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UNCONDITIONAL ESTIMATION OF TIME-VARYING-PARAMETER
MODELS: A GIBBS-SAMPLING APPROACH *

CHUNG-KI MIN *

This study addresses the issue of unconditional estimation of regression models
with time-varying parameters. Using a data augmentation in which unobserved ran-
dom coefficients are treated as missing data, procedures for the Gibbs sampler are
developd. Several examples are presented to illustrate how the Gibbs-sampling proc-
edures perform in practice.

I. INTRODUCTION

Regression models with time-varying parameters have received a great deal of
attention in econometrics. One simple form of the time-varying-parameter (TVP)
models is:

Yo =% + u, u, ~ iid N(0, &°) )
.Bt = ﬂt—l + ts n ~ 1d N(O, 521) (2)

where a (2 X 1) coefficient vector 8, follows a vector random walk process. This
TVP model contains a hyperparameter 0 which determines the variability of re-
gression coefficients {8, =1, -, T} over time. For example, J =0 implies con-
stant regression coefficients over tlme, i. e, 8=/ for all £. When the hyperpar-
ameter ¢ is known, this model can easily be estimated and be used for forecasting
problems with an application of the Kalman filtering algorithm. However, since
the hyperparameter ¢ is unknown in most econometric applications, previous stud-
ies in the literature have conditioned 6 on chosen values.? For example, the maxi-

*1 would like to thank Siddhartha Chib, Edward I. George, Robert E. McCulloch, Mike West,
Herman K. van Dijk, Amold Zellner, and two anonymous referees for their helpful comments. Of
course, all remaining errors belong to me.
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! Previous studies used models in which a hyperparameter 6** represented the ratio of the variance
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mum likelihood approach is conditioned on the value of ¢ which maximizes a
concentrated likelihood function of & (Cooley and Prescott(1976), Doan et al.
(1983), and Harvey(1978)). Using Bayesian methods, Liu and Hanssens(1981)
have derived a conditional posterior density for regression coefficients using the
modal value of the marginal posterior density for & that is, p(8r| 5, D) where &
is the mode and D denotes the data available for estimation. However, unless the
conditional posterior densities are insensitive to changes in d, the conditional an-
alysis may be misleading with a choice of an inappropriate value of 4. Rather, it
would be desirable to estimate the marginal posterior densities for parameters by
integrating out the hyperparameter 0.

The Bayesian approach to estimating marginal posterior densities of the TVP
model requires integrations which are analytically intractable. Previous efforts to
approximate marginal posterior densities include: (1) analytic approximations
(Tierney and Kadane(1986)); (2) importance sampling method (Chib et al.(1990)
and Zellner and Rossi(1982)); and (3) quantile integration method (Johnson
(1992)). However, these methods are practically impossible to apply when a hy-
perparameter space is high-dimensional.? More recently, a Markov-Chain Monte
Carlo simulation method, known as the Gibbs sampler, has been developed for
Bayesian analysis by Gelfand and Smith(1990) and others. The Gibbs sampler
calculates marginal and joint densities using random samples from their full con-
ditional - densities. As shown in what follows, although marginal posterior densit-
ies of the TVP model are analytically intractable, the model’s conditional pos-
terior densities are well-known distributions from which it is easy to draw ran-
dom samples. Therefore, the Gibbs sampler would be another approach to ap-
proximating the marginal posterior densities for the TVP model.

The purpose of this paper is to develop Gibbs sampling procedures which can
approximate the marginal posterior densities for an extended version of the abov-
e TVP model (1) and (2). Other numerical methods such as the Simpson’s rule
are intractable for the extended model because its hyperparameter space is
high-dimensional. The Gibbs sampling procedures work via a data augmentation
in which unobserved random coefficient vectors, 8,, -+, Br, are treated as miss-
ing data. It is shown that the Gibbs sampler performed well for data generated
from regression and autoregressive models with time-varying parameters, in the
sense that the Gibbs sampler converged and the Gibbs-estimated marginal pos-
terior densities of parameters were close to their conditional posterior densities

of 8 to the variance of 3, o°: i. €., 7 ~iid N(0, §*’I). Since a high correlation between 6* and o
causes an identification problem, the above specification (2) is employed in this study. I am grateful to
Mike West for this suggestion.

2 This study develops Gibbs sampling procedures for an extended version of the TVP model, in
which the hyperparameter space is high-dimensional: i. e., 8= 8t-1 + m, 7~ iid N(Q, A) where A is a
k X k matrix.
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evaluated at the value of the hyperparameter 6 used in the data generation. In
order to estimate parameters more precisely, this paper extends the Gibbs-sam-
pling procedures to use multiple observations in each time period. In addition,
applications to optimal prediction problems are illustrated using squared and ab-
solute error loss functions.

The rest of this paper is organized as follows. Section II explains the problem
with which this paper deals. In section II, a Gibbs sampling procedure is devel-
oped for a TVP model with a single observation in each period and is applied to
simulated data. Then, an extension of the Gibbs sampling procedure for the TVP
model with multiple observations in each period is presented in section IV. In sec-
tion V, applications of the Gibbs sampler to optimal prediction problems are
illustrated. Concluding remarks are made in the final section.

. THE PROBLEM

In order to use the TVP model, (1) and (2), for forecasting future values, we
need to estimate the marginal posterior density for 8, the last period’s coefficient
vector. The marginal posterior density for B, can be obtained by integrating out
o and § in the joint posterior density for (8r, o, 9): i. €.,

p(BT‘DT) = jp(ﬂr, o, 5|Dr)d5
= [p(B:l0, 8, Dr) - Plald, Dy) - M6 | D)o €))

where D; denotes the information available at time T, 1. e., D ={yr, -, %, %1,
-, x,}. It is well known that the conditional posterior density for 8;, p(8:la, 9,
D), is a multivariate normal density. However, the problem arises with p(6 | D7)
which is too complicated for analytic integration. To show this, we first define a
joint density for (¥r, ¥r-1, ***, Y1), conditioned on (4, o) and D, as the product
of one-step-ahead predictive densities:

p(yTs HhrY yk+l Iés o, Dk, sz Tt xk+|)
= Ieen P(y¢|5, Gy YVicrs o005 Yis Xiy 020y xl)
-L T A
o€ {IT e (172 +xV.iox)) ? exXp { _t=§H (y: = X )2/2(0'2 + x;Vl—lxt)}
~ e N{x;.é\t—l ) (0'2 + x{V:—lxt)} (4)

where 4., = E(B.-.15, 0, D,-) = E(8.15, 6, Di-)), Viey=Cov(B|6, o, Di) and &

is the dimension of a column vector .. In evaluating the joint density, the first &
observations were used to compute ,[9\,, and ¥, which were required for defining a
conditional predictive density of Yiw, PVisi| Ve s Wy 8, 0, Fiwr, =, X0
Employing a prior density for (5, o) given D, , p(J, o|Ds), we can derive a pos-
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terior density for 6 as follows:
ﬂ(s |DT) CC Ip(aa UIDk) ° p(yT, "y yk+| Iéa g, Dlz, xT, R xkﬂ)do-‘ (S)

Unfortunately, the posterior density for ¢ resulting from the above integration is
not a well-known distribution in general, and it is not possible to perform the in-
tegration required in (3) analytically.

In this study an indirect approach to the integration problem is employed for
marginal posterior densities. The Gibbs sampling methods use only full con-
ditional densities in approximating joint and marginal densities. As shown in the
following section, the full conditional posterior densities in the TVP model (1)
and (2) are well-defined and it is easy to draw random samples from them. For
example, even though the marginal density p(6 | D) is of a complicated form, a
conditional density for 6, e. g., P68, +-, By, Dr), is an inverted gamma den-
sity. Therefore, the Gibbs sampler would be able to approximate the marginal
posterior densities for the TVP models.

II. GIBBS SAMPLER FOR MODELS WITH A SINGLE
OBSERVATION IN EACH PERIOD

3.1 Description of the Gibbs Sampler

The Gibbs sampler is a Monte Carlo method for approximating joint and
marginal distributions by sampling from conditional distributions. This method is
well discussed by Casella and George(1992), Gelfand and Smith(1990) and Gem-
an and Geman(1984), among others. Further, the applications of the Gibbs sam-
pler to various problems are found in Carlin et al.(1992), Blattberg and George
(1991), Chib(1993), McCulloch and Rossi(1994), and the references cited therein.
A basic idea of the Gibbs sampler is as follows. Let &, and 6, be two random
variables, possibly random vectors. Suppose their full conditional distributions
are known and denoted by p(@,|6,) and pO,|6)), respectively. Given an arbi-
trary starting value &7, draw 6 from p(@,|67) and &, from p(@,|6"). Then
repeat the drawing using & as a new starting value. After K such iterations, we
would arrive at (6%, 8% ). Geman and Geman(1984) have shown that under re-
gularity conditions, the joint and marginal distributions of (6%, 8% ) converge to
the joint and marginal distributions of &, and 6,: i. e., as K— o, (67, 67 )—
®, 6,)~ p6,, 6,) and 8% —6,~ p@B,) fori=1, 2.

The marginal densities and their moments of &, and &, may be approximated
by repeating the Gibbs sampling iteration K + N times and then using the drawn
values in the last N iterations, where K is to be chosen large enough so that the
Gibbs sampler has converged and N is to be chosen to give sufficient precision to
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the empirical distributions of interest. For example, the mean of the marginal dis-
tribution of &, might be approximated by =), 8% /N, or by £%L, E@,16%7)IN
using conditional expectations. And the marginal distribution of &, might be ap-
proximated by the empirical distribution of @4, -+, 8/™), or by ¥, E@,|
6%™)IN using the information about condltlonal dlstributions.

Concerning the convergence issue, this study follows a practical suggestion
made in McCulloch and Rossi(1994). We plot the estimates of posterior densities
over Gibbs iterations. If these estimated posterior densities show little variation
with additional Gibbs iterations, we may conclude that the Gibbs sampler has
converged to the posterior densities. We also conduct an analysis of the sensi-
tivity of estimated posterior distributions to various, widely dlspersed starting val-
ues, €. g., 6. Theoretical discussions on the convergence issue can be found in
Geweke(1992), McCulloch and Rossi(1994), Tierney(1994) and Zellner and Min
(1995). Further, Zellner and Min(1995) have developed convergence criteria whic-
h determine not only whether the Gibbs sampler has converged but also whether
it has converged to a correct result.?

3.2 Full Conditional Posterior Densities '

The following extended version of the TVP model, (1) and (2), is considered
in what follows:

v, =x8 + u, u, ~ iid N(0, &) ' (6)

B[ = ﬁ¢-| + 7];, 77[ -~ iid N(O, A) (7)
where A is a diagonal matrix with elements (3}, &, -+, ;). If all of the diagonal
elements are equal, i. €., §,=--- =9, =6, then it reduces to the specification in (2),
ie, A=81

This extended TVP model can be expressed as follows:

M x{ 0 B U,
Y. = Xy 8| + U, ®)
Yr 0 Xr Br Ur

31t is illustrated in Zellner and Min(1995) that the Gibbs sampler can be caught in trouble in sev-
eral cases. Since the TVP model doesn’t belong to those cases, the application -of the convergence cri-
teria proposed in Zellner and Min(1995) is not reported in this paper.
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T 0 0 - 0] [ A A "]
—I I O e 0 ﬂz O 7
0-1 I : Bl=10| 8t+t| n ()
L0 - -1 1] Lgd Lo L

or, using matrix notations,
Y, =XY + u, u ~ NO, o’'I,) ‘ 10)
AY =JB, t+ 7, n~ NO, I, ®A) (8))

where the definitions of ¥, X, ¥, u, A, J and # are obvious, and ® is the Kron-
ecker product. This TVP model contains parameters (4, o, A) and unobserved
random variables ¥" ={8/, -+, 87}.

The Gibbs sampling procedures developed below work via a data augmen-
tation in which the unobservable random variables ¥ are added to the distribu-
tional setup (Tanner and Wong(1987)). The full conditional posterior densities for
(8o, 7, o, A) may be expressed as p(B, ¥ |, A, D;) and pla, Al B, ¥, D;). Then,
random drawings from the full conditional posterior densities can be imple-
mented in a simple way using the following relationships:

KBo. V10, A, D) = DBalo, A, D) - 5V | By o, A, D) (12)
2o, Al 8o 7, D) = ol B 7, D) - DAl By ¥, D7) 13)

That is, we can obtain a random sample from p(8,, ¥ | s, A, D) by first drawing
B* from p(By|a, A, D;) and then drawing ¥* from p(¥ | 8%, o, A, D). Similarly,
we first draw ¢* from p(o| By, ¥, D;) and then draw A* from p(A|d*, B,, ¥, Dy).
Since po|Bo, ¥, Dy) is independent of B, and AA s, £, ¥, D;) is of ¢ and D;,
we complete the Gibbs sampler by specifying p(8:|a, A, D), p(Y | B, o, A, D),
oY, D;) and pAI B, V).

1. Priors:
ABle, A) o constant (14)

P Bo, 0, A) ~ N{A™' JBo, A7 (LOAA™ (1%
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Meol?) < 1o (16)
pHA) o [A|T" i a7

where the conditional prior for ¥, (15), is obtained from (11):i. e, ¥=4"'J8, +
A“,,_v

2. Conditional Posterior Densities®:

HBulo, A, D) ~ NGB, V) (18)
P18y, 0, A, 7, D) ~ N®, W) ' (19)
17, D)) o< =k expl=(y = X1 (v = XV)2s'} (20)
Do B ) & =i expl(—2 (8, = B )25} for i=1, - 1)

()

where 8, = I: XJTA"XQ',0=@T1+XA";QNA'X),V =J'47XQ"™
XA D", Y =W X {Xyle+ A ;RN " JB}, and W ={X"X|s+ 4", QA"
A3

3. Gibbs Sampler:

With the full conditional densities derived above, a Gibbs sampling procedure
can be designed as follows:

(1) Initialize the values of o and A, €. g., 6 and A°.
(2) Repeat steps (a)—(d) K+ N times. For =1, -+, K+ N,
(a) Sample B9 from p(B,|6°™", A°", D;) which is a multivariate normal, as

in (18).

(b) Sample ¥ from p(¥ |57, ¢*", A“”, D;) which is a multivariate normal,
as in (19).

(c) Sample o” from p(s|7?, D;) which is an inverted gamma (IG) density, as
in (20).

¢ The difffuse priors used for 8, o and A are improper. However, it is well known that the poster-
iors become proper with enough sample information. Although this study employs diffuse priors to
minimize the effects of prior information, informative proper priors could be employed without diffi-
culty.
5See Appendix for the detailed derivation of the conditional posterior densities.
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(d) Sample A? from p(A | 82, ¥) which is an IG density, as in (21).
3.3 Example 1

The Gibbs sampling procedure proposed above is applied to a simulated data
set. The objective is to illustrate how the Gibbs sampling procedure performs in
practice. Data are generated according to the following model,® with =1, e=1
and z,’s being drawn independently from a uniform distribution with an interval
0, 10) for t=1, 2, ---, 20:7

v = %8, + u, u, ~ N, &) ' (22)
,31 = ,81-1 + s /e N(O, 5212) (23)

where x/=(1 z,) and 8,=(8.8.)", a 2 X 1 coefficient vector. While only one sim-
ulated case is presented in this section, the Gibbs sampler has performed similarly
well for other data generated from multiple regression and autoregressive models.

The Gibbs sampler converged quite well according to the plots of the estim-
ates of posterior densities over Gibbs iterations. And, the Gibbs-estimated mar-
ginal posterior densities for regression coefficients were close to the parameters’
conditional posterior densities evaluated at the value of J used for generating the
data. Therefore, I may conclude that the Gibbs sampler performed well in esti-
mating the marginal posterior densities.

The Gibbs-estimated marginal posterior densities in Figure 1 were obtained
by averaging conditional posterior densities, €. g., 22 p(B.r 167, ¢°, D1)/19,000
where 6” and ¢” are the drawn values in the 1,001st through 20,000th Gibbs-
sampler iterations. The modes of the Gibbs-estimated marginal posterior densities
for B and B.r are —2.9 and —11.68, respectively, while the values of (8.r, B.)
used for the data generation are (—3.37, —11.27). The Gibbs-estimated marginal
density for B, has fatter tails than the conditional posterior density evaluated at
- §=1, the value used for the data generation, although the differences in the tail
areas are too small to be shown in the figure.

However, it seems that precise estimation of § and ¢ is not possible when
only one observation is available in each period. A substantial portion of ¢ tends

6 The same value of & is used for the intercept and the regression coefficient. Therefore, the Gibbs

. kT
sampler will use the following conditional posterior density for 6: X8 | Bo, ¥) S lm, exp{—X X (Bu
“i=1 t=1
— Bu-1)*[26"}, a special form of equation (21).
7 Using -1 =0 and B-,=1 for starting values, I generated 21 observations and discarded the first

observation.



CHUNG-KI MIN:UNCONDITIONAL ESTIMATION OF TIME-VARY ING-PARAMETER 57

to be absorbed into J. In other words, a part of a transient shock to y is estim-
ated as a change in the coefficient vector £ which can vary over time. As expec-
ted, the Gibbs sampler overestimated ¢ and underestimated o, implying that the
importance of the persistent effects was overestimated.? Note that 7, in the TVP
model represents the persistent shocks to the system, while #, represents the tran-
sient shocks. The proportion of the variance of #, i. e., &°, in the total variance,
i. e, (¢ + %), had a mean of 0.915 and a standard deviation of 0.185, ranging
between 0.019 and 1. Remember that the model used o=1 and § =1 for the data
generation, with the proportion equal to 0.5. More precise inference about 6 and
o would be possible when we use multiple observations in each time period, be-
cause the availability of time series of cross-sections provides much more scope
for investigating the nature of time-varying parameters (Harvey(1978)). The Gib-
bs sampling procedure is extended for the TVP model with multiple observations
in the next section. ; /

V. GIBBS SAMPLER FOR MODELS WITH MULTIPLE
OBSERVATIONS IN EACH PERIOD

Introducing subscript j(= 1, 2, -, M) to represent individual data-generating
units, we express the TVP model with multiple observations as follows:

b7 X, U,
B2 = | X, | 7+| w . (24)
J"M XM Z'tM

AY =JB + 7, 7~ NO, I; ®A) (25)

where #,~ N(0, ¢’ I;) and #%,’s are mutually independent for all. 5.
4.1 Full Conditional Posterior Densities
1. Priors:

ABila, A) o< cohstant ' (26)

81t is not the problem with the Gibbs sampler, but with the nature of the model itself. However,
precise estimates can be obtained using multiple observations in each period, which is discussed. in the
next section. :
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[Figure 1] Marginal and Conditional Posterior Densities for B.r, B.r, o and 0
(Example 1) ' :
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Solid lines are the plots of the Gibbs-estimated marginal posterior densities, and dotted lines are those
of the conditional posterior densities evaluated at the value of the hyperparameter used for data gener-
ation, i.e., 6=1. Arrows show the values used in generating the data.
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[Figure 1] (continued)
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D1 B, 0, A) ~ N{AJBs, A7 JBi, A (L, ®NA™} @7)
Mol?) o 1o : (28)
pA) o [A]™" | ! (29)

2. Conditional Posterior Densities:

PBilo, A, D) ~ NG, V) (30)
Y 1By, 0, A, D) ~ NO, W) @1
Pal?, D) o< —t— exp(=% (5, = X ~ X)2'} (32)
P61 Buy 7) 5,+, exp(—% (B — B )20 for i=1, -, k (33)

where A=V X (E". JAVX0;' ¥), 0= 1+ X4 (LONA"X), V={
AV (" X050 X,)A" LY =W X2, Xiy;ld + AU @A) JB,}, and W=
M., X Xle+ A4 QA)'4}".

3. Gibbs Sampler:

With the full conditional densities derived above, a Gibbs sampling procedure
can be designed as follows:

(1) Initialize the values of o and A, e. g., 6%and A“” ,
(2) Repeat steps (a)—(d) K+ N times. For i=1, ---, K+ N,
(a) Sample 89 from PG|, A", Dy) whlch is a multivariate normal, as
in (30)
(b) Sample ¥* from p(¥ | 87, ¢°", A“", D;) which is a multivariate normal,
as in (31).
(c) Sample ¢” from pla |7, D;) which is an IG density, as in (32)
(d) Sample A? from p(A| B2, ¥?) which is an IG density, as in (33).

4.2 Example 2
The TVP model with multiple observations assumes the same regression coef-

ficients for all observations in the same period. Therefore, two more observations
for each period were generated using the same values of 8, as in Example 1. Ta-
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king the values of 8, from Example 1, I generated ¥, using (22) with o=1 and z,
being drawn independently from a uniform distribution with an interval (0, 10).

It is shown in Figure 2 that the Gibbs-estimated marginal posterior densities
for B and B.r are very close to the conditional posterior densities evaluated at o
=1, the value used for data generation. Comparing with Figure 1, we can see
that use of multiple observations produced more precise estimates of the mar-
ginal posterior densities for 8., and B, than use of single observations did. Fur-
ther, Figure 2 shows that use of multiple observations produced accurate estim-
ates for ¢ and . The Gibbs-estimated densities for ¢ and & are skewed to the rig-
ht and look like inverted gamma densities. And their modes are 1.1 for both o
and 6, while the value used for data generation is 1 for both parameters. The
proportion of the variance of #, i. e., §°, in the total variance, i. e., & + &, in the
total variance, i. €., (¢’ + ¢°) had a mean of 0.503 and a standard deviation of
0.104, ranging between 0.151 and 0.866. Remember that the model used o =1
and §=1 for the data generation, with the proportion equal to 0.5. It suggests
that the multiple-observation model be used if we are interested in estimating the
relative importance of permanent effects as compared to the one of transient ef-
fects.

V. PREDICTION

The evaluation of marginal predictive densities for the TVP model involves
integrations which are impossible to perform analytically for the same reasons
explained in Section 2. By employing the Gibbs sampler, the marginal predictive
density for yr.i, p(¥r+i | %74, Dr), would be approximated by an average of con-
ditional predictive densities, i. €., P(Vrsi| %re, D)=L, pWrei| B 62, A, xr,
Dr)/N where P(ym |/3(?, O'm, A(D, Xr+1y DT)"'N{xrlﬂﬂ“;, (0'(m+xr/+|waT+1)} and

7 ¢” and A” are random draws via the Gibbs sampler.”

Figure 3 shows marginal and conditional predictive densities when %,,, =1 in
Examples 1 and 2. The marginal predictive densities are computed using random
draws via the Gibbs sampler: i. e., p(yr+: | %7, =1, D;) is approximated by T2
Poral 87, 6%, 6, xr,=1, D;)/19,000 where 8%, ¢° and &6° are the Gibbs dr-
aws. As expected from the Gibbs-estimates of the posterior densities, the Gibbs
sampler produced predictive densities which are close to the conditional predic-
tive densities evaluated at é = 1, the value used for data generation.

It is well known that the marginal predictive mean is the optimal forecast for
squared error loss functions such as L(¥r+, Yr+1)=¢(¥ri1 — Yrv: )* where ¢ > 0.
The marginal predictive mean can be calculated easily by (34).

Since yr4y=%riiBre1 +tre =xr118r + (xr-;mrﬂ +ur41),- it follows that yry ~ N{xr{18r,
(0'2 +x7‘1/.|Axr+|)} when Br, o, A and Xr+) are giVCl'l.
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[ Figure 2] - Marginal and Conditional Posterior Densities for B.r, 8., o and &
(Example 2)
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Solid lines are the plots of the Gibbs-estimated marginal posterior densities, and dotted lines are those
of the conditional posterior densities evaluated at the value of the hyperparameter used for data gener-
ation, i.e., d=1. Arrows show the values used in generating the data.
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[ Figure 2] (continued) |
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[Figure 3] Marginal and Conditional Predictive Densities for ¥, when %,
=1
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Solid lines are the plots of the Gibbs-estimated marginal predictive densities, and dotted lines are those
of the conditional predictive densities evaluated at the value of the hyperparameter used for data gen-
eration, i. e., 6=1.
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M=

E(yr+1 |xr+1 =1, Dr) = E(yTH l w (n, 6(“, Xr+15 DT)

Iy

= =|-

(34

i Mz
R
*
Q

Thus, we would be able to approximate the optimal forecast via the Gibbs sam-
pler. For the cases of Examples 1 and 2, the optimal forecasts of yr., when x4,
=1 are —14.52 and —14.62, respectively.

The Gibbs sampler is also useful in making optimal predictions for other loss
functions. For example, with an absolute error loss function L(¥r+1, ¥r+1)= | ¥rs:

— ¥r+1 |, the optimal forecast might be approximated by the median of random
draws from p(yr4, | 8%, 6, 6%, %r1.=1, D;). The medians of 19,000 draws from
P31 B9, 6°, 6°, %=1, D;) were —14.53 in Example 1 and —14.59 in
Example 2.

Further, the Gibbs sampling procedures can be easily extended to multip-
eriod-ahead forecasting problems. Suppose we want a k-period-ahead forecast
from an autoregressive model of order one, y,=x; 8, + u, where x/ = (1y..,).
The joint predictive density for (¥r.s, ***, ¥r+) evaluated in period T is:

P(ym, 0, Yra | Dr) = _”J. POriel Yriia, =+, Yre1, By 0, 6, Dr) X =
X P(ym | Br, o, 0, D;) X P(,Br, 0, 0 IDT)dﬂrdﬂda (35)

where p(yr+j |yr+j—|, s Ve, Br, o, 9, DT)~ N{xr,+j ,BT, (0'2 + ]‘52xT4:j xT+j)} since
YVrej = Xra; Brajt threj=%10; Br + %is; Gpra; + o, 7r4) + o474, Using Gibbs-dra-
wn values of (8, g, 6) from (8, o, 6 | D;), we can sample yr., from p(yr, | Br, o,
8, D), Yr+: from p(¥Yriz| Y41, Br, 6, 6, Dy), and so on. Then, the k-penod-ahead
predictive density may be approximated by

~ ul ; ;
p(yT'l'k | DT) = _;— § MT+k I y;i?!-k—l, (;) ’ 6(‘), 6({), DT) (36)

where ¥, 8%, 6” and 6° are Gibbs-drawn values.

VI. CONCLUSIONS

This study has developed Gibbs sampling procedures to estimate the marginal
posterior densities for regression models with time-varying parameters. The Gibbs
sampler has performed satisfactorily for simulated data, in the sense that the Gib-
bs sampler converged and the Gibbs-estimated marginal posterior densities of
parameters were close to their conditional posterior densities evaluated at the val-
ues of hyperparameters used for data generation.
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In order to consider the effects of probable specification errors on the per-
formance of the Gibbs sampler, several simulated data were generated using large
variances, e. g., using o’ =25 instead of o’=1 for the model in Example 1. The
Gibbs sampler has also performed well for these data.

APPENDIX
DERIVATION OF THE FULL CONDITIONAL POSTERIOR DENSITIES
1. TVP Model with a Single Observation in Each Period

The TVP model considered in this study may be expressed using matrix nota-
tions as follows:

y=XV+u u~ NO, 1) (37)

AY =JB + 7, 7 ~ N, IT®A)’ (3%)
where the definitions of y, X, ¥, u, 4, J and #» are given in the text.
1) p(B:| s, A, D;): Equation (38) can be rewritten as follows:

Y=A"JB + Ay (39)
Substituting (39) into (37), we obtain

y=XA"JB + XA 'p+u
=X*ﬂo+z{k (40)

where #* ~ N0, Q) and Q=('T+ XA (I, ®A)A™"X"). With a diffuse prior
for B, given ¢ and i. e., p(By]o, A) oC constant, the conditional posterior density
for B, is ’

#Bsla, A, D)~ N(B,, V) 41)

where A=V X (X* Q7' 9=V X' AX'Q"'y) and V= 4"XQ "' X4
N7
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2) pY | Bs, o, A, D,): From (39), we know that
VB, 0, A) ~ N{A'JB:, A" (I, ®A)A™"'} 42)

On combining (42) with the likelihood function for (37) via Bayes’ Theorem, the
conditional posterior density for ¥ is

2718y, 0, A, D) ~ NP, W) - @43
where P =W X (X'yle* + A" (I, QA)"'J B,} and W ={X'X|c* + A’ (I @A) " 4}™".
3) P(O' i Y, DT):

Mol?, D)~ pla|V) X p(yla, V)
~ plo|Y) X3 expl—(y — X0 (v — XV)20} (44)

O,T

Employing a diffuse prior for ¢ given ¥, i. €., Ao |?) o 1/6, we obtain

Mo l?, D) oc —L— expl—(y — X0)(y — XV)[20%}

O-+l

~ Inverted Gamma - (45

4) A1 B,, V) Given B, and 7, the information about A is contained in (38)
only. Therefore, ’

o H8) X T expl—(4Y = JB) (1, @A) (47 — B/
e HA) X Tap exp—Z (8~ B)A (B = )

o Py, ++, 6) X ITE, # exp{—tZZZI (Bi — Bi-1)? 1267 } ]

where B, is the 7th element of 8,. Employing a diffuse prior for (8, -+, &), i. €.,
DSy, +++, 6:) o< 1/(8, +++ 6,),2 we obtain the following posterior density for J; (7 =
1,0, R):

In Liu and Hanssens (1981), a locally uniform prior was used for the hyperparameters, claiming
that precise choice of a prior for the hyperparameter is not critical for a moderate-sized sample.
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P01 80 V) o L expl=E (8 — B 1251)

6?‘+l
~ Inverted Gamma 47
In a special case of §,=-=0,=J, the following posterior density for ¢ is

obtained using a diffuse prior p(5) o< 1/6:
kT
(318, 7) % i expl=Z 2 (8 = B} [26°)
~ Inverted Gamma (48)
2. TVP Model with Multiple Observations in Each Period

The following model has been considered in this study:

N X, u,
3. = X, |74+ w (49)
j}M XM Z.{M

AY=JB + 7 7~ NO, I, ®A) (50)

where (=1, 2, ---, M) represents data-generating units, and #,’s are mutually in-
dependent for all j with u,~ N(0, ¢’ I,).

1) (8, A, D;): Equation (50) can be rewritten as follows:
Y=A"JB + Ay ’ (51)
Substituting (51) into (49), we obtain

Y, = XjA—lJﬂo + (X,A"?;'i’uj)
= X} B+ u} (52

where #f ~ N0, Q;) and Q,=0" 1+ X; A" (I, ®A)A™"' X;. With a diffuse prior
for B, given ¢ and A, i. €., p(B8,]a, A) o constant, the conditional posterior den-
sity for £, is

HBilo, A, D)~ NB, V) ‘ (53)
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where ,§,=V><(Z7=. XF07' v)=V X &L JA"X]Q;'y,) and V={J'4"'(E",
X;0;' x)A" .

2) p(V 1B, o, A, D;): From (51), we know that
ﬂy I ﬂOs g, A)~ N{A-IJBO’ A—I(IT ®A)A_]/} (54)

On combining (54) with the likelihood function for (49) via Bayes’ Theorem, the
conditional posterior density for ¥ is

P18, 0, A, D) ~ N, W) (55)

where ¥ =W X (%, X} 3l + AU, ®A)"' J B} and W ={T¥, X, X,/o* + AU,
@A) A},

3) ple |7, D,):

Hal?, D)~ palV) X pyla, 7)
~ eI XSl expl=1 (= XN = XN} (56)

Employing a diffuse prior for o given 7, i. €., p(a|?) « 1/, we obtain

p(o'ly DT) C —7 MT+I eXP{ Z (y/ ij)/(yj - Xzy)/ZGZ}
~ Inverted Gamma (57)

4) (Al B, 7): Given B, and ¥, the information about A is contained in (50)
only. Therefore,

DAL B, V) oc p(A) X p(Bo, V1A)
@ HA) X T expl—(4Y — JB) (U, @A) (4Y — JB)I2)
oC p(A) X —llﬂ Cxp{—é (/915 - ﬂt—l)lA‘l(ﬂt - Bt—l)/z}
o b,y )X T | 7 expl=2 (B~ i)' 261} |

Employing a diffuse prior for (6, -+, ), i. €., P&, -+, &) € 1/(5, -+ 8,), we ob-
tain the following posterior density for 6, G=1, -+, k):
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P(& I Bo, 7) oc ! CXP{-E:(,& - ﬂit—|)2/25§}

5i1'+l
~ Inverted Gamma (59)
In a special case of § =:+=5,=4, the following posterior density for 4 is

obtained using a diffuse prior H(8) oc 1/5:

kT
318 ?) st expl— L Z (B — BtV 126°)
~ Inverted Gamma o - (60)
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