) = 1. The rest of the proof is
the same as in Corollary 5. "

On the trichotomous domain PTri, independence of the axioms imposed in Corol-
laries 5 and 6 can be shown easily. On the dichotomous domain PDi, symmetric
linkage is redundant in both corollaries as shown by Samet and Schmeidler (2003).

5.3. Pareto Efficiency and Existence of A System of Powers. Compatibility
of Pareto efficiency and existence of so-called libertarian rights (decisive powers) is
widely studied by a number of authors followed by the celebrated work, Sen (1970).
To discuss this issue in our framework, we now consider preference relations.

Opinions are partial description of the following preference relations. A separable
preference relation R0 orders social decisions in such a way that for each k ∈ M
and each quadruple x, x′, y, y′ ∈ {−1, 1}M with xk = yk, x′k = y′k, x−k = x′−k,
and y−k = y′−k, we have x ,R0 x′ ⇔ y ,R0 y′ and x ∼R0 x′ ⇔ y ∼R0 y′ ,
where ,R0 and ∼R0 are strict and indifference relations associated with R0. Then
issues are partitioned into goods, bads, and nulls depending on whether they have
positive or negative or indifferent impacts on the person’s well-being. Thus, each
separable preference R0 is associated with an opinion vector P0, each positive (resp.
negative or zero) component of P0 representing the corresponding issue as a good
(resp. a bad or a null). Obviously, there are a number of separable preference relations
corresponding to a single opinion vector. Let R be the family of profiles of separable
preference relations. A rule on the separable preferences domain R associates with
each profile of preference relations a single alternative in {−1, 1}M . With the above
stated relationship between opinions and preferences, axioms and powers defined for
the opinion domain are easily extended to the corresponding notions on the separable
preferences domain.

5.3.1. Sen’s Paradox of Paretian Liberal. Sen (1970) shows in the Arrovian social
choice model that there is no Pareto efficient preference aggregation rule that gives
at least two agents libertarian rights. This is so-called Sen’s paradox of Paretian
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liberal. Sen’s reasoning does not apply directly in our model as we focus on separable
preference relations and consider social choice functions instead of preference aggre-
gation rules in Sen (1970). Yet, our notion of decisive powers is a natural counterpart
to Sen’s libertarian rights as is noticed by Gibbard (1974).21 Thus Sen’s quest is still
meaningful here. Does Sen’s paradox hold in our model? Not surprisingly, it does,
as we show below. Furthermore, we show that the paradox holds in a much stronger
sense.

We first show that the paradox holds on the separable preferences domain.22
Sen’s (1970) minimal liberalism postulates that there should be at least two per-
sons who have decisive powers. Assume that persons 1 and 2 are given the decisive
powers on the first issue and the second issue respectively. Consider the following
preference relations of the two persons. For person 1, the first issue is a bad and the
second issue is a good. But person 1 cares so much about the second issue (person 2’s
issue) that the positive decision on this issue is preferred to the negative decision no
matter what decisions are made on the other issues. For person 2, the second issue
is a bad and the first issue is a good. But person 2 cares so much about the first
issue (person 1’s issue) that the positive decision on this issue is preferred to the neg-
ative decision no matter what decisions are made on the other issues. Then by the
decisive powers of the two persons, decisions on the first and second issues are both
negative. But the two persons will be better off at any decision with positive com-
ponents for both issues. This confirms that minimal liberalism and Pareto efficiency
are incompatible on the separable preferences domain.

Preference relations in the above example are “meddlesome” (Blau 1975). One
may hope that without such meddlesome preference relations, the paradox of Pare-
tian liberal will not apply. Unfortunately, the paradox holds even in a substantially
restricted environment where only trichotomous or dichotomous preference relations
are admissible. A trichotomous preference relation R0 is a separable preference rela-
tion represented by a function U0 : {−1, 1}M → R such that for each x ∈ {−1, 1}M ,
U0 (x) =

∑
k∈M :xk=1 P0k, where P0 ∈ {−1, 0, 1}M is the opinion vector correspond-

ing to R0.23 A dichotomous preference relation is a trichotomous preference relation
for which each issue is either a good or a bad. Let RTri be the family of profiles
of trichotomous preference relations and RDi the family of profiles of dichotomous
preference relations. Note that there are one-to-one correspondences between RTri
and PTri and between RDi and PDi.

Proposition 5. When there are at least three persons, no Pareto efficient rule on
the dichotomous (or trichotomous) preferences domain satisfies minimal liberalism.

Proof. Suppose that persons 1 and 2 have the decisive powers respectively on issue 1
and issue 2. Consider the profile of dichotomous preference relations (Ri)i∈N given
by the following opinion vectors: P1 ≡ (1,−1,−1, . . . ,−1), P2 ≡ (−1, 1,−1, . . . ,−1),
and for each i ∈ N\{1, 2}, Pi ≡ (−1, . . . ,−1). Then by the decisive powers of
persons 1 and 2, f1 (R) = f2 (R) = 1. If the rule is Pareto efficient, for each k ∈

21As Sen (1983, p.14) points out, the so-called Gibbard paradox does not hold on the domain of
separable preference relations.

22This was originally proven by Gibbard (1974, Theorem 2).
23That is, U0 (x) = |{k ∈M : xk = 1 and P0k = 1}| − |{k ∈M : xk = 1 and P0k = −1}|.
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M\{1, 2}, fk (R) = −1. Thus f (R) = (1, 1,−1, . . . ,−1). Note that this alternative
is indifferent to x ≡ (−1, . . . ,−1) for both person 1 and person 2 and x is preferred
to f (R) by all others. This contradicts Pareto efficiency. "

Note that unlike the previous paradox on the separable preferences domain, we
need the assumption n ≥ 3. The case with two persons ruled out by this assumption
is very limited. However, it should be noted that the paradox does not apply in
the two-person case (then decisiveness is quite close to plurality principle since one
person’s opinion accounts for 50%). This is an implication of our results in the next
section.

5.3.2. Quasi-Plurality Systems of Powers. The observations made in Section 5.3.1
show that decisiveness component in the definition of libertarian rights is too strong
to be compatible with Pareto efficiency. A way to escape from this impossibility is
to weaken the decisiveness. Is it, then, possible to have non-decisive powers and at
the same time to satisfy Pareto efficiency? It is indeed possible on the trichotomous
preferences domain RTri and also on the dichotomous preferences domain RDi as
we show in this section. Moreover, we provide a characterization of plurality-like
rules on the basis of Pareto efficiency, independence, and symmetric linkage. Since
we only consider trichotomous or dichotomous preference relations, throughout this
section, we use opinion vectors to refer to the corresponding trichotomous preference
relations.

We begin with a definition of important systems of powers in the current section.
Definition. [Quasi-Plurality Systems of Powers] A system of powers W is called a
quasi-plurality system if there is a consent-quotas function q (·) ≡ (q+ (·) , q0(·), q− (·))
such that for each k ∈M , W2 (k) = (q+ (·) , q0 (·) , q− (·)) and for each ν ∈ {1, . . . , n},

(6) q+ (ν) , q− (ν) ∈ {ν − 1

2
,
ν + 1

2
},

for each ν ∈ {0, . . . , n− 1},

(7) q0 (ν) ∈ {ν − 1

2
,
ν + 1

2
}.

The rule represented by a quasi-plurality system is called a quasi-plurality rule.
Clearly, quasi-plurality systems satisfy horizontal equality and thus quasi-plurality

rules satisfy symmetric linkage if their representing systems of powers are in WΛ.
Obviously, plurality rule is an example; it is represented by a non-exclusive quasi-
plurality system. There are also exclusive quasi-plurality systems. For example, for
each ν ∈ {1, . . . , n}, let q+ (ν) = q− (ν) ≡ (ν − 1) /2 and for each ν ∈ {0, . . . , n− 1},
let q0 (ν) ≡ (ν − 1) /2. Then the power on each issue is exclusive by Proposition 1.
However, note that for each k ∈M , if ||P k

+|| *= ||P k
−||, fk (P ) equals the decision made

by plurality rule and that if ||P k
+|| = ||P k

−||, fk (P ) is determined by the opinion of
the person, say i, who has the power on the kth issue (that is, fk (P ) = 1 if Pik = 1
or 0; fk (P ) = −1 if Pik = −1). Thus “exclusiveness” feature, if it exists, plays only a
tie-breaking role when the group of persons with the positive opinion and the group
of persons with the negative opinion have the same size.

Any quasi-plurality rule f has the following property: for each k ∈M ,
(8) if fk (P ) = 1, ||P k

+|| ≥ ||P k
−|| ; if ||P k

+|| > ||P k
−||, fk (P ) = 1.
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Note that
∑

i∈N Ui (x) =
∑

i∈N

∑
{k∈M :xk=1} Pik =

∑
{k∈M :xk=1}(||P k

+||−||P k
−||). There-

fore, by (8), any quasi-plurality rule maximizes the sum of utilities. Thus it satisfies
Pareto efficiency. Moreover, our next result shows that quasi-plurality rules are the
only rules satisfying Pareto efficiency, independence, and symmetric linkage.

Theorem 5. Assume that each linkage λ : M → N in Λ maps to all persons the
same number of issues. Then a rule on D ∈{RTri,RDi} satisfies Pareto efficiency,
independence, and symmetric linkage if and only if it is represented by a quasi-
plurality system of powers conforming to λ.24

The proof is in Appendix A.4. Note that this result holds in Samet and Schmei-
dler’s (2003) model because in their model N = M and the identity function is the
only linkage in Λ. Not all quasi-plurality systems satisfy intercomponent ladder prop-
erty. This extra property is obtained after adding monotonicity to the three axioms
in the theorem.

Next is a direct corollary to Theorem 5.

Corollary 7. Given the assumption in Theorem 5, a rule on D ∈{RTri,RDi}, rep-
resented by a system of powers conforming to the unique linkage λ, satisfies Pareto
efficiency if and only if the system of powers is a quasi-plurality system.

When the number of issues is greater than or equal to the number of persons,
adding neutrality, we establish the same characterization without any assumption on
Λ.

Theorem 6. Suppose m ≥ n. A rule on D ∈{RTri,RDi} satisfies Pareto efficiency,
independence, symmetric linkage, and neutrality if and only if it is represented either
by a non-exclusive quasi-plurality system of powers in WΛ or by a monocentric quasi-
plurality system of powers in WΛ.

The proof is in Appendix A.4.

6. Concluding Remarks

6.1. Independence of the Axioms. Here we investigate independence of our three
main axioms, monotonicity, independence, and symmetric linkage.

6.1.1. Dropping Symmetric Linkage. We characterize the following rules satisfying
monotonicity and independence. These rules can be described by “decisive structures”
between subgroups of N (Ju 2003).25 Let C∗ ≡ {(C1, C2) ∈ 2N × 2N : C1 ∩ C2 = ∅}.
For each k ∈M , a decisive structure for the kth-issue, denoted by Ck ⊆ C∗, is a subset
of C∗. It satisfies monotonicity if for each (C1, C2) ∈ Ck, if (C ′

1, C
′
2) ∈ C∗ is such that

C ′
1 ⊇ C1 and C ′

2 ⊆ C2, then (C ′
1, C

′
2) ∈ Ck. For each P ∈ PTri and each k ∈M , let

N
(
P k

+

)
≡ {i ∈ N : Pik = 1} and N

(
P k
−
)
≡ {i ∈ N : Pik = −1}.

24The characterization of “semi-plurality rules” by Ju (2005) imposes anonymity instead of sym-
metric linkage. Note also that this result holds only on RTri, while our Theorem 5 holds both on
RTri and on RDi. The family of quasi-plurality rules is larger than the family of semi-plurality rules
in Ju (2005).

25Ju (2003) calls decisive structures “power structures”. We use a different name to avoid confusion
with our stronger notion of power.
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A rule f is represented by a profile of decisive structures (Ck)k∈M if for each P ∈ D and
each k ∈M , fk (P ) = 1 if and only if (N(P k

+), N(P k
−)) ∈ Ck (thus, when (C1, C2) ∈ Ck,

unanimously positive opinions on the kth issue among the members of C1 can overrule
unanimously negative opinions among the members of C2). Any rule represented by
a profile of decisive structures satisfies independence, since it makes decisions issue
by issue. Conversely, if a rule satisfies independence, the decision on the kth issue
relies only on the pair of the set of persons in favor of k and the set of persons
against k. Thus, it is represented by a profile of decisive structures. Monotonicity
of decisive structures is a necessary and sufficient condition for monotonicity of the
rule. Therefore we obtain:

Proposition 6. Let D ∈ {PDi,PTri}. (i) A rule on D satisfies independence if
and only if it is represented by a profile of decisive structures. (ii) A rule on D
satisfies independence and monotonicity if and only if it is represented by a profile
of monotonic decisive structures.

The formal proof is similar to the proof of Proposition 1 in Ju (2003, p.482) and
is left for readers.

Let I∗ ≡ {(n1, n2) ∈ Z+ × Z+ : n1 + n2 ≤ n}, where Z+ is the set of non-negative
integers. Any subset I ⊆ I∗ is called an index set. It is comprehensive if for each
(n1, n2) ∈ I and each (n′

1, n
′
2) ∈ I∗, if n′

1 ≥ n1 and n′
2 ≤ n2, then (n′

1, n
′
2) ∈ I. Using

Proposition 6, it is easy to characterize rules satisfying independence and anonymity.
Decisive structures of each of these rules can be described by index sets. Formally,
a counting rule is a rule that is represented by a profile of index sets, (Ik)k∈M , as
follows: for each P ∈ PTri and each k ∈ M , fk (P ) = 1 ⇔ (||P k

+||, ||P k
−||) ∈ Ik. It

is easy to show that a counting rule is monotonic if and only if all index sets in the
profile (Ik)k∈M are comprehensive. Thus, we obtain:

Proposition 7. Let D ∈ {PDi,PTri}. (i) A rule on D satisfies independence and
anonymity if and only if it is a counting rule. (ii) A rule on D satisfies monotonicity,
independence, and anonymity if and only if it is a counting rule represented by a
profile of comprehensive index sets.

The formal proof is similar to the proof of Corollary 1 in Ju (2003, p.483) and is
left for readers.

6.1.2. Dropping Monotonicity. An extended system of powers eW maps each issue
k ∈ M into a person eW1 (k) ∈ N and a triple of index sets eW2 (k) = (Ik

+, Ik
0 , Ik

−).
A rule f is represented by an extended system of powers eW if for each P ∈ PTri and
each k ∈M ,

(9)
(i) when Pik = 1, fk (P ) = 1 ⇔

(
||P k

+||, ||P k
−||

)
∈ Ik

+;
(ii) when Pik = 0, fk (P ) = 1 ⇔

(
||P k

+||, ||P k
−||

)
∈ Ik

0 ;
(iii) when Pik = −1, fk (P ) = −1 ⇔

(
||P k

−||, ||P k
+||

)
∈ Ik

−;

where i ≡ eW1 (k) and (Ik
+, Ik

0 , Ik
−) ≡ eW2 (k). Note that index sets are used here in

a different manner from how they are used for defining a counting rule. The three
index sets for issue k ∈M describe when the person with the power on issue k gets a
sufficient consent from the society. A rule represented by an extended system of pow-
ers is not necessarily a counting rule. Symmetric linkage together with independence
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force us to have extended systems in the following set:

eW
Λ ≡ {eW (·) : eW (·) is an extended system of powers such that eW1 (·) ∈ Λ}.

Proposition 8. Let D ∈ {PDi,PTri}. A rule on D satisfies independence and sym-
metric linkage if and only if it is represented by an extended system of power eW (·) ∈
eWΛ satisfying horizontal equality, that is, for each i, j ∈ N with |eW−1

1 (i) | =
|eW−1

1 (j) |, each k ∈ eW
−1
1 (i), and each l ∈ eW

−1
1 (j), eW2 (k) = eW2 (l).26

The proof is in Appendix A.3.

6.1.3. Dropping Independence. For each P ∈ PTri, let χ (P ) ≡
∑

k∈M ||P k
−||/|M |.

Let f be the rule represented by χ (·) as follows: for each P ∈ PTri and each k ∈M ,
fk (P ) = 1 ⇔ ||P k

+|| ≥ χ (P ). By definition, this rule treats agents anonymously and
issues neutrally. Thus it satisfies anonymity, neutrality, and so symmetric linkage. If
P, P ′ ∈ PTri are such that for each k ∈M , N

(
P k

+

)
⊆ N

(
P ′k

+

)
and N

(
P k
−
)
⊇ N

(
P ′k
−

)
,∑

k∈M ||P k
−||/|M | ≥

∑
k∈M ||P ′k

− ||/|M |, that is, χ (P ) ≥ χ (P ′). Then for each k ∈M ,
if fk (P ) = 1 (that is, ||P k

+|| ≥ χ (P )), ||P ′k
+ || ≥ ||P k

+|| ≥ χ (P ) ≥ χ (P ′) and so
fk (P ′) = 1. Thus f satisfies monotonicity. The threshold level χ (P ) depends on
opinions on all issues. So f violates independence. Using different χ (·), we can define
other examples. We leave it for future research to characterize the entire family of
rules satisfying monotonicity and symmetric linkage.

Appendix A. Proofs

A.1. Proofs of Propositions 1 and 2. Throughout the proofs, let Wf be the set
of systems of powers representing a rule f and assume that W,W ′ ∈ Wf and for
some k ∈ M , W1 (k) *= W ′

1 (k). Let i ≡ W1 (k) , i′ ≡ W ′
1 (k) , q (·) ≡ W2 (k) , and

q′ (·) ≡ W ′
2 (k) .

In Lemma 2, we show that the two consent-quotas functions are identical, that is,
W2(·) = W ′

2(·). In Lemma 3, we show that the consent-quotas function satisfies the
necessary and sufficient condition for non-exclusive powers in Proposition 1.

Claim 1. For each ν ≥ 2, (i) if q+ (ν) ≥ 2 and q′+ (ν) ≥ 2, q+ (ν) = q′+ (ν); (ii) if
q− (ν) ≥ 2 and q′− (ν) ≥ 2, q− (ν) = q′− (ν) .

Proof. We prove (i) and skip the same proof of (ii). Suppose that q+ (ν) *= ν + 1
and q′+ (ν) *= ν + 1. Because ν ≥ 2, q+ (ν) *= ν + 1, and q+ (ν) ≥ 2, there exists
P such that ||P k

+,−|| = ν, Pik = Pi′k = 1 and ||P k
+|| = q+ (ν). Then by i’s power

W (k), fk (P ) = 1. Thus, by i′’s power W ′ (k), q′+ (ν) ≤ q+ (ν). Similarly, we show
the reverse inequality. If q+ (ν) = ν + 1, then consider P such that ||P k

+,−|| = ν,
Pik = Pi′k = 1 and ||P k

+|| = ν. By i’s power W (k), fk (P ) = −1. Then by i′’s power
W ′ (k), q′+ (ν) > ||P k

+|| = ν, which implies q′+ (ν) = ν + 1. "
Claim 2. For each ν ≥ 2, (i) q+ (ν) = 1 if and only if q′− (ν) ≥ ν; (ii) q− (ν) = 1 if
and only if q′+ (ν) ≥ ν.

The proof is quite straightforward and is left for readers.

26This property of eW (·) is needed to guarantee symmetric linkage like horizontal equality of a
system of powers.
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Claim 3. For each ν ∈ {1, . . . , n− 1}, (i) if q0 (ν) ≥ 1, q0 (ν) = q′+ (ν); (ii) q0 (ν) = 0
if and only if q′+ (ν) = 1 and q′− (ν) = ν + 1.

Proof. The proof of part (ii) is straightforward and is left for readers. To prove
part (i), suppose q0 (ν) ≥ 1. If q0 (ν) = ν + 1, then for each P with ||P k

+,−|| = ν,
Pik = 0 and Pi′k = 1, by i’s power W (k), fk (P ) = −1. Thus by i′’s power W ′ (k),
q′+ (ν) = ν + 1. If q0 (ν) ≤ ν, there exists P such that ||P k

+,−|| = ν, Pik = 0, Pi′k = 1,
and ||P k

+|| = q0 (ν) (such P exists because 1 ≤ q0 (ν) ≤ ν ≤ n− 1). Then by W (k),
fk (P ) = 1. And by W ′ (k), q′+ (ν) ≤ q0 (ν). Thus if q0 (ν) = 1, q′+ (ν) = 1. Suppose
q0 (ν) ≥ 2. In this case, if q′+ (ν) < q0 (ν), there exists P with ||P k

+,−|| = ν, Pik = 0,
Pi′k = 1, and q′+ (ν) ≤ ||P k

+|| < q0 (ν) (such P exists because q0 (ν) ≥ 2). Then by
W ′ (k), fk (P ) = 1 and by W (k), fk (P ) = −1, which is a contradiction. "
Claim 4. For each ν ∈ {3, . . . , n}, q+ (ν) = q′+ (ν) and q− (ν) = q′− (ν) .

Proof. Let ν ∈ {3, . . . , n}. We first show q+ (ν) = q′+ (ν). If both numbers are greater
than or equal to 2, the result follows from Claim 1. Suppose q+ (ν) = 1. Then by
Claim 2, q′− (ν) ≥ ν. If q− (ν) *= q′− (ν) (≥ ν ≥ 3), then q− (ν) = 1 (because otherwise,
by Claim 1, q− (ν) = q′− (ν)). Let P be such that ||P k

+,−|| = ν, Pik = Pi′k = −1 and
||P k

−|| = 2. Since q− (ν) = 1 < ||P k
−|| < 3 ≤ ν ≤ q′− (ν), then by W (k), fk (P ) = −1

and by W ′ (k), fk (P ) = 1, which is a contradiction. Therefore q− (ν) = q′− (ν) ≥ ν.
Then by Claim 2, q′+ (ν) = 1. A similar argument can be used to prove q− (ν) =
q′− (ν) . "
Claim 5. For each ν ∈ {0, . . . , n − 2}, q0 (ν) = q′0 (ν) and when n ≥ 4, q0(n − 1) =
q′0(n− 1).

Proof. Let ν ∈ {0, . . . , n − 2}. Suppose q0 (ν) *= q′0 (ν), say, q0 (ν) < q′0 (ν). Since
ν ≤ n− 2 and q0 (ν) ≤ ν (note q0 (ν) < q′0 (ν) ≤ ν + 1), then there is P be such that
Pik = Pi′k = 0, ||P k

+,−|| = ν, and ||P k
+|| = q0 (ν). Then by W (k), fk (P ) = 1 and by

W ′ (k), fk (P ) = −1, which is a contradiction.
Finally, q0 (n− 1) = q′0 (n− 1) follows from Claim 3 and the fact that q+ (n− 1) =

q′+ (n− 1) and q− (n− 1) = q′− (n− 1), which holds by Claim 4 (here we need the
assumption of n ≥ 4 in order to have n− 1 ≥ 3). "
Claim 6. For each ν ∈ {1, . . . , n− 1}, q− (ν) = 1 if and only if q′0 (ν) ≥ ν.

The proof is straightforward and is left for readers.

Lemma 2. For each ν ∈ {0, 1, . . . , n}, if ν ≥ 1, q+ (ν) = q′+ (ν) and q− (ν) = q′− (ν);
if ν ≤ n− 1, q0 (ν) = q′0 (ν).

Proof. By Claims 4 and 5, we only need to show that for each ν ∈ {1, 2}, q+ (ν) =
q′+ (ν) and q− (ν) = q′− (ν).

Consider ν = 2. Then q0 (ν) = q′0 (ν) by Claim 5. If q0 (ν) = 0, then by Claim 3,
q′+ (ν) = 1 = q+ (ν). If q0 (ν) = q′0 (ν) ≥ 1, then applying (i) of Claim 3 twice, q′0 (ν) =
q+ (ν) and q0 (ν) = q′+ (ν). Thus q+ (ν) = q′+ (ν). We next show q− (ν) = q′− (ν). If
both numbers are greater than or equal to 2, the result follows from Claim 1. Suppose
q− (ν) = 1. Then by Claim 2, q′+ (ν) ≥ ν. Since q+ (ν) = q′+ (ν) ≥ ν, then by Claim 2
again, q′− (ν) = 1.
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Now consider ν = 1. By Claim 5, q0 (1) = q′0 (1) . Suppose q0 (1) = q′0 (1) ≥ 1.
Then by Claim 3, q+ (1) = q′+ (1) . And by Claim 6, q− (1) = q′− (1). Suppose q0 (1) =
q′0 (1) = 0. Then by Claim 3, q+ (1) = q′+ (1) = 1 and q− (1) = q′− (1) = 2. "
Lemma 3. If W2 (k) = W ′

2 (k) = q (·) , then for each ν ∈ {1, . . . , n}, (i) q+ (ν) +
q− (ν) = ν + 1 and when ν ≤ n − 1, q0 (ν) = q+ (ν), or (ii) (q+ (ν) , q− (ν)) ∈
{(ν + 1, 1) , (1, ν + 1)} and when ν ≤ n−1, (q+ (ν) , q0 (ν) , q− (ν)) ∈ {(ν + 1, ν + 1, 1) , (1, 0, ν + 1)}.

Proof. The proof is in five steps.
Step 1. For each ν ∈ {1, . . . , n}, q+ (ν) + q− (ν) > ν (and q+ (ν) + q− (ν) > ν).
The inequalities hold trivially for ν = 1. Let ν ∈ {2, . . . , n}. Suppose by con-

tradiction q+ (ν) + q− (ν) ≤ ν. Then q+ (ν) < ν or q− (ν) < ν. In the former case
(we skip the same proof for the latter case). There is P ∈ PTri such that Pik = 1,
Pi′k = −1, ||P k

+,−|| = ν, and ||P k
+|| = q+ (ν) (such P exists because ν ≥ 2, q+ (ν) < ν,

and so ||P k
−|| = ν − q+ (ν) ≥ 1). Then ||P k

−|| = ν − q+ (ν) ≥ q− (ν). Since Pik = 1,
W (k) = (i, q (·)), and ||P k

+|| = q+ (ν), then fk (P ) = 1. On the other hand, since
Pi′k = −1, W ′ (k) = (i′, q (·)), and ||P k

−|| = ν − q+ (ν) ≥ q− (ν), then fk (P ) = −1,
contradicting fk (P ) = 1.

Step 2. For each ν ∈ {2, . . . , n}, if q+ (ν) ≤ ν and q− (ν) ≤ ν, then q+ (ν) +
q− (ν) = ν + 1 and when ν ≤ n− 1, q0 (ν) = q+ (ν).

By Step 1, q+ (ν)+q− (ν) ≥ ν+1. In order to show q+ (ν)+q− (ν) = ν+1, suppose
q+ (ν) + q− (ν) ≥ ν + 2. Let P ∈ PTri be such that Pik = 1, Pi′k = −1, ||P k

+,−|| = ν,
and ||P k

+|| = ν − q− (ν) + 1 (since q+ (ν) , q− (ν) ≤ ν and q+ (ν) + q− (ν) ≥ ν + 2,
then q+ (ν) , q− (ν) ≥ 2; thus ||P k

+|| = ν − q− (ν) + 1 = q+ (ν) − 1 ≥ 1 and similarly
||P k

−|| = q− (ν)−1 ≥ 1; also note ||P k
+,−|| = ν ≥ 2; all these guarantee existence of such

P ). Then ||P k
+|| = ν−q− (ν)+1 = q+ (ν)−1 < q+ (ν) and ||P k

−|| = q− (ν)−1 < q− (ν).
Since Pik = 1, W (k) = (i, q (·)), and ||P k

+|| < q+ (ν), then fk (P ) = −1. Since
Pi′k = −1, W ′ (k) = (i′, q (·)), and ||P k

−|| = ν − ||P k
+|| = q− (ν) − 1 < q− (ν), then

fk (P ) = 1, contradicting fk (P ) = −1.
If ν ≤ n− 1, then by part (ii) of Claim 3 and the assumption q− (ν) ≤ ν, we have

q0 (ν) ≥ 1. Thus part (i) of Claim 3 implies q0 (ν) = q+ (ν) .
Step 3. For each ν ∈ {2, . . . , n}, (i) if q+ (ν) = ν + 1, q− (ν) = 1; (ii) if q− (ν) =

ν + 1, q+ (ν) = 1.
Suppose q+ (ν) = ν + 1. Since ν ≥ 2, there is P such that ||P k

+,−|| = ν, Pik = 1,
Pi′,k = −1, and ||P k

−|| = 1 (so ||P k
+|| = ν−1). Then by i’s power W (k), fk (P ) = −1.

By i′’s power W ′ (k), q− (ν) = 1. The same argument applies to show part (ii).
Step 4. For each ν ∈ {1, . . . n− 1}, (i) q0 (ν) = ν + 1 if and only if q+ (ν) = ν + 1

and q− (ν) = 1; (ii) q0 (ν) = 0 if and only if q+ (ν) = 1 and q− (ν) = ν + 1.
Part (ii) follows from Claim 3. To prove part (i), suppose q0 (ν) = ν + 1. Consider

P and P ′ such that ||P k
+,−|| = ||P ′k

+,−|| = ν, Pik = P ′
ik = 0, Pi′k = 1, P ′

i′k = −1,
||P k

+|| = ν, and ||P ′k
− || = 1. By i’s power, fk (P ) = fk(P ′) = −1. Since fk (P ) = −1,

by i′’s power, q+ (ν) > ν and so q+ (ν) = ν+1. Also since fk (P ′) = −1, by i′’s power,
q− (ν) ≤ 1 and so q− (ν) = 1. The converse is proven using the same argument in the
reverse direction.

Step 5. If q0 (1) = 0, then q+ (1) = 1 and q− (1) = 2; if q0 (1) = 1, then
q+ (1) = 1 and q− (1) = 1; if q0 (1) = 2, then q+ (1) = 2 and q− (1) = 1. Thus
(q+ (1) , q0 (1) , q− (1)) ∈ {(1, 0, 2) , (1, 1, 1) , (2, 2, 1)}.
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The two cases for q0 (1) = 0 or 2 are shown in Step 4. The remaining case with
q0 (1) = 1 follows from (i) of Claim 3 and Claim 6. "
Remark 1. Lemmas 1-3 show that the power on an issue can be either exclusive or
non-exclusive. That is, either only one person has the power or everyone has the
power. There is no power shared by more than one but not all persons.

Proofs of Propositions 1 and 2. The characterization of non-exclusive powers in Propo-
sition 1 follows from Lemmas 1 and 3.

Uniqueness of systems of powers in Proposition 2 follows from Lemmas 2 and 3,
and Proposition 1. "
A.2. Proofs of Propositions 3 and 4.

Lemma 4. A rule f is represented by a system of powers W (·) satisfying ladder
property if and only if it is represented by an extended system of powers eW (·) such
that for each issue k ∈M , the three index sets in eW2 (k) ≡ (I+, I0, I−) are compre-
hensive and

(10)
(i) (n1, n2) ∈ I0 ⇒ (n1 + 1, n2) ∈ I+;
(ii) (n1, n2) /∈ I− ⇒ (n2, n1 − 1) ∈ I0;
(iii) (n1, n2) /∈ I− ⇒ (n2 + 1, n1 − 1) ∈ I+.

Proof. Suppose that person i ∈ N has the power on the kth issue associated with a
consent-quotas function q (·). Then we can construct three comprehensive index sets,
I+, I0, and I− as follows. For each s ∈ {+, 0,−}, let Is ≡ {(n1, n2) ∈ I∗ : n1 ≥
qs (n1 + n2)}. Then it is easy to show that (9) implies (2), comprehensiveness of Is

implies component ladder property and (10) implies intercomponent ladder property.
To explain the reverse construction, let I+, I0, and I− be the three comprehensive

sets satisfying (9) and (10). For each ν ∈ {1, . . . , n} and each s ∈ {+, 0,−}, let

qs (ν) ≡
{

min{n1 : (n1, ν − n1) ∈ Is}, if {n1 : (n1, ν − n1) ∈ Is} *= ∅;
ν + 1, if {n1 : (n1, ν − n1) ∈ Is} = ∅.

Then this consent-quotas function satisfies the two ladder properties because of com-
prehensiveness of I+, I0, and I− and (10). And (9) follows from (2).27 "
Lemma 5. A rule f represented by an extended system of powers eW (·) satisfies
monotonicity if and only if eW (·) satisfies the comprehensiveness property and (10).

Proof. Let f be a rule represented by an extended system of powers eW . Then
clearly f satisfies independence and so by Proposition 6, f is represented by a pro-
file of decisive structures (Ck)k∈M . Assume that f satisfies monotonicity. Then
all decisive structures in (Ck)k∈M are monotonic. Let k ∈ K, i ≡ eW1 (k) and
(Ik

+, Ik
0 , Ik

−) ≡ eW2 (k). Then by (9), Ik
+ = {(|C1|, |C2|) : (C1, C2) ∈ Ck and i ∈ C1},

Ik
0 = {(|C1|, |C2|) : (C1, C2) ∈ Ck and i *∈ C1 ∪ C2}, and Ik

− = {(|C2|, |C1|) :
(C1, C2) *∈ Ck and i ∈ C2}. Comprehensiveness of the three index sets Ik

+, Ik
0 , Ik

−
is a direct consequence of monotonicity of the decisive structure Ck. To show part (i)
of (10), let (n1, n2) ∈ Ik

0 . Suppose (n1 + 1, n2) *∈ Ik
+. Let P ∈ PTri be such that

Pik = 0, ||P k
+|| = n1, and ||P k

−|| = n2. Then fk (P ) = 1. Let P ′ ∈ PTri have the same

27The proof is available upon request.
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components as P except P ′
ik ≡ 1. Then P ′ ≥ P , ||P ′k

+ || = n1 + 1, and ||P k
−|| = n2.

Since (n1 + 1, n2) *∈ Ik
+, fk (P ′) = −1, contradicting monotonicity of f .

To show part (ii) of (10), suppose that (n1, n2) /∈ Ik
− and (n2, n1 − 1) *∈ Ik

0 . Let
P ∈ PTri be such that Pik = −1, ||P k

−|| = n1, and ||P k
+|| = n2. Then fk (P ) = 1. Let

P ′ ∈ PTri have the same components as P except P ′
ik ≡ 0. Then P ′ ≥ P , ||P ′k

+ || = n2,
and ||P k

−|| = n1−1. Since (n2, n1−1) *∈ Ik
0 , fk (P ′) = −1, contradicting monotonicity

of f .
To show (iii) of (10), suppose that (n1, n2) /∈ Ik

− and (n2 + 1, n1 − 1) *∈ Ik
+. Let

P ∈ PTri be such that Pik = −1, ||P k
−|| = n1, and ||P k

+|| = n2. Then fk (P ) = 1.
Let P ′ ∈ PTri have the same components as P except P ′

ik ≡ 1. Then P ′ ≥ P ,
||P ′k

+ || = n2 + 1, and ||P k
−|| = n1 − 1. Since (n2 + 1, n1 − 1) *∈ Ik

0 , fk (P ′) = −1,
contradicting monotonicity of f .

To prove the converse, assume that eW satisfies the comprehensiveness property
and (10) stated in Lemma 4. In order to prove monotonicity of f , let P ′ ≥ P and
k ∈ M be such that fk (P ) = 1. We only have to show fk (P ′) = 1. Let i ≡
eW (k) and (Ik

+, Ik
0 , Ik

−) ≡ eW2 (k). When P ′
ik = Pik, it follows directly from the

comprehensiveness condition of the three sets Ik
+, Ik

0 , Ik
− that fk (P ′) = 1. There are

two remaining cases.
Case 1. Pik = 0 *= P ′

ik and (||P k
+||, ||P k

−||) ∈ Ik
0 . Then P ′

ik = 1. Hence ||P ′k
+ || ≥

||P k
+|| + 1 and ||P ′k

− || ≤ ||P k
−||. By comprehensiveness of Ik

+ and part (i) of (10),
(||P ′k

+ ||, ||P ′k
− ||) ∈ Ik

+. Therefore fk (P ′) = 1.
Case 2. Pik = −1 *= P ′

ik and (||P k
−||, ||P k

+||) /∈ Ik
−. Then either P ′

ik = 0 or P ′
ik = 1.

If P ′
ik = 0, ||P ′k

+ || ≥ ||P k
+|| and ||P ′k

− || ≤ ||P k
−|| − 1. Then by comprehensiveness

of Ik
− and part (ii) of (10), (||P ′k

+ ||, ||P ′k
− ||) ∈ Ik

0 . Thus, fk (P ′) = 1. If P ′
ik = 1,

||P ′k
+ || ≥ ||P k

+|| + 1 and ||P ′k
− || ≤ ||P k

−|| − 1. Then by comprehensiveness of Ik
− and

part (iii) of (10), (||P ′k
+ ||, ||P ′k

− ||) ∈ Ik
+. Therefore fk (P ′) = 1. "

Now we are ready to prove Propositions 3 and 4.

Proofs of Propositions 3 and 4. Proposition 3 follows directly from Lemmas 4 and 5.
To prove Proposition 4, consider a rule f represented by a system of powers W ∈

WΛ. Let λ (·) ≡ W1 (·). Let π : N → N be a permutation on N and δ : M → M a
permutation on M such that for each i ∈ N , δ maps λ−1 (i) onto λ−1 (π (i)). Then
because of the ontoness property of δ, i ∈ N and π (i) are associated with the same
number of issues under λ. Thus by horizontal equality, for each k ∈ λ−1 (i), i’s power
on the kth issue and π (i)’s power on the δ (k)th issue are associated with the same
consent-quotas function, that is, W2 (k) = W2 (δ (k)). Denote the common consent-
quotas function by q (·). For each P ∈ PTri, ||P δ(k)

+ || = ||δπP k
+|| and ||P δ(k)

− || = ||δπP k
−||.

Thus, q(||P δ(k)
+,− ||) = q(||δπP k

+||) and δ
πPik = Pπ(i)δ(k). Therefore, fk

(
δ
πP

)
= fδ(k) (P ).

This shows that f satisfies symmetric linkage associated with λ. The converse can
be proven similarly. "

A.3. Proofs of Proposition 8 and Theorem 1. We now prove Proposition 8 and
Theorem 1.

Proof of Proposition 8. Using the same argument as in the proof of Proposition 4, we
can show that a rule represented by an extended system of powers in eWΛ satisfies
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symmetric linkage if and only if the extended system satisfies horizontal equality.
Clearly, any rule represented by an extended system of powers satisfies independence.

To prove the converse, consider a rule f satisfying independence and symmetric
linkage. Then by Proposition 6, f is represented by a profile of decisive structures
(Ck)k∈M . Let f satisfy symmetric linkage with respect to λ ∈ Λ. We identify an
extended system of powers of f and complete the proof in two steps.

Step 1. For each pair i, j ∈ N with |λ−1 (i) | = |λ−1 (j) |, each k ∈ λ−1 (i), each
l ∈ λ−1 (j), and each (C1, C2) , (C ′

1, C
′
2) ∈ C∗ with |C1 ∩ {i}| = |C ′

1 ∩ {j}| and |C2 ∩
{i}| = |C ′

2 ∩ {j}| (or equivalently, [i ∈ C1 ⇔ j ∈ C ′
1] and [i ∈ C2 ⇔ j ∈ C ′

2]), if
|C1| = |C ′

1| and |C2| = |C ′
2|, then (C1, C2) ∈ Ck ⇔ (C ′

1, C
′
2) ∈ Cl .

Let i, j ∈ N , k ∈ λ−1 (i), l ∈ λ−1 (j), and (C1, C2) , (C ′
1, C

′
2) ∈ C∗ be given as

above. Consider the case i ∈ C1 and j ∈ C ′
1 (the proofs for the other cases are

similar). Suppose (C1, C2) ∈ Ck. Let P be such that N(P k
+) ≡ C1 and N(P k

−) ≡ C2.
So fk (P ) = 1. Since |C1| = |C ′

1| and |C2| = |C ′
2|, there is a permutation π on N such

that π (i) = j, π (j) = i, π (C1) = C ′
1, and π (C2) = C ′

2. Since |λ−1 (i) | = |λ−1 (j) |,
there is a permutation δ on M such that δ (λ−1(j)) = λ−1(i), δ(λ−1(i)) = λ−1(j),
δ (l) = k, and for all other k′ ∈ M\[λ−1(i) ∪ λ−1(j)], δ (k′) = k′. Then N(δ

πP l
+) =

π−1(N(P δ(l)
+ )) = π−1 (C1) = C ′

1. Similarly, N(δ
πP l

−) = C ′
2. By symmetric linkage,

fl

(
δ
πP

)
= fδ(l) (P ) = fk (P ) = 1. Therefore, (C ′

1, C
′
2) ∈ Cl. The proof of the opposite

direction is similar.
By Step 1, for each i ∈ N and each pair k, l ∈ λ−1 (i), Ck = Cl.
Step 2. Rule f is represented by an extended system of powers in eWΛ satisfying

horizontal equality.
Let N/λ be the partition of N such that for each pair i, j ∈ N , i and j are in

the same set G ∈ N/λ if and only if |λ−1 (i) | = |λ−1 (j) |. For each G ∈ N/λ, let
KG ≡ {k ∈ M : λ(k) ∈ G} be the set of issues linked to a person in G under
λ. Then M/λ ≡ {KG : G ∈ N/λ} is a partition of M . For each K ∈ M/λ, pick
k ∈ K and let i ≡ λ (k). Let IK

+ ≡ {(|C1|, |C2|) : (C1, C2) ∈ Ck and i ∈ C1}, IK
0 ≡

{(|C1|, |C2|) : (C1, C2) ∈ Ck and i *∈ C1 ∪ C2}, and IK
− ≡ {(|C2|, |C1|) : (C1, C2) *∈ Ck

and i ∈ C2}. For each l ∈ K ∈ M/λ, let eW2 (l) ≡ (IK
+ , IK

0 , IK
− ). Let eW1 (·) ≡ λ

and eW (·) ≡ (eW1 (·) ,e W2 (·)). Then by construction, eW (·) satisfies horizontal
equality. We next show that for each P ∈ PTri, each K ∈ M/λ, and each l ∈ K, if
λ (l) = j ∈ N ,

(11)
(i) when Pjl = 1, fl (P ) = 1 ⇔ (||P l

+||, ||P l
−||) ∈ IK

+ ;
(ii) when Pjl = 0, fl (P ) = 1 ⇔ (||P l

+||, ||P l
−||) ∈ IK

0 ;
(iii) when Pjl = −1, fl (P ) = −1 ⇔ (||P l

−||, ||P l
+||) ∈ IK

− .

When j = i, Step 1 says that the decision on the kth issue relies on person i’s
opinion, the number of agreeing persons, and the number of disagreeing persons.
Therefore, since for each l ∈ λ−1 (i), Cl = Ck, then (11) holds when j = i. When
j ∈ G\{i}, Step 1 says that for each l ∈ λ−1 (j), the decision on the lth issue is made
symmetrically to the decision on the kth issue. Therefore, (11) holds also for j and
l. "

Next we prove Theorem 1.
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Proof of Theorem 1. Theorem 1 follows directly from Propositions 3, 4 and 8, and
Lemmas 4 and 5. "

A.4. Proofs of Theorems 5 and 6.

Proof of Theorem 5. Let f be a rule on PTri (or RTri, recall that we will treat each
opinion matrix as a profile of trichotomous preference relations) satisfying the three
axioms (the proof for PDi or RDi is essentially the same). Then by Proposition 8, f
is represented by an extended system of powers eW (·) and eW1 (·) ∈ Λ. Let λ (·) ≡
eW1 (·). Without loss of generality, we assume N ⊆ M (since the number of objects
linked to a person is constant across persons, we may label at least one object by the
label of the person linked to it) and for each i ∈ {1, . . . , n}, λ (i) = i. By Proposition 8
and the assumption on λ, there exist three index sets I+, I0, and I− such that for
each P ∈ PTri and each k ∈M , if i ≡ λ (k),

(12)
(i) when Pik = 1, fk (P ) = 1 ⇔

(
||P k

+||, ||P k
−||

)
∈ I+;

(ii) when Pik = 0, fk (P ) = 1⇔
(
||P k

+||, ||P k
−||

)
∈ I0;

(iii) when Pik = −1, fk (P ) = −1 ⇔
(
||P k

−||, ||P k
+||

)
∈ I−.

Claim 1. For each s ∈ {+, 0,−},

(13) {(t1, t2) ∈ I∗ : t1 > t2} ⊆I s;
{(t1, t2) ∈ I∗ : t1 < t2} ∩I s = ∅.

Proof. Let (t1, t2) ∈ I∗ be such that t1 > t2. Suppose by contradiction (t1, t2) /∈ I+.
Let [0] ≡ n. For each l ∈ {1, . . . , n}, let [l] ≡ l, [n + l] ≡ l, and [−l] ≡ [n − l]. Let
P be the opinion matrix such that for each i ∈ {1, . . . , n}, if l ∈ {0, 1, . . . , t1 − 1},
P[i+l]i = 1; if l = t1, . . . , t1 +t2−1, P[i+l]i = −1; if l = t1 +t2, . . . , n, P[i+l]i = 0; and for
each k ∈M\{1, . . . , n} and each i ∈ N , Pik = −1. See Figure 3 for an illustration of
P . Then for each i ∈ {1, . . . , n}, there are t1 persons, {[i], [i+1], . . . , [i+ t1−1]}, who
have the positive opinion on the ith issue, t2 persons, {[i+t1], . . . , [i+t1+t2−1]}, who
have the negative opinion, and n − t1 − t2 remaining persons with the null opinion.
Hence for each i ∈ {1, . . . , n}, ||P i

+|| = t1 and ||P i
−|| = t2. Let i, j ∈ {1, . . . , n}. Let

π : N → N and δ : M → M be two permutations on N and on M transposing i and
j. Then the ith and the jth columns in δ

πP are obtained by making an one-to-one
and onto switch between the ith and the jth columns in P , not necessarily preserving
the row positions of entries.28 Thus, ||δπP i

+|| = ||P j
+||, ||δπP i

−|| = ||P j
+||, ||δπP j

+|| =
||P i

+||, and ||δπP j
−|| = ||P i

+||. By symmetry, fi

(
δ
πP

)
= fj (P ) and fj

(
δ
πP

)
= fi (P ).

Since ||P i
+|| = ||P j

+|| and ||P i
−|| = ||P j

−||, then ||P i
+|| = ||δπP j

+||, ||P i
−|| = ||δπP i

−||,
||P j

+|| = ||δπP j
+||, and ||P j

−|| = ||δπP j
−||. So fi (P ) = fi

(
δ
πP

)
and fj (P ) = fj

(
δ
πP

)
.

Hence fi (P ) = fj(P ). Since (t1, t2) /∈ I, fN (P ) = (−1, . . . ,−1). On the other
hand, by Pareto efficiency, fM\N = (−1, . . . ,−1). For each i ∈ N , let Ui (·) be
the representation of the trichotomous preference relation Pi. Then for each i ∈ N ,
Ui (f (P )) = 0. Let x be such that xN ≡ (1, . . . , 1) and xM\N ≡ (−1, . . . ,−1). Then
for each i ∈ N , Ui (x) = t1 − t2 > 0, contradicting Pareto efficiency.

28Note that Pii and Pji in the ith column are switched into Pjj and Pij in the jth column
respectively. Other entries in the ith column are switched into the entries in the jth column in the
same rows.
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P ≡





1 0 −1 −1 1 1
1 1 0 −1 −1 1
1 1 1 0 −1 −1
−1 1 1 1 0 −1
−1 −1 1 1 1 0
0 −1 −1 1 1 1




; δ

πP =





1 1 0 −1 −1 1
0 1 −1 −1 1 1
1 1 1 0 −1 −1
1 −1 1 1 0 −1
−1 −1 1 1 1 0
−1 0 −1 1 1 1





Figure 3. Construction of P in the proof of Theorem 5. An example
with |N | = |M | = 6, t1 = 3, t2 = 2, i = 1, and j = 2. Let π : N → N
be the transposition of 1 and 2 and δ : M →M the same transposition.

Let (t1, t2) ∈ I∗ be such that t1 < t2. Suppose by contradiction (t1, t2) ∈ I+. Then
using the same argument as above, we show fN (P ) = (1, . . . , 1) and fM\N (P ) =
(−1, . . . ,−1) . Let x ≡ (−1, . . . ,−1). Then for each i ∈ N , Ui (f (P )) = t1− t2 < 0 =
Ui (x), contradicting Pareto efficiency.

Similar arguments can be used to prove the same properties for I0 and I−. ♦
Note that the properties stated in (13) imply comprehensiveness of the three index

sets. Finally, for each s ∈ {+, 0,−}, let qs (ν) ≡ min{t1 : (t1, ν − t1) ∈ Is} for each
ν. Then (13) implies (6) and (7). Because of comprehensiveness of the three index
sets, (12) implies (2). "

We next prove Theorem 6.

Proof of Theorem 6. Let f be a rule over PTri satisfying the four axioms (the proof
for PDi or RDi is essentially the same). By Proposition 8, f is represented by an
extended system of powers eW (·) ∈ eWΛ. Then by neutrality, for each pair l, k ∈M ,
eW2 (l) = eW2 (k). Thus there exist three index sets I+, I0, and I− such that for
each P ∈ PTri and each k ∈ M , if (12) holds for i ≡ λ (k). Using essentially the
same argument as in the proof of Theorem 5, we can show that f is represented
by a quasi-plurality system of powers. Because of neutrality, the system is either
non-exclusive or monocentric. "
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