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Abstract

In the traditional framework of the network formation model, the
set of agents is assumed to be fixed. In this paper, we investigate
how the network changes in the variation of the set of agents. More
precisely, for a given set of agents, suppose that a pairwise stable net-
work is initially obtained. If a new agent enters the society, then the
initial network may not be pairwise stable anymore. Starting from the
initial network, a new network will be constructed by an improving
path. Eventually, for the new set of agents, a pairwise stable net-
work or networks in a closed cycle will be obtained. We define four
different notions of population sustainabilities which relates between
the initial and the new networks: link sustainability, distance sustain-
ability, connection sustainability, and graph sustainability. First, we
show that pairwise stability is not compatible with link sustainability
under mild assumptions on allocation rules. However, if we consider
specific models such as the connections and the coauthor models, the
complete network is the only network which is link sustainable all the
time.

JEL classification: C70, D70, D85.

Keywords: Network formation; Variable population; Pairwise stabil-
ity; Population sustainability.

∗California Institute of Technology, Pasadena, California 91125 USA.
†Department of Economics, Seoul National University, Seoul 151-746, Korea. E-mail:

ychun@snu.ac.kr. We are grateful to Sunghoon Hong, Chris Chambers, and the partic-
ipants of the eighth international meeting of the society for social choice and welfare,
SED 2006 conference on economic design, 2006 public economic theory meeting, and 2006
Taipei conference on economic theory and applications for their comments. This work was
supported by the Brain Korea 21 Project in 2003 and the Second Brain Korea 21 Project
in 2006.

1



1. Introduction

An analysis on the social and economic network is concerned with the follow-

ing situation: given a set of agents, two agents can add a link if they agree

on, and any agent can sever a link if he wants to; the link is beneficial, but

costly. In most studies (Jackson and Wolinsky [1996], Watts [2001], Jackson

and Watts [2002], and others), agents are assumed to behave myopically:

agents do not consider how their behavior might affect others’ decision.1 An

improving path is a sequence of adjacent networks that can be obtained when

agents add and sever links based on the myopic expectation. A pairwise sta-

ble network is the one in which agents do not have an incentive to add or sever

the links.2 Jackson and Wolinsky [1996] introduce and analyze the pairwise

stable network in a static setting, and show that it may not be compatible

with efficiency. Watts [2001] studies the dynamic process of network forma-

tion in a specific model, the connections model. Jackson and Watts [2002]

extend the dynamic network formation model to a general setting in which

agents could form or sever links by mistake and investigate the implications

of stochastic stability.

In this paper, we ask how a pairwise stable network changes in the vari-

ation of the set of agents assuming the agents behave myopically. More

precisely, for a given set of agents, suppose that a pairwise stable network is

initially obtained. If a new agent enters the society, then the initial network

may not be pairwise stable anymore. Consequently, starting from the initial

network, a new network for the new set of agents will be constructed by an

improving path. This dynamic process of network formation will lead to a

pairwise stable network or a closed cycle. For a given network, we define

its limiting networks as the pairwise stable network or the networks in a

closed cycle obtained through the dynamic process. We investigate whether

the relations between the original agents in the initial network remain un-

1Exceptions are Dutta, Ghosal, and Ray [2005], Watts [2002], Deroian [2001], and
others.

2For other definitions of stability, see for example Dutta and Mutuswami [1997], Jackson
and van den Nouweland [2005], and Slikker and van den Nouweland [2001].
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changed in its limiting networks. Our analysis can be applied to analyze how

a pairwise stable network changes upon an arrival of a new neighbor in a

town.

We introduce four different notions of population sustainabilities to make

a comparison between two networks; link sustainability, distance sustainabil-

ity, connection sustainability, and graph sustainability. Link sustainability

requires that upon the arrival of a new agent, the direct connection between

the original agents would not be affected. Distance sustainability requires

that the distance between any two original agents be unaffected. Connec-

tion sustainability requires that the connectedness between any two original

agents would not be affected. Graph sustainability requires that the arrival

of a new agent would not affect the graph at all: no severance of the existing

links and no addition of new links.

First, we show that for a certain class of allocation rules, pairwise stability

is not compatible with link sustainability.

Second, we analyze their implications in the contexts of the connections

and the coauthor models (Jackson and Wolinsky [1996]). In those mod-

els, a complete pairwise stable network is always link sustainable, but any

other pairwise stable network may not be link sustainable. Moreover, in

the symmetric connections model, any pairwise stable network is connection

sustainable. Also, depending on the values of the parameters in the model,

we can identify their ranges when a pairwise stable network is either graph

sustainable or distance sustainable.

The paper is organized as follows. Section 2 contains some preliminaries.

Section 3 introduces four notions of population sustainability and establishes

the logical relations between them. Section 4 presents impossibility results on

a general domain. Section 5 investigates their implications on specific models

such as the connections and the coauthor models. Concluding remarks follow

in Section 6. All the proofs are in the Appendix.
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2. A Model of Networks

We follow the terminology of Jackson and Wolinsky [1996] and Jackson and

Watts [2002], but modify the notation to allow variations in the set of agents.

Agents

Let N ≡ {1, 2, . . .} be a (finite or infinite) universe of “potential” agents.

Let N be the family of nonempty finite subsets of N, with elements denoted

by N and N ′.

Graphs

The relation between agents in a network is represented by a graph in

which a node represents an agent and a link captures a pairwise relation.

For all N ∈ N , let LN be the set of all subsets of N with size 2. A network,

or a graph, is g ≡ (N, L), where N ∈ N and L ⊆ LN . For N ∈ N , let GN

be the set of all graphs for N, and G ≡ {GN |N ∈ N}. For all i, j ∈ N , the

(undirected) link between i and j is denoted ij. For all g = (N,L) ∈ G, if

ij ∈ L, then nodes i and j are directly connected under g, and if ij /∈ L,

then nodes i and j are not directly connected under g. For all g ∈ G, let

N(g) be the set of nodes under g with at least one link, and L(g) be the set

of links under g. For all N ∈ N , let eN ≡ (N, ∅) be the empty network for

N, and gN ≡ (N, LN) be the complete network for N. A network g = (N, L)

is a singleton network if |N | = 1.

For all N ∈ N , let N c ≡ N \ N be the set of agents not in N . For all

g = (N, L) ∈ G and all k ∈ N c, let g ⊕ k ∈ GN∪{k} be the graph obtained

by adding a new agent k to N without affecting the set of links, that is,

g ⊕ k ≡ (N ∪ {k}, L). For all g = (N,L) ∈ G and all i, j ∈ N such that

ij /∈ L, let g + ij = (N, L ∪ {ij}) be the graph obtained by adding the link

ij to g. And for all g = (N, L) ∈ G and all i, j ∈ N such that ij ∈ L, let

g − ij = (N,L\{ij}) be the graph obtained by deleting the link ij from g.

If g′ = g + ij or g′ = g − ij, then g and g′ are adjacent.

A chain in g = (N, L) ∈ G connecting i1 and in is a set of distinct

nodes {i1, i2, . . . , in} ⊆ N such that {i1i2, i2i3, . . . , in−1in} ⊆ L. If such a
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chain exists, then nodes i1 and in are connected. A graph g = (N, L) ∈ G is

connected if for any two distinct nodes i, j ∈ N there is a chain in g connecting

i and j. A graph g = (N,L) ∈ G is a subgraph of g′ = (N ′, L′) ∈ G if N ⊆ N ′

and L ⊆ L′, written as g ⊆ g′. A connected subgraph g′ of g ∈ G is a

component of g if for any g′′ ∈ G with g′ ⊂ g′′ ⊆ g and g′′ 6= g′, g′′ is

not connected. In other words, a component of g is a maximal connected

subgraph of g. We note that an isolated node is included as a component in

our definition. Let C(g) be the set of all components of g.

For g = (N, L) ∈ G and i, j ∈ N , the (geodesic) distance between i and

j under g, d(i, j; g), is the smallest number of links connecting i and j. If

there is no chain connecting i and j in g, we set d(i, j; g) = ∞, and if i = j,

then d(i, j; g) = 0.

Value Function and Allocation Rule

A value function is a function v : G → R, which associates with any

g = (N, L) ∈ G a value in R. We normalize v by setting the value of

singleton components equal to zero. For N ∈ N , let VN be the set of all

value functions for N, and V ≡ {VN |N ∈ N}.
An allocation rule, or a rule, is a function Y : G × V → ∪N∈NRN , which

associates to any ((N,L), v) ∈ G × V a vector in RN . It allocates the value

of a network to agents.

A rule Y is budget balanced if, for all N ∈ N , all v ∈ VN , and all g =

(N, L) ∈ GN ,
∑

i∈N Yi(g, v) = v(g). A value function v is component additive

if for all N ∈ N and all g ∈ GN , v(g) =
∑

h∈C(g) v(h). A rule Y is component

balanced if for all N ∈ N , all component additive v ∈ VN , all g ∈ GN , and

all h ∈ C(g), v(h) =
∑

i∈N(h) Yi(g, v).

For all N ∈ N , let ΠN be the class of permutations from N to N . For all

g = (N,L) ∈ G and all π ∈ ΠN , let gπ ≡ {ij | i = π(k), j = π(l), for kl ∈ L}
be the graph obtained by permutating nodes in g by π. Let vπ : G → R
be defined by vπ(gπ) ≡ v(g). A value function v is anonymous if for all

g = (N, L) ∈ G and all π ∈ ΠN , v(gπ) = v(g). A rule Y is anonymous if for

all g = (N, L) ∈ G, all π ∈ ΠN , and all i ∈ N, Yπ(i)(g
π, vπ) = Yi(g, v).
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Pairwise Stability

As in Jackson and Wolinsky [1996], we assume that the formation of

a link requires the consent of both parties, but the severance can be done

unilaterally. Moreover, agents are assumed to behave myopically, that is,

they do not forecast how adding and severing a link might affect the future

formation of a network. A network is pairwise stable if no player would

benefit by severing an existing link and no two players would benefit by

forming a new link. Formally, a network g = (N, L) ∈ GN defeats an adjacent

network g′ = (N,L′) ∈ GN if either (i) for some ij ∈ L′, g = g′ − ij and

Yi(g, v) > Yi(g
′, v), or (ii) for some ij ∈ L, g = g′ + ij, Yi(g, v) > Yi(g

′, v)

and Yj(g, v) ≥ Yj(g
′, v). A network is pairwise stable if it is not defeated by

any adjacent network.

Improving Path and Cycle

An improving path (Jackson and Watts [2002]) from g ∈ GN to g′ ∈ GN

is a finite sequence of adjacent networks {g1, . . . , gl} with g1 = g and gl = g′

such that, for any t = 1, . . . , l − 1, gt is defeated by gt+1. It captures the

sequence of improvement in networks when agents form and sever links based

on the myopic expectation.

For all N ∈ N , a set of networks C ⊆ GN is a cycle if for any g, g′ ∈ C

there exists an improving path from g to g′. A cycle C is a closed cycle if no

network in C lies on an improving path leading to a network that is not in

C.

Limiting Network

For all N ∈ N , g′ ∈ GN is a limiting network of g ∈ GN if g′ is a pairwise

stable network or a network in a closed cycle that can be obtained by an

improving path from g. If g′ is pairwise stable, then g can improve to g′.

When g′ is obtained, it will be sustained. If g′ is in a closed cycle, then g can

improve to g′, but g′ will be repeatedly obtained. If a network is pairwise

stable, then its limiting network is itself. Using the limiting networks, we can

discuss a dynamic process of network formation through improving paths.
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From the proof of Lemma 1 in Jackson and Watts [2002], for any v and

Y , each network that is not pairwise stable lies on an improving path to a

pairwise stable network or a network in a closed cycle. This establishes the

existence of the limiting network. For all g ∈ G, let L(g) be the set of all

limiting networks of g.

3. Population Sustainability

A pairwise stable network g = (N,L) ∈ G is expected to remain unchanged

when the set of agents is fixed. However, if a new agent k ∈ N c enters the

problem, then the network may not be pairwise stable. Therefore, we may

have an improving path from g⊕k ∈ GN∪{k} to another network g′ ∈ GN∪{k}.

If g′ is pairwise stable or in a closed cycle for the new society, then we can

expect that g′ is sustained or repeatedly obtained. We investigate how the

relations between the original agents will be affected when the pairwise stable

network changes due to the arrival of a new agent. We propose four different

population sustainabilities analyzing the relations between original agents.

3.1. Link Sustainability

Link sustainability requires that upon the arrival of a new agent, the links

between all the original agents would not be affected. In other words, it

requires that the direct relation between the original agents remains to be

unchanged even though the set of agents is changed. All the initial links

should not be severed and an additional link, if any, should connect between

the new agent and an original agent.

Link Sustainability: For all N ∈ N , all k ∈ N c, all pairwise stable network

g = (N,L) ∈ GN , and all g′ ∈ L(g ⊕ k), L(g) = L(g′) ∩ LN .

Now we present an example of a link sustainable network by introducing the

connections model in Jackson and Wolinsky [1996].
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Example 1: Connections model. For all g = (N,L) ∈ G and all i, j ∈ N, let

ūi be his reservation utility he can obtain when he does not form any link,

wij ∈ [ 0,∞) be the intrinsic value of j to i, and cij ∈ [ 0,∞) be the cost to i

of maintaining the link ij. If i and j make a link, then i’s utility gain depends

on the intrinsic value and the distance between them. More specifically, for

some δ ∈]0, 1[, the utility gain is equal to wij discounted by δd(i,j;g). Then, i’s

utility under g is obtained by adding up his reservation utility, and the sum

of utilities that he obtains by making links with other agents minus the link

cost.

ui(g) = ūi +
∑

j 6=i, j∈N

δd(i,j;g)wij −
∑

j:ij∈L

cij. (1)

And the value of a network g is v(g) ≡ ∑
i∈N

ui(g) and the allocation rule is

Yi(g, v) = ui(g). For each N ∈ N , let ON be the set of all connections model

for N, and O ≡ ∪ON .

The symmetric connections model is of particular interest. In this model,

all reservation utilities are equal to zero, all intrinsic values are equal to one,

and all agents have the same cost of making a link. Therefore, i′s utility is

given as follows:

ui(g) =
∑

j 6=i, j∈N

δd(i,j;g) −
∑

j:ij∈L

c. (2)

Now, let N ≡ {1, 2, 3, 4}, δ = .9, and c = .2. Let g∗ = (N, {12, 23, 34}).
Note that g∗ is pairwise stable. Let k ∈ N c be a new agent, and g0 ≡
g∗ ⊕ k. We can show that improving paths from g0 to a pairwise stable

network are {g0, g0 + 2k}, {g0, g0 + 3k}, {g0, g0 + 1k, g0 + 1k + 4k}, and

{g0, g0+4k, g0+1k+4k} as shown in Figure 1. Since L(g∗) = L(g0+2k)∩LN =

L(g0 +3k)∩LN = L(g0 +1k +4k)∩LN = {12, 23, 34}, g∗ is link sustainable.

¤
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Figure 1 Link sustainability

3.2. Distance Sustainability

Link sustainability is concerned with the direct relation between the initial

agents. However, when a new agent enters the problem, the indirect relation

between the initial agents may have been changed. In Example 1, for any

k ∈ N c, d(1, 4; g∗) = 3 6= 2 = d(1, 4; g0 + 1k + 4k), so that the distance

between 1 and 4 has been decreased from 3 to 2. Even though the direct

relation between two agents are not changed, the indirect relation has been

affected.

To analyze such a situation, we propose a stronger notion of sustain-

ability, which requires that the distance between any two original agents be

unaffected upon the arrival of a new agent.

Distance Sustainability: For all N ∈ N , all i, j ∈ N, all k ∈ N c, all

pairwise stable network g ∈ GN , and all g′ ∈ L(g ⊕ k), d(i, j; g) = d(i, j; g′).

Next, we present an example of a distance sustainable network.

Example 2: A distance sustainable network in the symmetric connections

9



model. Let N ≡ {1, 2, 3, 4}, δ = .9 and c = .5. Once again, g∗ is pairwise

stable. Let g0 ≡ g∗⊕k. For any i ∈ N, the path {g0, g0 + ik} is an improving

path and g0 + ik is pairwise stable (Figure 2). Moreover, there does not

exist any other improving path. Since for all i ∈ N and all h, j ∈ N ,

d(h, j; g∗) = d(h, j; g0 + ik), g∗ is distance sustainable. ¤

· ·
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1 4
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· ·

· ·

·

· ·

· ·

·

· ·

· ·

·

· ·
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g0 + 1k g0 + 2k g0 + 3k g0 + 4k

	 � RU

Figure 2 Distance sustainability

3.3. Connection Sustainability

Our third sustainability is concerned with the connectedness between two

agents. Connection sustainability requires that the connectedness between

any two agents would not be affected upon the arrival of new agent. In fact,

we can easily check that g∗ in Examples 1 and 2 are connection sustainable.

For all g = (N,L) ∈ G, let Ni(g) ≡ {j ∈ N |d(i, j; g) < ∞}.

Connection Sustainability: For all N ∈ N , all k ∈ N c, all pairwise stable

network g ∈ GN , all g′ ∈ L(g ⊕ k), and all i ∈ N, Ni(g) = Ni(g
′)\{k}.
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3.4. Graph Sustainability

Our last notion, graph sustainability, requires that an arrival of a new agent

would not affect the graph at all: the new agent does not make a link with

the original agent and the existing links between original agents are not

affected. It can easily be shown that graph sustainability implies that other

three sustainabilities.

Graph Sustainability: For all N ∈ N , all k ∈ N c, and all pairwise stable

network g ∈ GN , g ⊕ k is pairwise stable in GN∪{k}.

Example 3: A graph sustainable network in the symmetric connections

model. Let N ≡ {1, . . . , 16}, c = 1 and δ = .9. In this model, Jackson and

Wolinsky [1996] show that the tetrahedron in Figure 3 is pairwise stable. Let

g be the tetrahedron. Let k ∈ N c be a new agent. Since c > δ, any i ∈ N

becomes worse-off if he adds ik to g ⊕ k. Thus, k is unconnected. Since g is

pairwise stable in GN , any i ∈ N does not have an incentive to sever or form

a link with any other agent in N . Therefore, g is graph sustainable. ¤

•

•

•• •

•

•

•

•

•

•
•

•
•

•

•

Figure 3 Graph sustainability

Remark 1: As noted earlier, graph sustainability implies distance sustain-

ability, which in turn implies link sustainability and connection sustainability.

For a graph with one component, link sustainability implies connection sus-

tainability. Otherwise, there is no direct logical relation between them.
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4. Impossibility Results

Now we investigate whether a pairwise stable network can be link sustainable

for a general allocation rule. Our main result here is negative: we show that

a pairwise stable network can not be link sustainable if an allocation rule

satisfies some properties. For this result, we introduce two more axioms.

Our first axiom, weak link symmetry, requires that if a new link is prof-

itable to one of the two agents forming the link, then it must be profitable to

the other agent. It was introduced by Dutta, van den Nouweland, and Tijs

[1998] in the context of communication games, where the value of a network

primarily depends only on the connectivity of a graph. It is much weaker

than fairness (Myerson [1977]), which requires that a new link should affect

the two agents forming the link by the same amount.

Weak Link Symmetry: For all N ∈ N , all v ∈ VN , all g = (N, L) ∈ GN ,

and all i, j ∈ N such that ij /∈ L, Yi(g+ij, v) > Yi(g, v) implies Yj(g+ij, v) >

Yj(g, v).

Improvement, also introduced by Dutta, van den Nouweland, and Tijs

[1998] in the context of communication games, requires that the formation

of a new link cannot benefit a player who is not involved in the link without

benefitting at least one of the two players involved in the link. Our second

axiom, weak improvement, requires that improvement should hold only when

the formation of a new link increases the value of the network.

Weak Improvement: For all N ∈ N , all v ∈ VN , all g = (N,L) ∈ GN , and

all i, j ∈ N such that ij /∈ L, if v(g + ij) > v(g), and for some k ∈ N \ {i, j},
Yk(g+ ij, v) > Yk(g, v), then Yi(g+ ij, v) > Yi(g, v) or Yj(g+ ij, v) > Yj(g, v).

We are now ready to present our main negative result. A pairwise stable

network with more than two nodes is not link-sustainable provided that an

allocation rule satisfies certain axioms.

Theorem 1: There is no allocation rule which satisfies component balance,

anonymity, weak link symmetry, and weak improvement, and that for all
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N ∈ N and all component additive v ∈ VN , at least one pairwise stable

network g with more than two nodes is link sustainable.

5. Applications: Possibility Results

Despite the negative result, if we restrict our attention to specific models,

we can have positive results. As in Jackson and Wolinsky [1996], we will

consider the connections and the coauthor models.

5.1. The general connections model

To figure out whether a pairwise stable network in a model is link-sustainable,

we should know all the parametric values of the model. However, in some

models, we can answer the question only looking at the network. We will

show that in the general connections model, the complete network is link

sustainable all the time. Moreover, if a network is not complete, then it may

not be link sustainable. For all g = (N, L) ∈ G, let O(g) be the class of all

connections models in which g is pairwise stable.

Theorem 2: A pairwise stable network g = (N, L) ∈ G is link sustainable

for all O ∈ O(g) if and only if g is the complete network.

As discussed in Remark 1, distance sustainablity implies link sustainabil-

ity. Moreover, for the complete network, its converse is true. Altogether, we

have the following corollary.

Corollary: A pairwise stable network g = (N,L) ∈ G is distance sustainable

for all O ∈ O(g) if and only if g is the complete network.

5.2. The symmetric connections model

In the symmetric connections model, we can establish additional positive re-

sults. All the pairwise stable networks are connection sustainable. Moreover,

depending on the values of parameters, a pairwise stable network can be

graph sustainable or distance sustainable.
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Theorem 3: In the symmetric connections model,

(i) Every pairwise stable network is connection sustainable.

(ii) If c > δ, every pairwise stable network is graph sustainable.

(iii) If c < δ − δ2, every pairwise stable network is distance sustainable.

5.3. The coauthor model

Now we consider the coauthor model in Jackson and Wolinsky [1996]. For

all g = (N, L) ∈ G and all i ∈ N, let ni ≥ 0 be the number of projects that i

is involved in. If ni = 0, ui(g) ≡ 0. Otherwise, i’s utility is defined to be:

ui(g) ≡
∑

j∈N :ij∈L

[
1

ni

+
1

nj

+
1

ninj

]
.

Furthermore, v(g) =
∑

i∈N ui(g) and Yi(g, v) = ui(g).

As in the connections model, the complete network is link sustainable,

but any incomplete pairwise stable network is not link sustainable.

Theorem 4: In the coauthor model, a pairwise stable network g = (N, L) ∈
G is link sustainable if and only if g is the complete network.

Once again, as in Theorem 2, link sustainablity can be replaced by distance

sustainability.

6. Conclusion

In this paper, we consider the situation when only one new agent enters

into a pairwise stable network. In other words, we consider two pairwise

stable networks merging into one when one of them is singleton. It would

be interesting if we can develop a general theory describing what happens if

two pairwise stable networks merge.

Another interesting question is to ask what happens to a pairwise stable

network if an agent leaves. The answer depends on the role of the leaving
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agent in the network. For example, suppose that a star network is pairwise

stable in a symmetric connections model. Since all agents have the same

intrinsic value and cost, it does not matter who enters the network as a

new agent. However, the network obtained after deleting the center node is

completely different from the network obtained by deleting one of any other

nodes.

We hope to address these issues in our future research.

Appendix

Now we present the proofs for all theorems.

Proof of Theorem 1: Let Y be a rule satisfying component balance,

anonymity, weak link symmetry, and weak improvement. It suffices to show

that, for some component additive value function, any pairwise stable net-

work with more than two nodes is not link sustainable. Let N ∈ N be such

that |N | > 2, and g ∈ GN , and α > 0. For h ∈ C(g), let v̄α be defined by:

v̄α(h) =





0, if h = gN(h) and |N(h)| > 2,

α · |L(h)|, otherwise.

Now we define the value function vα as follows:

vα(g) =
∑

h∈C(g)

v̄α(h).

Note that vα satisfies component additivity and anonymity.

Step 1: Let i, j ∈ N be such that ij /∈ L(g). If vα(g + ij) > vα(g), then

Yi(g + ij, vα) > Yi(g, vα) and Yj(g + ij, vα) > Yj(g, vα).

Proof. Let i, j ∈ N be such that ij /∈ L(g) and vα(g + ij) > vα(g). First,

suppose that for some k ∈ N \ {i, j}, Yk(g + ij, vα) > Yk(g, vα). By weak

improvement, Yi(g + ij, vα) > Yi(g, vα) or Yj(g + ij, vα) > Yj(g, vα). By weak

link symmetry, we have both Yi(g + ij, vα) > Yi(g, vα) and Yj(g + ij, vα) >
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Yj(g, vα). Next, suppose that for all k ∈ N \ {i, j}, Yk(g + ij, vα) ≤ Yk(g, vα).

Since for a component additive value function, component balance implies

budget balance,
∑

i∈N Yi(g + ij, vα) = vα(g + ij) > vα(g) =
∑

i∈N Yi(g, vα).

Therefore, we must have either Yi(g + ij, vα) > Yi(g, vα) or Yj(g + ij, vα) >

Yj(g, vα). By weak link symmetry, we have both Yi(g + ij, vα) > Yi(g, vα)

and Yj(g + ij, vα) > Yj(g, vα).

Step 2: If g is a graph obtained by deleting more than one link from the

complete network gN with |C(g)| = 1, then for all i, j ∈ N such that ij /∈
L(g), g is defeated by g + ij.

Proof. Let g be a graph obtained by deleting more than one link from the

complete network gN with |C(g)| = 1. By definition of vα, it is obvious

that for all i, j ∈ N such that ij /∈ L(g), vα(g + ij) > vα(g). By Step

1, Yi(g + ij, vα) > Yi(g, vα) and Yj(g + ij, vα) > Yj(g, vα). Therefore, g is

defeated by g + ij.

Step 3: Let g be such that |C(g)| > 1 and i, j ∈ N belong to two different

components of g. Then, g is defeated by g + ij.

Proof. Let g be such that |C(g)| > 1 and hi, hj ∈ C(g) be the components

of g that contains i and j, respectively. Let hi ≡ (Ni, Li) and hj ≡ (Nj, Lj).

Let h ≡ (Ni ∪ Nj, Li ∪ Lj ∪ ij). Since all the components other than h,

hi, and hj are not changed, we can compare the values of g and g + ij by

focusing only on the values of h, hi and hj. First, suppose that both hi and

hj are singleton, which implies that v̄α(hi) = v̄α(hj) = 0. Since h is complete

with only two nodes, v̄α(h) = α, so that v̄α(h) > v̄α(hi) + v̄α(hj). Next,

suppose that at least one of hi and hj has more than one node. Since h

is obtained by adding only one link between hi and hj, h is not complete.

Therefore, v̄α(h) > v̄α(hi) + v̄α(hj). In any case, v̄α(h) > v̄α(hi) + v̄α(hj),

which implies that vα(g + ij) > vα(g). By Step 1, Yi(g + ij, vα) > Yi(g, vα)

and Yj(g + ij, vα) > Yj(g, vα). Therefore, g is defeated by g + ij.

Step 4: If g = gN , then for all ij ∈ L(g), g is defeated by g − ij.

16



Proof. Let g = gN . Since |N | > 2, g has more than two nodes. Therefore,

vα(g) = 0. By component balance and anonymity, for all i ∈ N, Yi(g, vα) = 0.

For some i ∈ N, let g0 = (N, {lm ∈ g|l 6= i and m 6= i}) be the net-

work obtained by deleting all of i’s links from g. By component balance,

Yi(g0, v
α) = 0. Let N \ {i, j} = {l1, . . . , l|N |−2} and let g1 = g0 + il1,

g2 = g1 + il2, . . . , g|N |−2 = g|N |−3 + il|N |−2. Note that g|N |−2 = g − ij.

Since vα(g0) < vα(g1) < · · · < vα(g|N(g)|−2), by Step 1, Yi(g0, v
α) < · · · <

Yi(g|N(g)|−2, v
α) = Yi(g − ij, vα). Since Yi(g, vα) = 0 = Yi(g0, v

α), Yi(g, vα) <

Yi(g − ij, vα). Therefore, g is defeated by g − ij.

Step 5: A network g is pairwise stable if and only if for some i, j ∈ N,

g = gN − ij.

Proof. We prove the “only if” part. Suppose by way of contradiction that

there does not exist i, j ∈ N such that g = gN − ij. Then g is either gN or

a network obtained by deleting more than one link from gN . If g = gN , by

Step 4, for each ij ∈ L(g), g is defeated by g− ij. Otherwise, by Steps 2 and

3, for some ij /∈ L(g), g is defeated by g + ij, a contradiction.

We now prove the “if” part. For some i, j ∈ N, let g = gN − ij. Let

kl ∈ L(g). If |N | > 3, then g − kl has one component. By Step 2, g − kl

is defeated by g. If |N | = 3, then g − kl has two components and k and l

belong to two different components. By Step 3, g − kl is defeated by g. In

either case, g is not defeated by g − kl. Since g + ij = gN , by Step 4, g is

not defeated by g + ij. Altogether, we conclude that g is pairwise stable.

Step 6: Now we will prove the theorem. Let g ∈ GN be a pairwise stable

network. By Step 5, for some i, j ∈ N , g = gN − ij. Let k ∈ N c be a new

agent and g0 ≡ g⊕ k. Since i and k belong to different components in g0, by

Step 3, g0 is defeated by g1 ≡ g0 + ik. Since g1 is obtained by deleting more

than one link from gN∪{k} and has one component, by Step 2, g1 is defeated

by g2 ≡ g1 + ij. Applying Step 2 repeatedly, we generate an improving path

{g2, . . . , gr}, where for each t = 2, . . . , r − 1, gt+1 is obtained by adding one

link to gt, and for some l ∈ N, gr = gN∪{k}− lk. Then {g0, g1, g2 . . . , gr} is an

17



improving path. By Step 5, gr is pairwise stable and also, a limiting network

of g0. Since ij ∈ L(g2) and gr is obtained by adding links to g2, ij ∈ L(gr).

Therefore, L(g) 6= L(gr) ∩ LN , which implies that g is not link sustainable.

¤

Proof of Theorem 2: For all g = (N, L) ∈ G and all i, j ∈ N, let Ig(ij) = 1

if ij ∈ L and Ig(ij) = 0 if ij /∈ L. Then the equation (1) can be rewritten as

follows:

ui(g) = ūi +
∑

j 6=i, j∈N

[
δd(i,j;g)wij − Ig(ij)cij

]
. (3)

(i) We prove the “if” part. Since the proof is obvious when |N | < 3,

we assume that |N | ≥ 3. Let g = gN be pairwise stable. Let k ∈ N c be

a new agent and g0 = g ⊕ k. For all N ′ ⊆ N, let L(k, N ′) ≡ {ik|i ∈ N ′}
be the set of links connecting k and each agent in N ′, and g(k,N ′) ≡ (N ∪
{k}, LN ∪ L(k, N ′)). Since for all i, j ∈ N, d(i, j; g) = d(i, j; g(k, N ′)) and

d(i, j; g− ij) = d(i, j; g(k, N ′)− ij), ui(g(k, N ′)− ij)− ui(g(k, N ′)) = ui(g−
ij) − ui(g) + [δd(i,k;g(k,N ′)−ij) − δd(i,k;g(k,N ′))]wik. Since d(i, k; g(k, N ′) − ij) ≥
d(i, k; g(k,N ′)), δd(i,k;g(k,N ′)−ij)−δd(i,k;g(k,N ′)) ≤ 0, and therefore, ui(g(k, N ′)−
ij) − ui(g(k, N ′)) ≤ ui(g − ij) − ui(g). From the pairwise stability of g,

ui(g− ij)−ui(g) ≤ 0, which implies that ui(g(k, N ′)− ij)−ui(g(k,N ′)) ≤ 0.

Similarly, we can show that uj(g(k, N ′) − ij) − uj(g(k, N ′)) ≤ 0. Since the

choice of N ′, i, and j is arbitrary, for all N ′ ⊆ N and i, j ∈ N , g(k, N ′)− ij

does not defeat g(k, N ′). Therefore, if {g0, g1, . . . , gl} is an improving path,

then for all s ≤ l − 1, gs+1 = gs + ik or gs+1 = gs − ik for some i. Since

for all s = 0, . . . , l, L(g) = L(gs) ∩ LN = LN , we have for all g∗ ∈ L(g0),

L(g) = L(g∗) ∩ LN , so that g is link sustainable.

(ii) We now prove the “only if” part. For all N ∈ N , all O ∈ ON , all

g′ ∈ GN , and i ∈ N, let ui(g
′; O) be i’s utility from g′ in O. Let g ∈ GN be

link sustainable for all O′ ∈ O(g). Suppose, by way of contradiction, that g is

not complete. Then, there exist i, j ∈ N such that ij /∈ L(g). Let O ∈ O(g).

Since g is pairwise stable in O, we have either (1) ui(g + ij; O)−ui(g; O) = 0
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and uj(g + ij; O) − uj(g; O) = 0 or (2) ui(g + ij; O) − ui(g; O) < 0 or

uj(g + ij; O)− uj(g; O) < 0.

Case 1: ui(g + ij; O) − ui(g; O) = 0 and uj(g + ij; O) − uj(g; O) = 0. Let

k ∈ N c be a new agent and g0 = g ⊕ k. For sufficiently large p > 0 and

sufficiently small q > 0, let O′ ∈ ON∪{k} be obtained from O by setting new

parameters as follows: wik = wjk = wkj = p, for all h /∈ {j, k} wkh = 0,

cjk = q, and for all h 6= k, ckh = q. For all i1, i2 ∈ N , wi1i2 , δi1i2 , ci1i2 , and

ūi1 in O′ are equal to those of O. Therefore, for all h ∈ N and all g′ ∈ GN ,

uh(g
′; O′) = uh(g

′; O).

Since wjk and wkj are sufficiently large and cjk and ckj are sufficiently

small in O′, j and k have incentives to add jk to g0. Therefore, {g0, g0 + jk}
is an improving path in O′. Let g1 ≡ g0 + jk.

Now suppose that the limiting networks from g1 form a closed cycle in O′.

We show that there is at least one ḡ in the cycle such that L(ḡ)∩LN 6= L(g).

Suppose by way of contradiction that for all ḡ in the cycle, L(ḡ)∩LN = L(g).

Let the cycle be {ḡ1, . . . , ḡl, ḡl+1}, where ḡ1 = ḡl+1. Since L(ḡ1)∩LN = · · · =
L(ḡl)∩LN = L(g), for all s = 2, . . . , l+1, gs is obtained by adding fk to gs−1

or deleting fk from gs−1 for some f 6= k. Moreover, from ḡ1 = ḡl+1, there

exist t ∈ {2, . . . , l+1} and h 6= k such that ḡt = ḡt−1 +hk. Since wjk and wkj

are sufficiently large, and cjk and ckj are sufficiently small in O′, j and k do

not have an incentive to sever jk in O′ even though other links are changed.

Therefore, for all s = 1, . . . , l, jk ∈ L(ḡs), which implies that h 6= j. On the

other hand, since for all f /∈ {j, k}, wkf = 0 and ckh = q > 0, k becomes

worse-off if he adds hk to ḡt−1, which is impossible. Therefore, there is at

least one ḡ in the cycle such that L(ḡ)∩LN 6= L(g). Taken together, g is not

link-sustainable, which is a contradiction.

Next, suppose that the limiting network g∗ from g1 is pairwise stable in

O′. Let {g1, . . . , gl} be an improving path from g1 in O′, where gl = g∗. Then,

gl ∈ L(g0). For g′ ∈ GN∪{k}, let L(k, g′) ≡ {ik | ik ∈ g′} be the set of all links

that k has in g′. Since wjk and wkj are sufficiently large, and cjk and ckj are

sufficiently small in O′, j and k do not have an incentive to sever jk regardless
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of changes in other links, so that for all s = 2, . . . , l, jk ∈ L(gs). Since for all

h /∈ {j, k}, wkh = 0 and ckh = q > 0, for all s = 1, . . . , l− 1, k does not want

to have a link with h in gs. Therefore, L(k, g1) = L(k, g2) = · · · = L(k, gl) =

jk. Now suppose by way of contradiction that g is link-sustainable. Then

L(gl)∩LN = L(g) = L(g1)∩LN . Since L(k, gl) = L(k, g1) and L(gl)∩LN =

L(g1) ∩ LN , we have L(gl) = L(g1). Altogether, g∗ = gl = g1, which implies

that g1 is pairwise stable. On the other hand, for all h ∈ N , d(i, h; g1) =

d(i, h; g) and d(i, h; g1 + ij) = d(i, h; g + ij), ui(g1 + ij; O′) − ui(g1; O
′) =

ui(g + ij; O′)− ui(g; O′) + [δd(i,k;g1+ij) − δd(i,k;g1)]p. Since d(i, k; g1 + ij) = 2,

d(i, k; g1) ≥ 3, and ui(g + ij; O′) − ui(g; O′) = ui(g + ij; O) − ui(g; O) = 0,

ui(g1+ij; O′)−ui(g1; O
′) ≥ ui(g+ij; O′)−ui(g; O′)+(δ2

ik−δ3
ik)p = (δ2

ik−δ3
ik)p.

Since p > 0 and 0 < δik < 1, ui(g1 + ij; O′) − ui(g1; O
′) > 0. Since for all

h ∈ N , d(j, h; g1 + ij) = d(j, h; g + ij), d(j, h; g1) = d(j, h; g), and d(j, k; g1 +

ij) = d(j, k; g1), uj(g1 + ij; O′) − uj(g1; O
′) = uj(g + ij; O′) − uj(g; O′) =

uj(g + ij; O) − uj(g; O) = 0. Therefore, g1 + ij defeats g1, contradicting to

the pairwise stability of g1.

Case 2: ui(g + ij; O)− ui(g; O) < 0 (the proof is similar for uj(g + ij; O)−
uj(g; O) < 0). First, suppose that uj(g+ij; O)−uj(g; O) ≤ 0. Let O(p) ∈ ON

be obtained from O by replacing wji by p. If p = wji, then uj(g + ij; O(p))−
uj(g; O(p)) ≤ 0, and if p → ∞, then uj(g + ij; O(p)) − uj(g; O(p)) → ∞.

Since uj(g+ij; O(p))−uj(g; O(p)) is continuous in p, there exists p∗ such that

uj(g + ij; O(p∗))− uj(g; O(p∗)) = 0. Since ui(g + ij; O(p∗))− ui(g; O(p∗)) =

ui(g + ij; O)− ui(g; O) < 0, i has no incentive to add ij to g in O(p∗). From

the pairwise stability of g, for all k1, k2 ∈ N such that k1, k2 /∈ {i, j}, k1

and k2 have no incentive to add a new link to g or delete an existing link

from g in O(p∗). Therefore, g is also pairwise stable in O(p∗) and thus,

O(p∗) ∈ O(g). Now let O(p∗, q) be obtained from O(p∗) by replacing wij by

q. Similarly, there is q∗ such that ui(g + ij; O(p∗, q∗)) − ui(g; O(p∗, q∗)) = 0

and that O(p∗, q∗) ∈ O(g). Since ui(g + ij; O(p∗, q∗)) − ui(g; O(p∗, q∗)) = 0

and uj(g + ij; O(p∗, q∗))− uj(g; O(p∗, q∗)) = 0, by applying Case 1, we have

a contradiction.

20



Next, suppose that uj(g + ij; O) − uj(g; O) > 0. Let O(r) ∈ ON be

obtained from O by replacing cji by r. If r = cji, then uj(g + ij; O(r)) −
uj(g; O(r)) > 0, and if r → ∞, then uj(g + ij; O(r)) − uj(g; O(r)) → −∞.

Since uj(g + ij; O(r)) − uj(g; O(r)) is continuous in r, there is r∗ such that

uj(g + ij; O(r∗))−uj(g; O(r∗)) = 0. Since ui(g + ij; O(r∗))−ui(g; O(r∗)) < 0

and O(r∗) ∈ O(g), as before, we have a contradiction. ¤

Proof of Theorem 3: We prove (ii) first, and then (iii) and (i).

(ii) Let g = (N,L) ∈ GN be a pairwise stable network, k ∈ N c be a new agent,

and g0 = g⊕k ∈ GN∪{k}. Since for all i ∈ N, ui(g0)−ui(g0+ik) = −δ+c > 0,

g0 is not defeated by g0+ik. For all i, j ∈ N with ij /∈ L, ui(g0)−ui(g0+ij) =

ui(g)−ui(g + ij) and uj(g0)−uj(g0 + ij) = uj(g)−uj(g + ij), which implies

that g0 is defeated by g0 + ij if and only if g is defeated by g + ij. Since g is

pairwise stable, ui(g)− ui(g + ij) ≥ 0 and uj(g)− uj(g + ij) ≥ 0. Therefore,

for all i, j ∈ N with ij /∈ L, g is not defeated by g + ij, or equivalently, g0

is not defeated by g0 + ij. Similarly, we can show that for all i, j ∈ N with

ij ∈ L, g0 is not defeated by g0− ij. Since g0 is not defeated by any adjacent

network, it is pairwise stable, and therefore, g is graph sustainable.

(iii) Let g = (N, L) ∈ GN be a pairwise stable network and k ∈ N c be a new

agent. By Proposition 2 in Jackson and Wolinsky [1996], if c < δ − δ2, then

the only pairwise stable network is gN . Therefore, it suffices to show that gN

is distance sustainable. Let g′ ∈ GN∪{k} be such that g′ 6= gN∪{k}. For all i,

j ∈ N ∪ {k} such that ij /∈ L(g′), ui(g
′ + ij) − ui(g

′) ≥ δ − δ2 − c > 0 and

uj(g
′+ij)−uj(g

′) ≥ δ−δ2−c > 0, so that g′ is defeated by g′+ij. Since this is

true for all g′ ∈ GN∪{k} such that g′ 6= gN∪{k}, the only limiting network from

gN ⊕ k is gN∪{k}. Therefore, for all i, j ∈ N , d(i, j; gN) = d(i, j; gN∪{k}) = 1,

which implies that gN is distance sustainable.

(i) The proof is divided into three cases. Let g = (N,L) ∈ GN be a pairwise

stable network and k ∈ N c be a new agent.

Case 1: c < δ. First, suppose that for some ij /∈ L, |C(g + ij)| < |C(g)|.
Since for i, the cost of ij is c and the benefit of ij is more than or equal to
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δ, ui(g + ij)− ui(g) ≥ δ − c > 0, which implies ui(g + ij) > ui(g). Similarly,

uj(g + ij) > uj(g). Therefore, g is defeated by g + ij, which implies that a

pairwise stable network has only one component, that is, |C(g)| = 1.

Let g0 ≡ g⊕k. Since |C(g0)| = 2, g1 defeats g0 if and only if g1 = g0 +hk

for some h ∈ N . Let {g0, g1, g2, . . . , gl} be an improving path from g0. Then,

for t = 1, . . . , l− 1, |C(gt)| ≥ |C(gt+1)|. Since |C(g1)| = 1, for all t = 1, . . . , l,

|C(gt)| = 1. Since this is true for any improving path, g is connection sus-

tainable.

Case 2: c = δ.

Step 1: If |C(g + ij)| < |C(g)|, then g does not defeat g + ij.

Proof. Let hi, hj ∈ C(g) be the components of g that contains i and j,

respectively. Let hi ≡ (Ni, Li) and hj ≡ (Nj, Lj). Let h ≡ (Ni∪Nj, Li∪Lj ∪
ij). First, suppose that hi and hj are both singletons. Since for i, the cost

of ij is c and the benefit of ij is δ, ui(g + ij)− ui(g) = δ − c = 0. Similarly,

uj(g + ij) − uj(g) = 0. Therefore, g does not defeat g + ij. Now suppose

that at least one of hi and hj, say hi, is a non-singleton. Since hi is a non-

singleton, uj(g + ij)− uj(g) > δ− c = 0. And ui(g + ij)− ui(g) ≥ δ− c = 0.

Altogether, g + ij defeats g, which implies that g does not defeat g + ij.

Step 2: If g = (N, L) ∈ GN is pairwise stable, then g is the empty network

or |C(g)| = 1.

Proof. Since the proof for |N | ≤ 2 is obvious, we assume that |N | > 2.

Suppose by way of contradiction that there is a nonempty pairwise stable

network g with |C(g)| > 1. Then there exist a non-singleton component

h1 ∈ C(g) and another component h2 ∈ C(g). Let i ∈ N(h1) and j ∈ N(h2).

By Step 1, g + ij defeats g, which contradicts to the pairwise stability of g.

Step 3: A pairwise stable network is connection sustainable.

Proof. By Step 2, g is either the empty network or |C(g)| = 1. If g is the

empty network, we can easily show that g⊕k is pairwise stable, which implies

that g is graph sustainable. By Remark 1, g is connection sustainable.
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Next, suppose that |C(g)| = 1. Since |N | > 2, the component is non-

singleton. Let g0 ≡ g ⊕ k. Since |C(g0)| = 2, by the pairwise stabil-

ity of g and Step 1, g1 defeats g0 if and only if g1 = g0 + hk for some

h ∈ N . Let {g0, g1, g2, . . . , gl} be an improving path from g0. By Step 1, for

t = 1, . . . , l − 1, |C(gt+1)| ≤ |C(gt)|. Since |C(g1)| = 1, for all t = 1, . . . , l,

|C(gt)| = 1. Since this is true for any improving path, g is connection sus-

tainable.

Case 3: c > δ. By (ii), any pairwise stable network is graph sustainable. By

Remark 1, it is connection sustainable. ¤

Proof of Theorem 4: From Proposition 4 in Jackson and Wolinsky [1996],

(i) a pairwise stable network g = (N, L) ∈ GN can be partitioned into fully

intraconnected components, each of which has a different number of mem-

bers, and that m > n2, where m is the number of nodes of one component

of g and n is the next largest in size. In the proof, it is also shown that (ii)

if for some i, j ∈ N, nj ≤ max{nh | ih ∈ L}, then i strictly prefers to have

a link with j. In addition, it can easily be shown that (iii) if for some i ∈ N,

ni = 0, then he wants to have a link with any other agents.

First, we prove the “if” part. Let N ∈ N , gN be the initial network,

and k ∈ N c be a new agent. Note that the complete network is always

pairwise stable. For N ′ ( N , let L(k,N ′) ≡ {ik|i ∈ N ′} be the set of all

links connecting k and any other agents in N ′, and g(k, N ′) ≡ (N ∪{k}, LN ∪
L(k, N ′)). By (ii) and (iii), for all N ′ ( N, g′ defeats g(k, N ′) if and only if

g′ = g(k, N ′) + ij for some i, j ∈ N ∪ {k} with ij /∈ L(k, N ′). Therefore, an

improving path from g0 ≡ gN ⊕ k is of the form {g0, . . . , gl}, where for all

t = 0, . . . , l − 1, gt+1 = gi + ik for some i ∈ N . Hence L(g0) =
{
gN∪{k}} ,

which implies that g is link sustainable.

We now prove the “only if” part. Let g ∈ GN be a pairwise stable network

and k ∈ N c be a new agent. By way of contradiction, suppose that g is link

sustainable, but not complete. By (i) and (iii), this can happen only when

|N | > 4, and moreover, there are at least two components of g. Let i be in
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the largest component of g and j be in the next largest component of g. Let

g0 = g⊕k. By (ii) and (iii), k and i want to make a link, so that g0 is defeated

by g0+ik. In g0+ik, j and k also want to make a link. Therefore, g0+ik+jk

defeats g0 + ik. By applying the argument repeatedly, we have an improving

path {g0, g0 + ik, g0 + ik + jk, . . . , gN∪{k}}. Since L(g) 6= L(gN∪{k})∩L(gN),

g is not link sustainable, which is a contradiction. ¤
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