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MARGINAL WILLINGNESS-TO-PAY FUNCTIONS
IN A DYNAMIC COMPLETE SYSTEM *

HOAN JAE PARK **

This paper proposes a specification of marginal willingness-to-pay functions in an
alternative system, which is called the synthetic inverse demand system (SIDS). It is
a new inverse demand system itself and can be used as an alternative hypothesis for
a specification test. This paper then extends the system dynamically by incorporat-
ing habit formation idea for the first attempt in the inverse demand literature. It will
have a contribution to an analysis of a dynamic price formation in a system. Thus,
it is hoped that this will enhance its applications to the resource and environmental
economics. ’

I. INTRODUCTION

Many recent papers report that dynamic specification is needed in demand
systems to fit the data better and improve forecasting ability.” Empirically when
we use aggregate data, the factor becomes more important as Blundell et al.
(1993) pointed out.? However, the existing literature in the subject of inverse de-
mand systems has ignored dynamic factors. By an inverse demand system, we
mean a system where variations of marginal valuation, or prices in a competitive
market, are explained by variations of quantity demanded.? Although dynamic
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and useful suggestions. Thanks also go to anonymous referees. However, the usual caveat applies.
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!'See, for example, Chambers (1990). He highlights the importance of dynamics in demand systems.

ZBlundell et al. (1993) conclude that aggregate models that explain ordinary demands in terms of
price and total expenditure variables may exclude many important aggregation factors such as the pro-
portion of total expenditure associated with particular family size, etc. However aggregate models,
when aggregate data are used in place of the appropriate micro data, is not necessarily outperformed
across all demand equations, once certain aggregation factors as well as trend and seasonal compone-
nts are included. This would be a defense of our estimated aggregate-based model in empirical part.

3 Note that the ordinary demand approach inquires into the dependence of the quantltles of com-
modities consumed on the marginal valuations of those commodities.
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factors are ignored, inverse demand functions [marginal willingness-to-pay func-
tions in Hicks(1956)° term] are worked by a non-negligible set of authors re-
cently.? The most recent advances in modeling willingness-to-pay functions in a
complete system include Barten and Bettendorf(1989) and Eales and Unnevehr
(1994).

Interests in such models stem from the existence of goods for which the as-
sumption of predetermined prices may not be viable and current supplies may be
fixed because of biological, production lags or public good characteristics. Exam-
ples of such goods include nonstorable goods and recreational and environmental
amenities, the existence of unique environments and endangered species, etc. Ho-
wever, such models have been proposed within a static framework. They are stat-
ic because a consumer is assumed to adjust instantly to a new equilibrium when
expenditure or prices change in an equilibrium. In reality, this assumption is ove-
rly restrictive since it ignores some form of endogenous taste formation by past
decision or future expectation. As a consequence, static models may yield sub-
optimal behavior of consumers. To overcome some of these deficiencies, several
attempts have been made in the ordinary demand approach to incorporate dy-
namic structures into static demand systems. However, almost no attempt was
made in the inverse demand approach. We start with a brief review of such atte-
mpts in the ordinary demand approach. Based on the traditional idea, we de-
velop a dynamic inverse demand system, which is flexible in two senses: it is flex-
ible in that all derivative properties in consumer theory are satisfied in the system
and it has more degrees of freedom than traditional inverse demand systems.

There have been essentially three approaches to dynamic behavior, based on
state variables and intertemporal optimization i.e., the state variable approach, a
dynamic version of the linear expenditure system, and the intertemporal demand
approach. The state variable approach was pioneered by Houthakker and Tay-
1or(1970) and applied in various forms by Lee(1970), Mattei(1971), Phlips(1972),
Taylor and Weiserbs(1972), El-Safty(1976) and Klevmarken(1981). According to
the model of Houthakker and Taylor(1970), the quantity demanded of ith good
is hypothesized to be a function of physical stock or psychological stock of ha-
bits, prices and income. Then, the dynamic demand systems are developed using
the functional relation between the reference bundle and past consumption
through the use of state variables. The second approach, a dynamic version of
the linear expenditure system was developed by Pollak and Wales(1969), Pollak
(1970), Philips(1972), and has been applied in Howe, Pollak and Wales(1979),

¢ The terms “inverse demand functions” and “marginal willingness-to-pay functions” are employed
interchangeably in this paper. Note, however, that empirical inverse demand functions are marginal
willingness-to-pay functions normalized by fixed income.
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and Ray(1984, 1985).9 According to Pollak(1970), the habits are examined within
the linear expenditure system (LES) and it is assumed that the LES subsistence
(committed consumption) parameters depend on previous period’s consumption
by incorporating state variables into the subsistence parameters. The third ap-
proach consists of generating theoretically plausible dynamic demand systems as
the solution of a constrained intertemporal utility maximization problem. It has
been developed by Lluch(1974), Phlips(1974), Klijn(1977), Stigler and Becker
(1977), Spinnewyn(1981), Phlip and Spinnewyn(1982), Boyer(1983), Becker and
Murphy(1988), and Becker et al.(1994). According to Klijn(1977), the allocation
problem is cast into a control theory format with the consumer attempting to
maximize a discounted utility function subject to wealth and stock constraints. In
this framework, the consumer choice problem is to find the time path of con-
sumption g(#) (0 < ¢ <o) for a given price over time such that lifetime utility is
maximized with wealth constraint.

The primary focus of all the models is on alternative methods to incorporate
taste changes into demand systems specifications. Pollak(1970, 1978) has given
four reasons why tastes can be considered endogenous: (1) habit formation where
taste changes are related to past consumer decisions; (2) interdependent preferen-
ces among other consumers; (3) advertising that attempts to affect consumer tas-
tes; (4) prices or snob appeal. As seen above, most approaches consider idea (1)
and try to formulate its process, though habits or persistence in consumption pat-
terns may be due to a number of factors in addition to changing tastes. Thus,
the differences among those approaches are on how to model the habit forma-
tion process.? This line of work seems to be reasonable because we believe that
people get addicted not only to alcohol, cocaine, and cigarettes but also to work,
eating, music, and other activities.” Thus, much more behavior than expected
may be included into habit forming goods.® So we believe that all dynamic de-
mand systems in consumer theory should explain this idea at least in part since
tastes are themselves a product of experience. The purpose of this paper is to

5 Pollak(1969, 1970) proposed the “linear expenditure system with habit formation” idea and Ray
(1984, 1985) generalized that idea in AIDS system and Gorman polar form demand system.

61t may be desirable to restrict the concept of habit formation to change in the consumer’s indif-
ference map induced by his own past consumption (or possibly past expenditure). A consumer theory
taking into account incomplete information and learning could explicitly model behavior under uncer-
tainty, but the case with habit formation will not be the same and the consumer may be assumed to
be conscious(rational) or not of its effects(myopic) in his behavior.

7 See Becker and Murphy(1988) for examples.

8 For another example, we might think of fish as a habit forming good in the sense that consum-
ers, who learn their utility of consuming one species from experience, generally know about only a few
species because experimenting or getting information is costly and time-consuming, and thus may not
treat species they have experienced and species they have not experienced as identical even if the spec-
ies are in fact almost the same in taste. Further all foods might be habit forming goods in this sense.
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propose a dynamic inverse demand system based on the framework advanced
originally by Anderson and Blundell(1982, 1983). Though they worked in the or-
dinary demand context, their approach is considerably appealing because it al-
lows disequilibrium or irrationality of consumer behavior in the short-run while
at the same time it allows for fully consistent behavior with consumer theory in
the long-run. A further advantage of their approach is that short-run and long-
run demand functions can be easily obtained from their dynamic demand systems.
The system developed in this paper, however, differs from theirs. First, this study
extends their model by deriving marginal willingness-to-pay functions instead of
ordinary demand functions. Second, this study further extends it to a more gen-
eral and flexible specification form.? A contribution of this paper, therefore, is to
develop marginal willingness-to-pay functions in a dynamic system for the first
attempt since there is no literature in this subject. In order for dynamic inverse
demand systems to make sense, they should be comparable to the static systems
in some way and show how dynamic systems nest static systems. Thus, we first
propose a general inverse demand system in a static context, which encompasses
most of the alternative inverse demand systems in Section II. The reason to de-
velop a general system is that economic theory does not give a priori which func-
tional form of marginal willingness-to-pay functions should be chosen. In that
matter, our general system has an advantage. It will be another contribution of
this paper. Section Il and IV develop our model of a dynamic inverse demand
system based on the general inverse demand system and applies to U.S. commer-
cial fish demand. Section V concludes.

II. A DIFFERENTIAL APPROACH FOR MARGINAL WILLINGNESS-
TO-PAY FUNCTIONS IN A SYSTEM

In this section, a class of differential marginal willingness-to-pay functions in
systems(i.e., Inverse Almost Ideal Demand System, Inverse Rotterdam Demand
System, Inverse CBS Demand System, and Inverse NBR Demand System) will
be discussed and one alternative system will be newly proposed. Although the
proposed system is an inverse demand system itself, it also can be used for a spe-
cification test as we shall see later.

1. Functional Specification of Alternative Systems
For good 7 consumed by a representative consumer at time #, the expenditure

share(w,) can be expressed as a function(f;) of logarithms of quantities(lng;, 7 =
1,-+-,m) in a market sense. Then the behavioral equation may be written

9By “more general and flexible”, we mean having more degrees of freedom in estimation, i.e., hav-
ing more sensible variables to nest existing models and fit data.
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0 w, = filngy, -, Ing,).

Consider Z=(ngq,, Ing,,+-,Ing,) where the upper bar of In(g) means E Ing,/T.@
At Z, there exists an optimal corresponding price vector normahzed by income

v =(In',,++,In,) and expenditure share ;= fi{(@)GE=1, -, n). At Z, and the
corresponding 7, we have:

(2) (ﬂ) = UA):‘ (bij+ 5ij) = 71)\;( ; +11)\jki+ 5;’;‘)
dlng; | 5

where b, is the uncompensated price flexibility, 5% is the compensated price flexi-

bility, %; is the scale elasticity, and J; is the kronecker delta (5,,=1if 7= 7, §,=0

otherwise).’ Considering Taylor expansion of w, around Z and w,_, around Z

in eq. (1), and subtracting the former from the latter produce

® Awi'zg(alnq

ow,
% ) Alnqjt + &

where an error term involves terms of second and higher order differences. Sub-
stituting (2) yields

@ Aw, =Y W.(b% + %,k +5,;)Alng, + &,
= Z (d)\,b: + Zf)\,éij)Alnqj, + Zﬁ,‘k,‘Aant + &

12 Note that we evaluate elasticity at a sample mean of observations in exogenous variables. Thus
we consider means of exogenous variables here.

! To obtain the required expression, we have used that w;=;g; and dw;=w;dInw;. The compen-
sated price flexibility is defined as:

b = dlnulg, w)
g B
6lnq,~

and the scale elasticity is similarly defined as:

= oI (g, u)
T 9ln Q

where AlnQ = £ implies all quantities increased by %. The uncompensated and compensated price flex-

ibilities are related through the Antonelli equation analogous to the Slutsky equation. See Appendix

for derivation of the Antonelli equation.
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where AInQ =Y ,Alng;, which is Stone’s quantity index showing scale effects
analogous to income effects in the ordinary demand system.

As is well known, Working(1943) suggested that a useful form of the Engel
curve was given by expressing the budget share of good 7 as a linear function of
the logarithm of total expenditure:

(5) w; = a; + b,‘ log(m).

From eq. (5), the marginal shares in the Working model (holding price index
constant) may be derived by multiplying ¢ and differentiating with respect to 7,

o(pg)  ow 0w
om ~ 0logm |awr OlogQ

(6) = a; + b,(l + logm) =W; + b,'.

where log(P) and log(Q) denote price index and quantlty index, respectively.
If we think of &, as a constant approximation of W, k:, Working’s suggestion le-

ads us to include 0); into the scale effect in eq. (4):

ow; A A
Flog0 w:k + W,

Thus, adding and subtracting w; dlogQ results in the form of a difference ap-
proximation of the Inverse Almost Ideal Demand System:

D) Aw, = ¥ [0:65 +170:6; — #)Alng, + @k + W)AQ, + &.

As illustrated by Theil(1979), Deaton(1975) and Mountain(1988) in the ordi-
nary demand approach, the Inverse Rotterdam Demand System’s coefficients can
be viewed as a constant approximation to w,b% and w;k;. Following Mountain

(1988), it can be shown that!?
®) Aw, = wAlnv, + wAlng + &

where w; denotes an average expenditure share for good 7 and &, is an error term
involving terms of second and higher order. If we rewrite eq. (8), we have

(9) F);A]ni); = Aw,‘ - 17),Alnq, - &;.

12 See Mountain (1988) for details. Note that I drop the time subscripts if confusion does not ari-
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Substituting eq. (4) into eq. (9) yields
(100 w:Alny; = ¥ 1,b% Alng; + Wk AInQ + {—Aw,Alng; + & — &}

where Aw;=w; — ;. Note that the bracket { « } involves second and higher or-
der differences. Thus, we are left with

(11) WA, =Y. @.0% Alng; + 0.k(Y w;Alng; ) + n:

where #; is an error term consisting of terms of second and higher order differ-
ences. Eq. (11) is referred to as the Inverse Rotterdam Demand System. Note
that the discrete formulation is an approximation in variables. Hence, the estim-
ated elasticities and flexibilities from the Inverse Rotterdam Demand System are
also approximations.™

The Inverse CBS Demand System follows Working’s suggestion but makes
use of Inverse Rotterdam Demand System (call it IROT)’s quantity coefficients.
It follows from this consideration that

(12) wAlnw; = X i0.b% Alng; + @k + ©,)AlnQ + ¢

where & is an error term. Rearranging terms, we obtain the Inverse CBS De-
mand System (call it ICBS) given by®

(13) wAIn(—5) =¥ .65 Alng, + #,4AINQ + v,

where v; is an error term consisting of terms of second and higher order differ-
ences.

13 Eq. (11) would satisfy the following properties of 7;;(=w;b% ) and 7; (= w:k):
Yri=-1 Y 7r;=0 (adding-up)

Y =0 (homogeneity)
J

i =i (Antonelli symmetry)
Y Y 37y <0Vy;#0  (negativity)
1 7
14 The name CBS was coined by Keller and Driel(1985) acknowledging the support of the Nether-
lands Central Bureau of Statistics,
15 In deriving (13), we have used the following facts:
widmnv; + dInQ) = wi(dnp; — dlnm + dInQ)
=w;(dInp; — dInP)
= w;dIn(p:/P)
and Aw;=w; — %; where dInP is the Divisia (or Stone’s) price index.
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The Inverse NBR Demand System uses the Inverse Rotterdam Demand Sys-
tem’s scale coefficients but the Inverse Almost Ideal Demand System (call it
IAIDS)’s quantity coefficients.*® Thus, we consider the following:

AN

(149 wAlny, =Y @, + .6, — 0,%,)Alng; + 0.k AInQ + &

where &; is an error term. Rearranging terms inv(14), the Inverse NBR Demand
System (call it INBR) can be obtained:?”

(15) Aw, — w,AlnQ = Y. 1.5} Alng; + @, kAInQ + &.

As noted, these in-between systems arise from the difference between eqs. (4) and

.
2. A General Price Formation Model

The four systems discussed above correspond to alternative parameterizations
of the budget share differentials. The right hand sides of the four systems contain
the same variables. However, the interpretation is not the same because the
left-hand sides are different. In this section, a general system will be proposed as
an alternative hypothesis, following Barten(1993). The contribution of this section
is to extend Barten’s approach to the inverse demand systems and show that the
proposed system further can be used to test specificational validity. Note, how-
ever, that our system can be a new specification of marginal willingness-to-pay
functions in its own right.

As noted in section II.1, the left-hand sides are different in the four systems
while the right-hand sides contain the same variables. Denoting by y® y, y
y¥ the left-hand sides of the IROT, of the ICBS, of the IAIDS and of the
INBR, respectively, we have

16) y< — y*=w,dln [—%] — w:dIn [—’%] = w,dInQ

pz 4

a7n y» —y’c—wdln[ ]-—w,dl [P ]—wdln(—g—)

16 The model is named after the National Bureau of Research, where Neves(1987) worked when the
model was developed.
17 In deriving (15), we have used the following simple algebra:

w;ldIny; + dln( 0 )]— w;(dnw; — dInQ)
= dw; — w;dInQ.
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(18) y{N - y!A =dw,‘ - w,‘dan - dw,' = "w,'dan

Barten’s key insight, adapted to inverse systems, is that the differences between
the left-hand sides of the systems are exogenous because d(log Q) and d(log q,)
are exogenous variables in inverse demand systems. This property is exploited to
combine systems.

Now we want to show how to combine the models using.a simple example of
two alternative systems. Suppose that we have two alternative systems in which
the right hand side variables are identical but the dependent variable is differ-
ent:ls) :

System I: y* = X,8 + e,
System 2: y€ = X,Y + ey

where ¥ is an n-vector of endogenous variables and X is an # X (k+1) matrix of
exogenous variables, viz., d(log Q) and d(log ¢,),-+, d(log g,). The 8 and ¥ are
(B+1) X 1 vectors of coefficients from the IROT and ICBS systems, respect-
ively. The # X 1 disturbance vectors e, and e, are assumed to be identically and

independently distributed with probability density functions f(e,) and g(e). For
example, it could be postulated that e,’s (=1, 2) are distributed normally with
means (g, 4) and variances (Q,, Q,), so that

f@) = Q0™ 10 exp (—-ly = X8 — ] @)y — X 8 —
g(ez:) = (27'5)-"/2 [Q, l i €xXp _é— [yu X7 - /12]/(92_])[3’2: - )(ty - #2]}-

Following Atkinson(1970), the general form of the combined p. d. f. (probability
density function) is proportional to

{f(elt)}al ;{g(eu)}"’ .

In order to have the properties of a density, a normalizing constant is introduced
and the combined p. d. f. is written as

18 See Alston and Chalfant(1993) for the two alternative ordinary demand system example. Note,
however, that they make a scalar combination of dependent variables in two systems and the same rig-
ht-hand sides in the compounded system. This specification would lead to different interpretations and
implications. One might be suspicious of their general model as a demand system in its own right. One
might also wonder what is the meaning of a scalar combination of choice variables in the consumer
optimization problem. See also Barten(1993) for a similar example of ordinary demand systems to the
above.
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{f(eu)} m{g(ezt)}w2
[[{f e} {glex)} " de de,

Ma) =

Replacing the expressions for f( - ) and g(-) and using well-known results for
integration, we obtain

ha) = Qn)™" | Q™" exp ——;— vy, — Xom — 1) Q) — Xom — 4},

where Q=a,Q + &, y=ayy + &y, 1= Q' QL + Q7' Q,7, and p=
Q' Qo + Q' Q. This is the standard normal linear regression model
for y, with X, and x as regress variables. Use of the combined p. d. f. thus leads
to the compound regression model. In our specific case, the covariance matrices
of the models are equal, i. ., Q=Q, =Q, because y'* and y* have the same ran-
dom component given that the exogenous variables are non-stochastic [recall that
¥€=y*+ (some exogenous variable) by budget share differentiation, see (16)].
Therefore, the combined multivariate regression model can be seen as

(19) Y=o y:k + azyfc = A’;(alﬂ + dly) +e¢

where ¢, = ae, + a:e, and the disturbance vector is distributed normally with
mean y and variance Q. Letting a; + a, =1 and rearranging, we obtain'®

(20) y{k = w,dlnl), = va [(1 - az)ﬂ + aﬁ’] + az(yik - yfc) + U, .
In a scalar form, eq. (20) may be written in the form:

1) widhnv, =Y n;dIng; + n.dInQ, — a;w;dInQ, +v,.

where 7;; and m; are linear combinations of quantity coefficients and scale coeffic-
ients between the IROT and ICBS systems, respectively. As seen above, £ and 7
are not identified from estimation of eq. (21). However, this is not crucial. What
matters is that there is a well defined coefficient vector of X; in (20) and ident-
ified mixing parameter a,. If a;=0, eq. (21) will reduce to the IROT system whil-
e if a;=1 it reduces to the ICBS system. We may test whether «, is significantly
different from zero. If it is significantly different from zero, we incorporate the

19 Note that we allow the data to choose the appropriate parameter sets including mixing parame-
ters (a1, ay) unlike the specification test in which we restrict mixing parameters under either system 1
or system 2.
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ICBS system into the general system. The estimate of a,, therefore, reflects the
empirical importance of this difference in parameterization.

Extending the previous simple example to four systems discussed in section
II. 1 and letting az + ac + a, + ay=1, we may write the general model, which
nests all four inverse demand systems as

22) ¥ =Xt aOf =yt a,OF =)+ (O — ) e

where n=(1 — ac — a, — aw)Br + acBc + a8, + avBy and «; indicates the mix-
ing parameter for the system 7. Setting ac=1 and a,= ay=0, we have the ICBS
system. Analogous specifications hold for the IAIDS and INBR systems and the
IROT system corresponds with all three a’s being zero. For the systems con-
sidered, however, (16) and (17) imply

(23) (J’f" “yfc) - (yfk - yfA) +(y:R - y’N) =Za—Zau +ZNt =0

where Zo = yif — ¥, Z4=y* — ¥, and Zy = yi* — y*. Thus, we have perfect co-
llinearity in the three extra variables in the general system. Using (23), we can
eliminate Z, by substitution of Z,=Z. + Z,, into (22). Hence, eq. (22) can be
rewritten as

(24) y;kz X,7‘C+91(yfk—yfc)+92 :R'—y?N)_l_e;.
where 6, = ac + &, and 6, = ay + a,. The scalar form of eq. (24) would be
(25 w.dlnv, = Y_n,dIng,; + ndnQ, — 6, w,dnQ, — B,w.dIn(g:/Q), + v..

where v, is an error term. This general system of equations may be called the
synthetic inverse demand system (‘SIDS’). It is a new specification of marginal
willingness-to-pay functions in a system. In addition, it can be used as an alterna-
tive hypothesis for a specification test. As in the two system example, the a’s can-
not be identified from &, and &, which are the coefficients to estimate. This is
not a problem.

Applied welfare economics usually focuses on elasticities to evaluate policy on
the consumer side. Applied economists have built up intuition based largely on
elasticities. In order to derive the scale and cross-price flexibilities from our new
system, we may write eq. (25) in the general form:

(26) w,-,dlnv,», = Z [7[,']‘ - 9;w,~5,-,~ + sziwj‘]dlnq,'; + [T[,‘ - 0|w,‘]dant

where &s are system mixing parameters to be estimated and tested. Letting [r;;—
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O.w.0; + Qwaw;1=bn;; 6,) and [, — Qwi] =cn; 6)), eq. (26) can be expres-
sed as a simple form:

27 widlny, = Zb(nij; Qz)dlnqﬂ + ¢(r; Ql)dan,.

7

There are two sets of restrictions on the parameters of (26). The first set of weak
restrictions on consumer demand, following from the budget constraint, are

28) X Imy; — Gwid; +Owaw;l =Y m; =0  (adding-up)
9 Yln—-OBwl]= -1 (adding-up)
(B0) X [m; — Gwid; +Oww;] =Y m; =0  (homogeneity).

For strong restrictions on consumer demand, following from the utility maximiz-
ation, are

@) m=m; (symmetry).

The scale elasticity and price flexibility are derived easily by dividing w;
through eq. (26). The scale elasticity is then given by

(32) k= mjw -6,

where ; indicates the scale elasticity of good 7. The cross-price flexibility is
(33) b = n,lw+ Gw;,,

and the own price flexibility may be written
(B4 b = miw, — 6.+ Ow;

where b5 is the compensated price flexibility of good 7 with respect to good j.
The uncompensated price flexibility can be derived from the Antonelli equation,
i. e, b5 = b, —w;k, where the “*” indicates “compensated”. Note that in eq.
(32), if 6,=1, it becomes the TAIDS scale elasticity. Note also that if &,=1, it
would be the IAIDS price flexibility in egs. (33) and (34), when the IAIDS uses
Stone’s quantity index as an approximation.

In this section, we have examined the way to parameterize an inverse demand



"HOAN JAE PARK: MARGINAL WILLINGNESS-TO-PAY FUNCTIONS . 17

system and proposed a general inverse demand system, a new specification of
marginal willingness-to-pay functions in a system. The proposed system further
can be used as an alternative system for the purpose of a specification test in the
static context. Whatever inverse demand system specification tests validate, the
model is static and this type of static model assumes that adjustment toward
equilibrium is instantaneous, thereby leaving no room for price to diverge from
long-run equilibrium levels. However, in reality, the price response to a change in
quantity demanded may be dispersed over more than one period and thus some
dynamic aspect such as taste changes may improve the estimates of the static in-
verse demand system because discrepancy between outcome and postulated equi-
librium may contain useful information omitted in the static inverse demand.
Another advantage of dynamic specification of the model is that it makes easier
to distinguish between the short-run and long-run marginal willingness-to-pay fu-
nctions. In the next section, we develop such a dynamic inverse demand system.

. A DYNAMIC GENERALIZATION OF MARGINAL
WILLINGNESS-TO-PAY FUNCTIONS IN A SYSTEM

A dynamic version of consumer theory may be obtained by introducing a va-
riable related to past behavior into the utility function. This new variable would
include the influence that the behavior in past period exerts on the present, which
is related to the habit strength, psychological or physical stock of good 7, H.. As
is well known, the introduction of state variables into the utility function is a way
of taking adjustment costs, whether psychological or not, into account.

Following El-Safty(1976), it is assumed that the consumer’s ordinary utility
function be of the form:

(33 U(-)=U@, ¢, -, ¢,

where (4, ¢, -+, 4,) are the current services provided by the purchases of the
n-goods, (g, q:, **, ¢.). The service function ¢; is assumed to depend on current
purchases of good 7 and the psychological stock of habits for good 7, H;. That is

(36) ¢i = ¢i(qn I{x)’ Z = la 29 R n

where ¢; is assumed to be a strictly increasing function of ¢;. For the special case,

Fisher and Shell (1968) have treated the case when ¢;= f(H,)g;. Houthakker and

Taylor(1970) have studied the case when U( - ) is quadratic and b=q; — a;H,.
We shall assume that H changes according to

(37) 11?111,, = (1 - 5{)111[1{;_[ + lnq,';—l 0 < 6,‘ S 1
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which implies InH,=Ing;-, + (1 = d)Ingi,+ (1 — 6.\’ Ingy—; + ++--- . Although
the consumer anticipates changes in H, we assume that he is not aware of the
underlying mechanisms by which these changes take place. Then the consumer’s
problem will be

(38) Max. U[¢1(q|, Hl)’ ¢2(Q2, Hz), tt ¢n(qn) H,)l
s.t. Zp,q, =m. '

The first order conditions after normalizing prices by income are

39 ¢U,—1w =0,
Yuq-1=0

where ¢, and U, denote the derivatives of ¢ and U with respect to ¢ and ¢, re-
spectively, A is a Lagrangian multiplier, and v is a vector of normalized prices of
n-goods. In order to simplify the analysis, we assume that ¢.(g;, H)=¢(g:, H)
where ¢ is a monotonically increasing function® and is the same for all i’s. Since
Ulg( - )] is a monotonic transformation of ¢, U[4( - )] ranks the order of prefer-
ences in the same way as ¢( - ). Letting U[g( - )] =¢( - ) =U( - ), we might rewrite
the above consumer’s problem simply as

(40) Max.U(g, H) st Y vg=1

where ¢ is a vector of quantities and H is a vector of psychological stock of hab-
its. The first order conditions would then be

4) @U@ H —w=0
Bvg—-1=0.

These conditions can be solved for v:

@ v=(%)v= ().

Noting that dU,=U,dq + U dH where U,=0'Uogdq’, we take the total di-
fferentiation for (42) and obtain

21t is defined as a function with the property that successively larger values of the independent
variable always lead to successively larger values of the function, that is, q > ¢ implies ¢(g') > Ag).
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@3) dv=U-v)MU 1 —q)dg— v — T - vg WU qldInQ
+{ —vg U dH '

where £ =1/q’U,, 1 denotes an identity matrix and all other variables are defined
as before. Letting R be the coefficient of change in H, then R can be written as

1

44 R= TAU“_"] Uuw

where A=q"U,; A is the Antonelli matrix; and in computation, we utilize the re-
lation mSA =1 — qv” and mASA = A where S is the symmetric Slutsky matrix.2
Thus, it can be written in the scalar form:

dv; 2 2 ..
=%;a,-,[ PU |- _&U G i=1, . )

45 —o
“ dH; dq:0q, | 0q,0H,

As seen above the stock effect of habits has two effects, i. €., direct and indirect
effects. To see the direct effect, it is sufficient to know the influence of a variation
in the stock on the marginal utility since a; is always negative and the Hessian of
the utility function is negative by concavity. If U,, > 0, then dv;/dH;> 0 which
implies that as the stock of habits increase, marginal willingness to pay (or mar-
ginal valuation) would increase as well. If good 7 and ; are g-substitutes but neu-
tral to other goods, then ;< 0 which implies that marginal valuation of good ¢
would increase as the stock of habits for good ;7 increases. In this case, good ¢
may be said to be a g-habit substitutes for good j. For complementary goods,
the effect would be the opposite.

In order to derive a dynamic inverse demand system based on equation (43),
we multiply ¢ through equation (43). The resulting equation can be written as

46) wdlnv = q(I —vg)tU (I — qv’)q’dIng
—qlv — (I — MU, qldInQ + q(I — vgU ., H dInH

where w denotes a diagonal matrix with elements w;,, Ing is an (z X 1) vector of

exogenous variables, and Inv is an (z X 1) vector of endogenous variables. As-
sume that we have the following form of a structural demand function:?

2 See Deaton and Muellbauer(1980), and Stern(1986) for the derivation of this relation.
2 Recall the behavioral equation in section II. 1, wi= f(qu,--, gu). Considering habit effects, we
now have the behavioral equation as w;= f(qu,"**, qu, Hy,**, Hu). The structural demand function

follows from this. Note that this is different from the long-run equilibrium inverse demand function
since it includes H;. In the long-run, AlogH;=0.
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(47) Wiy = ay;i + ZCI’;jlﬂQj, + a/,-an,‘+ a;dlnH;,.

Using (47) as a structural demand function, In H, can be expressed, in a vector
form, as

48) InH, = 4% [wt — AF — A¥ Ing, — A InQ)],

where A¥ and A} denote the matrix [«;], and a diagonal matrix with elements
(275 Az —(a'l, ) a’n) Ao —(a'm, s a’o") lnHt (lnHlt, lant)/a ujt'= =(w1t, Tty
w,)’, and Ing,=(Ing,, -, Ing.)". Lagging one period in (48), and plugging the
result into (37) and (46) after approximating an infinitesimal differential by a fi-
nite difference, we obtain

(49) w,Aan), = GAII](], + gAan; - y(w,_. - Ao - A| lnq,_, - Az]_nQ,_l),

where G =q(I — vg)tU (I —qv)q’, g= —qlv — (I —vg)tU,q), Y =qRH'S A*;",
Ay =AY, A= A%, and 4, = AT + 67" 4¥. This is the form similar to an error-cor-
rection model used extensively throughout the recent time-series econometrics lit-
erature, where the last term in parenthesis letting U,_,,

UL =w. —4,— A,ln(Ir—l - Azan,_l

plays a role as an error correction term.? In (49), the error correction term is the
residual of the TAIDS system. Note that the error-correction term crucially dep-
ends upon the form of the structural equation and gives an expression for
long-run elasticities directly. For a single equation model, the error correction
term has a natural interpretation even in the inverse demand context: if w, rises
above an equilibrium level by quantity changes, then U,., would be positive but
—A,< 0 makes Alnv, lower toward its steady state path. A similar interpretation
can be extended to the multi-equation model.

This adaptive adjustment mechanism has been rationalized as the optimal re-
action of an agent to the adjustment costs of implementing a consumption/pro-
duction plan. For a consumer, it suffices to interpret adaptive adjustment as a
trade-off between the costs of not altering the utility maximizing solution and the
costs of adjusting to the new position. The costs of change are a function of past
behavior, which may be summarized in an adjustment coefficient or the state var-
iables.

Based on (49), we can construct a dynamic general inverse demand system

3 Error-correction terms were used by Sargan(1964), Hendry and Anderson(1977), and Davidson
et al.(1978).
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specific to our purpose. Noting g = sg*(s = scale variable, ¢* = initial consumption
bundle) and taking a finite approximation, we may rewrite the ith equation of
(49) as?®

(50) w,-,dlnv,-, = Z b(TE,‘,'; ez)dlnq_,'; + C(TI,'; 0|)dant
+ AW — an — Z a;Ing;-, — anQ,_\] + &,

where 8( - ) =n; — w6, + Qwaw;, c( - )=n; — Ow, and Ing,_, is a vector of
quantities demanded at time #—1. Equation (50) will be the maintained frame-
work of a dynamic inverse demand system in this paper.

In the specification of eq. (50), the long-run scale elasticity and long—run price
flexibility can be derived and defined as

G1) k- =—-1+-%

i

;T aw;
(52) b = a___dil,

i

where %; and b;; are the long-run scale elasticity and price flexibility, respect-
ively. Some restrictions on the long term part of the model are discussed later in
the empirical section.

IV. AN APPLICATION TO U. S. FISH DEMAND
1. Data

In this section, the dynamic inverse demand system discussed are applied to
the demand for fish in the United States, especially Southeast region, from
1977-1992. The data used are seasonally unadjusted monthly time series on prices
and landings per capita converted from the data collected by the National Mar-
ine Fisheries Service (NMFS). As is well known, seasonally adjusted data can di-
stort the underlying relationship between variables.® Thus, use of seasonally
unadjusted data will show better structural relationship between variables.

The present study used data set related to six broad types of commercial fi-

% Note that it can be shown that In s=In Q, i. e., scale variable which plays the same role as real in-
come variable in the ordinary demand system. Note also that the matrix [4;]=4, and the vector
lail= 4, in (49).

% See Wallis(1974) for details.
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[Table 1] Main Six Fish Types, Shares in Expenditure, Variation in Quantities in
the Southeast Region (Jan. 1977-Dec. 1992)

Type of fish | Sample average | Average share | Minimum Maximum
share in total mon- in 1992 quantity (Ibs) | quantity (Ibs)
thly expenditure
Groupers 42.22 48.02 312,028 2,237,368
Snappers 41.75 32.69 320,480 1,800,177
Porgies 5.16 4.93 75,275 1,178,508
Jacks 3.79 7.01 30,699 2,594,571
Tilefishes 3.63 4.46 1,736 505,367
Sea Basses 345 2.88 6,163 620,923

shes for the United States. The groupings are (1) Groupers, (2) Porgies, (3) Snap-
pers, (4) Jacks, (5) Tilefishes, and (6) Sea basses.® Table 1 shows the group spec-
ies and the average share of total expenditure on these fish over the sample per-
iod. There are wide ranges of the landed quantities of each type of fish. Part of
the variation may be explained by seasonality and part of it may be explained by
trend.

As seen in Table 1, Groupers and Snappers are the dominant groups of fish
in the Southeast region. Groupers and Snappers remain the prime fish over sam-
ple periods and the landed quantities display a wider range than the prices of the
various types of fish. The strong seasonal variation in the landed amounts sugge-
sts that it is essential to work out on the price formation by the quantity effects.

2. A Specification Test for Price Formation Models

Using (27) as an alternative model, we test the null models presented earlier.
Our approach is proposed that can deal with non-nested models with different
dependent variables. In fact we test whether matrix weights (6,, &,) to combine
the null models are significantly different from zero. If these matrix weights are
not zero statistically, the basic null model falls short in explaining reality on its

% The original data have 76 individual species in the Southeast region which were then aggregated
into 9 groups, i. €., Groupers, Snappers, Porgies, Jacks, Tilefishes, Sea basses, Wrasses, Grunts, and
Triggerfishes. The reason for aggregating to larger categories is that some specific individual species
are reclassified at some year and so there are big jump or drop in quantity series of some species. For
example, the grouper with fish code 1410 has a big drop in series of quantity because of reclassifica-
tion into other coded groupers around 1986. Thus, aggregation to larger categories, using family
name, deals with this issue. Another reason for this may be that there are similarities in physical char-
acteristics and tastes among those individual species under the common family name of fishes. The
reason for analyzing the above six types of fish is that they have non-negligible shares in expenditure.
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[Table 2] Test Results for the various Null Models

Null models 6, o, F-statistics
IROT 0 0 319.455**
ICBS 1 0 0.3359
INBR 0 1 5354.928**
IAIDS 1 1 4967.777**

** significant at 5% significance level.

own and could employ some of the information contained in the other models in
the linear combination. Therefore, the matrix weights reflect the empirical per-
formance of the different parameterization in different null models.

The equation (26) has been estimated by Zeller'’s Seemingly Unrelated Re-
gression Method after removing autocorrelation in residuals by the Cochrane-
Orcutt method. The test statistics for the estimated matrix weights are presented
in Table 2. From Table 2, the artificial nesting procedure is clear since the SIDS
system (26) shows that &, and 6, parametrize the differences between the null
models. The last column gives the test statistics for the null model and (26) as
the alternative model.

The test statistics shows that the sample favors the IAIDS type of scale coef-
ficients and the IROT type of quantity coefficients. Accordingly, the inverse CBS
demand model (ICBS) appears to strongly support data generating process.
Although the ICBS has empirically strong performance, we will use our SIDS
system as a basic differential marginal valuation model. This is because the SIDS
itself is a general system reflecting all these matters into its coefficients.

3. Estimation of a First Differenced Dynamic Inverse Demand Model

In order to estimate the parameters, we modify the model in several respects.
First, we add the disturbance terms to estimate eq. (50). Second, to account for
seasonality of demand, eq. (50) is augmented with 11 seasonal dummy variables;
D, (=2, -+, 12); whose associated coefficients must sum to zero over ¢ for add-
ing up. Finally, the finite differences are used for the differentials as an approxi-
mation. The resulting equation would then be in the form:

(53) 1'47,~,Alnv,», = a; + ;_2¢ikat + ZTC{,‘A]UQ;‘: + »niAant - QZTUitAlnqjt
- Qla_)itAln(qit/Ql) + X[ Wi-r — a _; a;lng;.-, — aianl—l] + &

where InQ, is given by ¥ (w; + ;¢,~ka) Ing;
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— Wy + Wy v
and w, = —2—-'-— . As Anderson and Blundell(1983) suggest, we are not as-

suming that agents are in equilibrium in the short-run and thus there seems no
reason why short-run behavior should satisfy any demand restriction. By this
reason, the restrictions suggested by economic theory are imposed only on the
long-run structure.

An assumption that is necessary to yield reliable estimates of the demand par-
ameters is that the error-correction term (residual of long-run inverse demand) in
eq. (53) should be stationary. If the levels of the variables are nonstationary, the
stationarity of error-correction terms requires that these nonstationary variables
be cointegrated as discussed in Engel and Granger(1987). If not cointegrated,
then the regression equations in (53) are subject to the spurious regression phen-
omenon and the first difference regression without error-correctlon terms is ap-
propriate.?” The test for cointegration consists of two steps:

Step 1: Unit root test for the variables.

In order to test for the presence of unit roots, the following augmented Dickey-
Fuller (ADF) regressions were run:

54 Ayi=a+ Bt+(o—Dy., + édsAy,_s + g

where y is the variable under consideration; » is the number of lags that ensures
that the error term is white noise (for the monthly data, the usual maximum lag
is 12). If the null that p=1 is rejected, the series is stationary in levels.

Step 2: Unit root test for the residuals of the levels regressions estimated us-
ing the nonstationary variables.
If the residuals (U,) do not have a unit root, then the nonstatlonary variables are
said to be cointegrated. This step has two regressions. The first regression is the
cointegrating regression of the form:

5% xi=a+bx,+U,

where x, and x, are the {w,} and {logg,, logQ.}, respectively. The second re-
gression tests for a unit root in the residuals and is of the form:

(56) AU, =d-U,, + 55 g.AU..,

Z1f not cointegrated, the first difference regressions are misspecified because they omit the rel-
evant variable, dynamic element. Deaton and Muellbauer(1980) explained the reason for autocorrela-
tion found in the residuals of the demand equations by the exclusion of dynamic element, i. e. habit
formation.
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[Table 3] Tests for Unit Roots and Cointegration

Variable ADF statistic AR coefficient Lag order
w, —3.546 0.146 1
w, —7.652 0.505 1
w; —3.561 0.159 1
w, —5.339 0.328 1
ws —2.950 0.120 2
W, —6.986 0.391 1
Ing, —4.606 0.219 1
Ing, —6.325 0.335 1
Ing, —7.498 0.610 1
Ing, —7.160 0.440 1
Ing; —3.765 0.117 1
Ing, ‘ —6.819 0.320 1
In Q —5.350 0.346 1
Commodity ADF statistic AR coefficient Lag order
1. —5.353 0.367 1
2. —17.707 0.638 1
3. —7.295 0.520 |
4. =7.110 0.602 1
5. —5.799 0.418 V 1
6. —8.009 0.719 1

Note: Lag order for augmented DF test chosen by using the Akaike Information
Criterion Test (AIC); Critical value: —2.58.

where 2 is the number of the lags chosen by Akaike’s final prediction error cri-
terion. .

The ADF statistics, along with the estimates of coefficients of y,_,, are pres-
ented in Table 3. Using a 5% significance level, the null hypothesis of a unit root
is rejected for any variable in the study. Testing cointegration is also conducted
by checking the stationarity of the residuals of long-run inverse demand, pres-
ented in the bottom half of Table 3. The presence of unit roots is again rejected
as expected.

Given that the variables are cointegrated, the three stage least square esti-
mation (3SLS) may be used to estimate the parameters of the system. For the
convenient specification, eq. (53) may be written in terms of vectors and matrices:

(57) 17):A|y: =s+TAc+ Qlegct + 92A1gm + A-(wt—l - ACt—l)

where
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[Table 4] Estimated Quantity Adjustment Parameters

Adjustment parameters in a system Coefficients of error-correction
A ‘ —0.03 (0.55)
A, —0.32 (4.75)
A —0.01 (0.15)
A —0.01 (0.37)
As —0.04 (1.62)
A —0.08 (2.15)

Note: Values in parentheses are t-statistics.

= [log vil]s A= [Al 10g(q,z/p0p:), A, 1Oth]a
Ag. = [—LE:AIIOgQJ, Agu= [_'u_)itAllog(qz't/Qt)], S = [a'i + ;2¢ikat],

and T and A are coefficient matrices for A,c, and ¢,-,, respectively, while w, is a
diagonal matrix with elements w; and ‘pop’ indicates population. In the pro-
cedure, the predicted value of w_, is first found from an ordinary least-squares
(OLS) estimate of w,_, on lags of instrumental variables which consist of all past
exogenous variables. Next w,, is replaced by the predicted value and then
Zeller’s Seemingly Unrelated Regression is used to estimate the system with
long-run restrictions and mixing parameter restrictions (6,=1 and &,=0) impos-
ed. Note that as mentioned before, since disturbances of this type of equation
(57) are usually autocorrelated, we estimate the transformed model by the Coc-
hrane-Orcutt procedure.

The estimated coefficients of the error correction terms are shown in Table 4.
It shows that three of six coefficients are statistically different from zero and thus
the system may not be expressed in terms of differenced variables alone. The co-
efficient estimates for the model augmented with seasonal dummies may be diffi-
cult to interpret directly. Thus, instead of reporting the coefficient estimates, price
flexibilities and scale elasticities are derived using egs. (51) and (52) and presented
in Table 5. Looking at the results shown in Table 5, it appears that all the estim-
ates of the scale elasticities are negative and relatively large with respect to their
standard errors, thus giving high t-ratios. Since the normalized price goes down
as all quantities increase assuming the absolute prices unchanged, this is what we
expect. We may also note that the estimated scale coefficients are rather close to
minus the average share of fish 7 of Table 1, which suggests that preferences are
homothetic.

Looking at the estimated elasticity form of the Antonelli substitution matrix
of Table 5, All the diagonal elements of the Antonelli matrix, i. e., the own-price
flexibilities, have been estimated negatively with a high degree of precision except
Tilefishes and Seabasses in short-run price formation and the magnitude of the
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[Table 5] Estimation Result of a First-differenced Dynamic Model with Seasonal
Dummies

Price flexibility - Scale gxgg-g;luc% Losrg-lgun
elasticity [flexibility | elasticity

Item R’DW

GP PG Sp K TL SB

1 [{—00702| 00212 00146| 0.0071|—00002| 0.0093| —0.964| —0.133| —0.905| 0.98/1.9
@3%)| G686 (.09 73)] 000)| (15| (1582)| (7.28) (37.66)
2 | 01738]-0.1254| 0.0169|—0.0052|-0.0084|—0.0450| —1.003| —0.180( —1075| 0.85/2.1
(386)| (3.58)] (040)| 087)| (049)| (40| (1249)| (230)| (10.19)
3 | 00147] 0.0021|-00357| 0.0019| 0.0045| 00015 —0.991| —0.021| —1.038| 0.98/2.1
(1.09)] ©40)] Q60| (052 @141)| (039 @1.48)] (1.60)| (47.0)
4 | 00790]-0.0071| 00214]|—0.0833| 0.0009| 0.0357| —1.115| —0.192 —0.965| 0.79/2.0
1) 031 05| 62)| ©06) 194 (421)] @09 (671
5 |-0.0024|-00119| 0.0517| 0.0009|-0.0091| 0.0028| —1.075| —0262| —1.050| 0.84/2.0
©06)| (053 (41| 000 42| ©17D| (159D 027 @89
6 | 0.1135(—00674|—-0.0181| 0.0392| 0.0030{—0.0427| —1.172| —0.172| —1.584| 083/2.1
Q15| @4)| 039 9| 017 39| (1350 @05 ©.27)

Note: Item 1= groupers (GP); item 2=porgies (PG); item 3 = snappers (SP); item 4= jacks
. (JK); item 5=tilefishes (TL); item 6= seabasses (SB); values in the brackets are t-stat-
istics; the last column shows R’ (the coefficient of determination) and Durbin-Watson
statistics. System weighted R* =0.9926.
The model transformed by Cochrane-Orcutt procedure is:
Grouper: ¥, — Ix,=(1 = 0.22L — 0.14L> — 0.12L°> — 0.11L* — 0.11L" — 0.11L") " ey,.
92 19 @77 (166 (195 (2.06)
Porgy: y» — Iy =(1 — 0.17L — 0.12L° — 0.13L° — 0.18L") "' ex.
193) (1700 (195 (.89
Snapper: yy — ITxy=(1 — 0.25L + 0.14L% — 0.15L° — 0.18L* — 0.12L") ' ey.
(349) (05 (233) (279 (2.09)
Jack: yy — Ixy=(1 —0.29L — 0.27L* — 0.25L° — 0.20L* — 0.17L° = 0.21L" — 0.15L°) " es;.
(397) (365 (324 (249 (1.80) (46) (177
Tilefish: y5 — Ixs=(1 — 0.37L — 0.26L*) 5.
(394) (320)
Seabass: ¥ — g =(1 —0.26L — 0.12L" + 0.18L" ) " e
(B2 (195 (2.80)
where numbers in parentheses are t-statistics and lag operator is denoted by L.

short-run response of marginal willingness-to-pay is smaller than the long-run re-
sponse of that except for Snappers. For the off-diagonal elements of the Anton-
elli matrix representing cross substitution in the short-run, only eight of the thirty
different cross effects are negative and ten among thirty are significantly different
from zero, thus showing complementarity bias as usual in the price formation
models.
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[Table 6] Tests for Seasonal Unit Roots

Frequency
Series| O T n2 | £57/6 | £xn/6 | +=/3 | +2x/3 |All seasonal

w, | —1.81 | —3.25%| 18.87* | 19.25% | 8.88* | 14.68* | 17.39* | 24.95*
w, | —1.88|—298*| 8.88* | 655%| 215 | 897* | 3.75* 7.01*
ws | —1.90 | =3.06* | 1447* | 1590% | 4.64* | 8.11* | 14.82* | 1347*
w, | —0.71 | —4.35%| 16.32* | 9.62* | 8.04* | 10.09* | 8.66* | 12.14*
ws | —2.26 | —4.39% | 38.58* | 7.92*% | 7.58* | 11.53* | 27.78* | 40.98*
we | —201 | —3.27%| 23.02* | 5.30% | 3.50" | 18.77* | 13.82* | 13.41*
Ing, | —2.54 | —2.78* | 27.59* | 9.48* | 11.60* | 15.39* | 13.26* | 29.09*
Ing, | —3.51 | —3.34% | 12.07* | 10.05* | 4.45* | 13.32* | 7.10% | 10.57*
Ing, | —1.34 | =3.21*| 9.37% | 8.87* | 5.87* | 10.28* | 11.97* 7.54*
Ing, | —1.14 | —4.28* | 18.55* | 16.93* | 5.88* | 10.48* | 4.94* 13.24*
Ings | —2.26 | —3.74% | 32.63* | 9.14* | 14.00* | 15.12* | 15.87* | 42.30*
Ing, | —2.38 | —5.12% | 23.14* | 9.82* | 6.54* | 13.33* | 11.63* | 20.48*
InQ | —3.84 | —291* | 25.48* | 9.47* | 21.05* | 22.46* | 17.68* | 17.45*

Note: The test procedure uses the parameterization of the test regression adopted
in Franses(1991, eq.(5)).
The test regressions include a constant, seasonal dummies.
* Test statistic significant at the 10% level.
+ Test statistic significant at the 20 % level.

4. Estimation of a Seasonal Differenced Dynamic Inverse Demand Model

As Davidson et al.(1978) suggest, the closest equivalent of a transformation
of the form A, ¥ = 3 — y, (in seasonally adjusted data) is A,y,= ¥, — ¥.-»» (in
raw data), since both transformed variables represent changes net of seasonal fac-
tors. Following their suggestion, we transform the model (57) to be estimated as

(58) 171:Auy: =TAuc+ QlAlzgct + QzAnzgm + AMw,-p, — Act—lz)-

The relationship above may be approximately interpreted as follows: marginal
valuation of consumers in each month of a year is the same as that in the month
of the previous year modified by a proportion of their annual change in quantity
demanded; these together determine a short-run marginal valuation decision,
which is altered by A(w;-., —Ac,-.,) to ensure coherence with the long-run equi-
librium. In this point, the use of transformed variables like A3, etc., seems to
be not because we want to seasonally adjust and achieve stationary but because
A, y, represents a sensible decision variable when different goods are being pur-
chased in different months of the year. Thus, we may prefer estimating eq. (58).
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[Table 7] Estimation Result of a Seasonal-differenced Dynamic Model

Price flxiblty e g;nngpggllosgl l
elasticity [flexibility |elasticity

Item

GP PG SP K TL SB

I {=00775| 0.0052| 0.0215| 00166 0.0131] 0.0089| —1.014| —0.103| —0.945| 0.97/1.6
@74 096 65 61| G62)| 43)| 985 (504)| (13.62)
2 | 00429(-0.1785| 0.0407| 0.0024(-0.0007| 0.0471| —0.813| —0.099| —0.889| 0.77/2.1
096)| @45 028 (063 (116 (45| (0.2 (181 (848)
3] 00217} 0.0050|~0.0425| -0.0024| ~0.0003 | ~0.0015| —0.953| —0.059| ~1.049 | 0.97/2.2
169 (028)] @354 ©O7)] (055 048)] GL.8)| (53| @27
4 | 018431 0.0003(-0.0260|~0.1144|-0.0307| 0.0018| —1.126| —0.181| —0.700 0.71/2.1
G1)| (063)] O71) 630 @35 17| (129)| ©68) @4
5| 01527(-0.0010{—0.0035 [—0.0321 | ~0.0001 [ —0.0011 | ~1.029| —0.228| —0.957 0.69/2.1
G33)| @1 055 39 030D 20| 1435 (7.06)] (656
6 | 01088 0.0704(—0.0186( 0.0019{—00012(—0.1044| —1.287| —0.188| —1.632| 0.86/2.0
Q43| G45)| 048)] 01D 1200 @89 (1549 (331 (.79

Note: Values in parentheses are t-statistics. System weighted R*=0.9886. The model transfor-
med by the Cochrane-Orcutt procedure is:
Grouper: y,, — ITx,=(1 + 0.53L) 'e,,.

(2.58)
Porgy : y» — Ixy=(1 +0.46L) ' ¢,.
(8.40)
Snapper: ¥y — Iy, = (1 + 0.55L) ' ey,.
: (10.63) .
Jack: v, =~ Ty =(1 + 042L) ' e,,.
6.25)
Tilefish: 4 — Ixy=(1+0.57L) ' ¢,,.
. (8.56)
Seabass: ¥4 — Ixy=(1 + 0.39L) ' ¢,,.
(5.81)

where numbers in parentheses are t-statistics and lag operator is denoted by L.

[Table 8] Estimated Quantity Adjustment Parameters

Adjustment parameters in a system Coefficients of error-correction
A —0.18 (3.75)
A —0.17 (3.04)
A , —0.20 (4.21)
A , —0.21 (4.17)
A —0.11 (2.73)
A —0.05 (1.07)

Note: Values in parentheses are t-statistics
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Another version of eq. (58) may be possible, based on the transfer function
methodology proposed by Box and Jenkins(1970). We include AuCioi, Angei-is
and A,g,.. into eq. (58) by purely ad hoc consideration (possibly, better fitting
data). We then obtain

(59) thlzyt = (rl + FZ)Allct -T*AAnc + (91 + Qf)Alzgct - efAlAlzgd
+ (0; + Qi)Augm - 9§A|A12gnt + A(wt—lz - Act—IZ)

by using the relation that Ap¥.-, = Aw¥, — AA.x,, and the superscripts 1 and 2
indicate the coefficients of the original variables and those of the new included
variables, respectively.

As seen in the first differenced model, the error-correction term (residual of
long-run inverse demand) in eq. (58) should be stationary to yield reliable estim-
ates of the demand parameters. The seasonal unit root testing procedure devel-
oped in Hylleberg et al.(1990) and extended to the case of monthly data by Fran-
ses(1991) and Beaulieu and Miron(1993) is used in this section. Table 6 reports
the outcome of the seasonal unit root tests for the variables in the error-correc-
tion term. Note that significance at all frequencies but zero frequency implies no
seasonal unit roots. Using the critical values in Franses(1991), seasonal unit roots
are rejected although the evidence for w; is not overwhelming. Since non-station-
ary stochastic seasonality is not important feature, the system will be stable.

Next we estimate eq. (58) and the estimated result is shown in Table 7. Ac-
cording to the table, 5 of 6 own price flexibilities are estimated negatively and
with a high degree of precision. For the off-diagonal elements, only 12 of 30 are
significantly different from zero and 12 among 30 are substitutes, which is more
than that of the seasonal dummy model. Considering the significant coefficients,
it appears that four groups of fishes are substitutes, i. e., Jacks and Tilefishes; Ti-
lefishes and Seabasses; and that 12 groups are complements - Groupers with
Snappers, Jacks, Tilefishes, and Seabasses; Porgies with Seabasses. Note also that
the estimated coefficients of the error correction terms are shown in Table 8,
which shows that five of six coefficients are statistically different from zero while
three of six were significant in the first-differenced model. Thus, the system ap-
pears not to be expressed in terms of differenced variables alone. It implies that
dynamic factors are important.

V.CONCLUDING REMARK

The paper proposed a new specification of marginal willingness-to-pay func-
tions in a complete system, that is, the synthetic inverse demand system (SIDS).
This system was be used for a specification test that can deal with non-nested
models with different dependent variables. In fact, it tests whether mixing par-
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ameters to combine the null models are jointly and significantly different from
zero. Among various models, the inverse CBS demand system shows the strong-
est empirical performance.

Using the SIDS system as a static differential price formation model, the pap-
er generalized it dynamically incorporating habit formation. The structure of the
model is similar to that of Anderson and Blundell(1983). However, it is different
from theirs in two respects. One is that this paper derives marginal willingness-to-
pay functions while they use ordinary demand functions. The other is that this
study develops a general system in the static and dynamic context while they take
the TAIDS system arbitrarily. The empirical results shows strong evidence of im-
portance of dynamic factor, especially for the seasonally differenced dynamic
model.

Our framework and approach should give an interest to policymakers be-
cause environmental quality change or natural resource regulation is done by
change in quantity, which is exogenous in our model and now a policy variable.
Thus, change in consumer welfare can be easily measured and analyzed by pol-
icymakers. However, the paper didn’t deal with forecasting performance and wel-
fare measurement of its proposed model, leaving it to the future agenda.
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APPENDIX

The dual problem of minimizing indirect utility with respect to prices subject
to budget constraint yields inverse demand functions. The first order conditions
for this problem are:

(Al) V,=Ag,

where A is a positive Lagrangian multiplier and ¥ denotes an indirect utility func-
tion. Together with budget constraint, these are solved for A and p. The latter so-
lutions give the uncompensated inverse demand functions

(A2) pi = gi(q" s Gy m)a i= 1, e, N,
or using the fact that g; is linearly homogeneous in 7,
(A3) vi = gi(qls ) qn), i= 1, e, N,

where v; is a normalized price of commodity i, i. e., ;= p,/m. A simpler primal
method to obtain this result is to apply the Hotelling-Wold identity which is an-
alogous to Roy’s identity in ordinary demand systems:

oU(@)
0q;

Z‘I“M "
7 0q;

AD p.=glg, -, q,m=

which is an explicit representation of (A2) in terms of the direct utility function.
In order to derive the Antonelli equation, analogous to the Slutsky equation,
we let s be a scale variable such that we obtain a reference quantity vector ¢* =
q/s using the scale variable (s) to deflate a quantity vector g. Accordingly, the
Hotelling-Wold identity can be expressed as a function of ¢* and s such that

(AS) v=glg = s, g,

where v is an ( X 1) vector of normalized prices and ¢* is an (% X 1) vector of
reference quantities. Its differential form can then be written as

(A6) dv; = Zh,,dq,; + h,'sds,

where ;= 0h:/0g; and ;= 0h;[0s. Tt appears that change in s must compensate
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for change in g7 so as to achieve the same utility level. Thus, totally differentiat-
ing the direct utility function U(sq*), we can write:

(A7) dU=z[(ﬂ) dds + (%g—) sdqt].

In order to find the change in scale, ds, to compensate for an arbitrary change in
g;, dg;, we set dU =0 and dg,=0 for 7 # j, to obtain:

Letting s=1 and inserting (A8) into (A6), we obtain

dv;
dgq;

(A9) ( ) =hi;' - hisvja

which is called the Antonelli equation, analogous to the Slutsky equation in the
ordinary demand system. In flexibility terms, we can rewrite

(A10) &% = b, — kuw,,

where b, is the uncompensated price flexibility of good ¢ for good 7, : the scale
elasticity of good 7, and w;, the share of expenditure on good J.
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