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It is well known that IV estimation produces considerable bias when the
instruments are irrelevant. Previous studies have suggested - several instrument
Screening tests to avoid such bias. In this paper, an LR test based on the exact
finite sample distribution of R is proposed for a more powerful instrument
Screening test. It is also analyzed how the degree of endogeneity affects bias in
IV estimation. Then, a nonparametric instrument screening test with endogeneity
adjustment is suggested. The finite sample performance of the new test is
evaluated in a Monte Carlo simulation.
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1. INTRODUCTION

Instrumental Variables (IV) estimation has been an important econometric
technique for decades. While the IV estimator is consistent and asymptotically
normal, its finite sample properties are not flawless. As Nelson and Startz
(1990b) and Maddala and Jeong (1992) have shown, especially when the
instrument is weakly correlated with the endogenous variable, the IV estimator is
considerably biased in small samples.! Nelson and Startz (1990a) propose that a
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! Staiger and Stock (1997) derive the asymptotic properties of IV estimator using weak (local
to zero) instrument. They show the IV estimator is badly biased even in large samples, and
suggest to use LIML estimator that is approximately median unbiased.
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pretest of instrument relevance be done to avoid erroneous inference due to
biased IV estimator. They advise, in the case of one-regressor, one-instrument
model, not to use the instrument if R? is less than (2/n), where R* is the
multiple correlation coefficient between the endogenous variable and the
instrument, and n is the number of observations.

Bound et al. (1993) extend Nelson-Startz test to the case of multiple
instruments. They suggest the quality of IV estimator to be evaluated by the F
statistic and R? of the ’first stage’ regression (regression of the endogenous
variable on the multiple instruments). Shea (1997) considers a case of
multiple-regressors  and  multiple-instruments. When  there  exist multiple
endogenous variables, the simple R* between each endogenous variable and the
instruments can be misleading due to collinearity between endogenous variables.
He proposes a partial R%, which is a multicollinearity-removed R* between the
endogenous variables and the instruments. Hall et al. (1996) also generalize
Nelson-Startz’s criterion to multiple-regressor, multiple-instrument case. Naturally,
for the place of simple correlation, the canonical correlations between the
endogenous variables vector and the instruments vector are used to estimate the
relevance of instruments. The Likelihood Ratio (LR) test by Fujikoshi (1974) is
used to test if the canonical correlations are all zero. The approach by Hahn
and Hausman (2002) is yet different. They develop a test based on the so-called
Durbin-Hausman-Wu  specification test. The test examines if there exists
significant difference between forward 2SLS estimator and reverse 2SLS
estimator. Stock, Wright and Yogo (2002) provides with a useful overview of
the tests on weak instruments.

In this paper, I will identify two problems in the previous instrument
screening tests. First, all the above instrument screening tests use R as the test
statistic.2 While the finite sample distribution of R? is well known under
normality assumption, no previous tests are based on the distribution of R
Except Hall et al. (1996), all the previous tests mentioned above are rather
conventional tests based on experience and intuition3 The test by Hall et al
(1996) is not a conventional rule. It is, however, based on the asymptotic
distribution of R? ( = squared canonical correlation), not the exact finite sample
distribution of R24 Because the exact finite sample distribution of R is
available in closed form, it is straightforward to devise an instrument screening
test based on the distribution of R? 1 will propose a new LR test based on
the exact distribution of R? and show that the proposed test is more powerful

2 Hall et al. (1996) is an exception. However, in the special case of single regressor, the LR
test by Hall et al. (1996) is also based on RZ.

3 This point will be elaborated in section IV.

* Although the test by Hall et al. (1996) can be applied to a more general case than a
single-regressor case, we consider a single-regressor case only for convenience of comparison.
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than the previous tests.

Second, the previous tests are too lenient for some bad instruments. Because
the earlier tests examine only the correlation between the instrument and the
endogenous regressor without considering other factors affecting the performance
of IV estimator, some unqualified instruments would easily pass the screening
test. In other words, the pretests accept any instrument that has non-zero
correlation with the endogenous variable, although a stronger correlation is often
demanded because of tougher estimation environment. One such factor is the
degree of endogeneity of the regressor. In this paper, I will identify how the
magnitude of endogeneity affects the bias of IV estimator, and I will suggest an
adjustment of the LR test I propose. I will also show, through a Monte Carlo
simulation, how the new screening test improves the performance of IV
estimation. :

The puzzling phenomenon demonstrated by Hall et al. (1996) can be partly
due to this problem of ignoring endogeneity effect. Hall et al. (1996) show
through a Monte Carlo study that, even though their LR test quite successfully
detects weak instruments, such pre-estimation screening of instruments may
induce even more erroneous statistical inference on IV estimator. They examine
the empirical size of the usual t-test on the regression parameter before and
after their IV relevance pretest. The result shows the empirical size of t-test
becomes even worse when the estimation used only those instruments that passed
the pretest: the cure is worse than the disease!

This phenomenon can be explained by two reasons. First, it is basically a
choice-based sampling problem, which is inevitable with any two-stage test
procedures due to cumulated Type I Error. Because the Type I Error of the
pre-estimation test is carried over to the second stage of the estimation, the
conditional size of the second stage test (conditional on the first stage test
result) becomes less accurate than the unconditional size. Second, as explained
earlier, the IV relevance pretests are too lenient so that the unsatisfactory
instruments may have deteriorated the performance of IV estimator.

In the next section, I will first derive the exact distribution of the sampling
error B,,— B in IV estimation. Then the effect of endogeneity on the sampling
error will be shown in section IIl. Section IV will derive an LR test based on
the exact distribution of R% An endogeneity adjustment for the proposed LR
test and a bootstrap test procedure will be suggested in section V, and a
Monte Carlo comparison will be presented in section VI. Section VI will
summarize and conclude.

II. EXACT DISTRIBUTION OF THE SAMPLING
ERROR OF IV ESTIMATOR

Let us consider the following simple model.
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y=Rfx+u M
x=0z+v 2

where B and ¢ are scalar and x and 2z are in deviations from their means.
Assume w; and o; are serially independent and [ #; v; " ~ N (0, %) for
all /=1,2,...,n, with

=

-] | 0

Also assume z is ‘exogenous’: E(Zwu)=E(Zv)=0. The IV estimator, B,
is B_(2x)7'(z'y), and the sampling error is (B — A =(2'%) "' (2" w). The
bias of IV estimator is the expected value of the sampling error.

According to the previous works, it is necessary to pretest the relevance of
instrument, because the bias of IV estimator could be far from zero in small
sample when the instrument is poor, that is, when ¢ is close to zero. To
evaluate this statement, we need to derive the exact small sample distribution of
the sampling error (or the IV estimator).5 The exact small sample distribution of
the IV estimator with multiple-variables and multiple-instruments has been
derived by many authors, using infinite series of gamma distributions. Among
others, Sawa (1969), Mariano (1973), and Mariano and McDonald (1979) have
derived the small sample distribution for exactly identified model. Phillips (1983)
has derived a more general distribution of IV estimator for the case of
overidentification. Staiger and Stock (1997) have developed a different approach.
They have derived an alternative asymptotic approximation of IV estimator’s
distribution for ’nearly unidentified’ case, using local-to-zero asymptotics. Their
- approximation is very close to the finite sample distribution even when the
sample size is as small as 20 and keeps the advantages of asymptotic
approximation: no distributional assumption required, computationally tractable,
etc.

However, for the above single-regressor-single-instrument model, the exact
distribution of the IV estimator, and accordingly of the sampling error, can be
derived through much simpler direct method, without employing any infinite
series of confluent hyper-geometric function. As shown in Nagar (1959) and
Hinkley (1969), the density function of the sampling error ( B) is as follows:?

5 Because the sampling error is only (IV estimator - constant), the sampling error has the
same distribution as IV estimator after a horizontal shift.

® Actually, the test procedure suggested in the cument study also has the same advantages
because it utilizes bootstrap method for which no distributional assumption or algebraic
computation is necessary.

" The derivation and notation for this specific model is in Appendix. I am grateful to Charles
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where ¢ is the standard univariate normal distribution function, and

J= 6(2’2)(0%4'" O'WB) (5)
V(- )~ 20,,B+ EB)(2'2)

[. INSTRUMENT RELEVANCE AND DEGREE OF ENDOGENEITY

Since the density function is quite complicated even in this simple model, it
is extremely difficult to algebraically examine the effect of instrument relevance
(and other factors) on the bias, the expected value of the sampling error.
Numerical computation, however, will show the response path of the bias to
various factors affecting it. In addition to instrument relevance ( p,,), the factors

of interest here are degree of endogeneity ( po,,), and sample size (7). For
numerical computation, the following nuisance parameters were pre-set:

0,=0,=1, Z'z=10, var(x) = var(z) 6)

With these parameters fixed, four different values of o, and p,, were

examined: 0, 0.3, 0.6, and 0.9. Note that with the fixed nuisance parameters,
0=0 and p,,=38,,. The number of observations is fixed at 20.8

Figure 1 shows the effect of instrument relevance on the sampling error of
IV estimator. It reaffirms the finding of Nelson and Startz (1990b) and Maddala
and Jeong (1992). When the instrumental variable becomes less relevant (lower
0x), the finite sample bias of IV estimator becomes more severe. This is the

basis for pretesting instrument relevance. To avoid biased estimators and
erroneous  inference, ‘bad’ instruments should be screened out, and only
‘acceptable’ instruments should be used. The goal of instrument relevance pretest
is to sort out the ‘acceptable’ instruments.

To sort out ‘acceptable’ instruments, we need to clarify the definition of

Nelson for his valuable comment on the exposition of the distribution.

$ Additionally, the effect of n (sample size) was examined. The bias becomes smaller as #
increases, but does not degenerate even with #%=100. The result, which is not reported to
conserve space, is available from the author upon request.
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‘acceptable’ instruments. First of all, it should be emphasized that poor
instrument is not the only factor causing small sample bias of IV estimator.
The degree of endogeneity ( p,,) also affects the magnitude of bias. Figure 2
shows the effect of endogeneity on the bias of IV estimator. It is clear in
Figure 2 that, even with a reasonably high correlation between x and z

(p.=0.6), the magnitude of the bias increases rapidly as the degree of
endogeneity increases.

[Figure 1] Effects of Weak Instrument when Corr( x, 2)=0.6
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[Figure 2] Effects of Endogeneity when Corrr( x, 2)=0.6
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[Figure 3] Instrument Relevance when Corrr( x, 2)=0.0
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[Figure 4] Instrument Relevance when Corr( x, #)=0.3
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A more interesting fact is that the effectiveness of instrument is not
independent of the degree of endogeneity. Figures 3-5, along with Figure 1,
show the effect of endogeneity on the effectiveness of instrument. Figure 3 is
the distribution of sampling error when x is not endogenous at all ( p,,=0).
As is seen in the Figure, no matter how ‘relevant’ the instrument (z) is, the
bias is zero. Figure 4 shows the case of weakly endogenous x (p,,=0.3).
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When «x is weakly endogenous, p,, does not need to be too high to be
acceptable. Even an instrument with p,,=0.3 does not cause a severe bias.
Figure 5 shows the case of highly endogenous x (p,,=0.9). In Figure 5, no

instrument is satisfactory in terms of bias with such high endogeneity. Even an
instrument with p,,=0.9 is not very effective.

[Figure 5] Instrument Relevance when Corr( x, 2)=0.9
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What we learn from these figures is clear. The definition of an ‘acceptable’
instrument needs to be adjusted in connection with the degree of endogeneity.
While any instrument is ‘acceptable’’0 in a weakly endogenous model, the
instrument needs to be strongly correlated to be acceptable in a highly
endogenous model. Thus, the test for instrument screening needs to incorporate
the effect of endogeneity into the correlation between x and z. The relevance
of instrument must be measured relatively to the magnitude of endogeneity. To
date, however, all the previous testing procedures are about o, without any

adjustment for the degree of endogeneity. For the existing tests, the instruments
are accepted if they have nonzero correlation with «x, even when the
endogeneity is severe and stronger instrument is necessary, to avoid bias. As a
result, existing pretests would over-accept bad instruments when they are not
good enough to be ‘acceptable.” This is partly responsible for the problem Hall
et al. (1996) find. Because their test is, like others, to screen out only the
instruments ~ satisfying  Hy: p,,=0,!! (relatively) bad instruments that are

° Naturally, IV estimation becomes more efficient as z is more closely correlated with x.
10 Again, ‘acceptable’ means the instrument does not cause setious bias.
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correlated with x but not acceptable in connection with endogeneity are passed
into the second stage regression. Consequently, due to the bad instruments, the
symptoms of biased estimation and false inference become more severe than the
nominal cumulated Type I Errors.

IV. LIKELIHOOD RATIO TEST OF INSTRUMENT RELEVANCE

Thus far, the single-regressor-single-instrument model has been considered for
brevity of presentation. As for testing instrument relevance, however, it is of
more practical interest to consider a genmeral model. The presentation will be
focused on a single-regressor-multiple-instrument case to begin with, but the
discussions in this section and the tests in the next section can be easily applied
to a multiple-regressor-multiple-instrument model.12 Note that we will use the
estimator using the multiple instruments as the IV estimator.

In a single-regressor-multiple-instrument model, it is common in -the literature
to use the multiple correlation coefficient ( R%) to measure regressor-instruments
relationship. Formally, the new model is

y=R+u U

x=8121+ 8zy+ ... + 8,2, + v=20+v ®

In this model, the IV estimator is estimated using two stage least squares
(28LS), that is, B,=(%"%)"'(x'y)=(x"x)"XZ'y) where z=2(z'2)""(2'%).
Naturally, the R* from the regression of equation (8) can be used as a measure
of instrument relevance. Let us denote the population multiple correlation
coefficient as R2. Nelson and Startz (1990a) suggest a conventional rule of
testing Hy: R3=0 against H,: R3>0. They argue that the instrument should
not be used if #R?<2. Shea (1997) suggests a more stringent test based on
2*(1) cut-off point: do not use the instrument (or reject Hp) if »R?<3.84
(5% significance level). Although these two tests are practically usable, a more
accurate likelihood ratio test can be derived using the finite sample distribution
of R.13

"' More accurately, the instruments that do not statistically reject Hy: p,,=0.

2 In the multiple instruments case, the distribution of bias in IV estimator has a more
complicated expression with infinite series of confluent hyper-geometric functions, as shown in
Phillips (1983). However, the findings about the effects of various factors on the bias in the
carlier section are not qualitatively different from single-instrument case. Numerical plots are
available from the author.

" Bound et al. (1993) suggest the usual F-test on FHjd,=8,=..=8,=0. Their fest is

actually identical to this LR test on Hy R2=0().
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Assuming the variables have normal distributions, the finite sample distribution
of R? was originally derived by Fisher (1928).14 Under Hy R3=0, the
distribution takes a much simpler form:

n—1 m nem—1_
ARY = il ®: a- )

)

Based on (9), the following results are immediate.!3

Corollary 1. If the regressors and the regressed variable are normally
distributed and if R5=0, then

2 o — .
(2 L) = FOm, n=m=1) (10)

Corollary 2. Given the sample from a multivariate normal distribution, the
likelihood ratio (LR) test at significance level o for Hy R5=0 is given by

2 — -
(2 L) > Fm, n=m=1) (11)

To compare this LR test to the tests of Nelson and Startz (1990a) and Shea
(1997), the likelihood ratio test (11) can be rewritten as:

mEF(m, n—m—1)
(n—m—1)+mF(m, n—m—1)

R*> (12)

Again, Nelson-Startz’s rejection rule is R*>(2/n), and Shea’s rejection rule is
R?>(3.84/x). In addition to these, another test should be considered for the
comparison. Hall, Rudebusch and Wilcox (1996) (HRW hereafter) suggest a

different LR test of instrument relevance using the canonical correlations between
the regressors and the instruments. HRW’s LR test of Hy: no correlation

between x and z is:

—nlog(1— &) > 2m—k+1) (13)

where % is the number of regressors (rank of x), and ¢, is the smallest

4 Simpler forms obtained by other authors like Gurland (1968) are summarized in Johnson
and Kotz (1970), chapter 32. ‘

15 See, for instance, Anderson (1984) pp.138-142.
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sample canonical correlation between x and z. Their test is unique in that the
correlation between multiple regressors ( £>1) and multiple instruments is tested.
For the current case of the single-regressor-multiple-instruments model, HRW test
(13) becomes

—nlog(l— R®> 2(m) (14

because the canonical correlation is v R* when k=1.16 For comiparison to the
other tests, HRW’s rejection criterion (14) can be rewritten as:

_ 2m)

R>l1-e¢ " @15)

Figure 6 plots the critical values of these four tests at 5% significance level
against sample size () for the single-regressor-single-instrument model. It is
interesting that HRW test is almost identical to the likelihood ratio F-test. While
its cut-off point converges to the LR F-test as sample size grows, Shea’s test is
too strict in small samples. Nelson-Startz test is close to LR in small samples
but does not quickly converge to LR.

[Figure 6] Critical Values of IV Screening Tests (1 Regressor, 1 Instrument)
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'% See, for instance, Spanos (1986) pp.313-314.
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[Figure 7] Critical Values of IV Screening Tests (1 Regressor, 2 Instruments)
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[Figure 8] Critical Values of IV Screening Tests (1 Regressor, 5 Instruments)
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When the model is over-identified (there are more than one instrument),
however, the critical values of these tests are quite different. Figure 7 shows,
for the case of a single regressor and two instruments, the changes in critical
values of the three tests as n increases. It is shown that the rejection region of
Nelson-Startz’s test is the widest, Shea’s test is the second, HRW x?-test is the
third, and the LR F-test has the smallest rejection region. In other words,
Nelson-Startz test is the most lenient test among the four, and the LR F-test is
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the most stringent one. Also, the differences do not degenerate as sample size
increases.!” Figure 8 is the one-regressor-five-instruments case. It is clear the
discrepancies in critical values become more severe as the number of instruments
() increases.

Naturally, the LR F-test has better power than HRW test in a single regressor
case, although the comparison is not actually fair because HRW test is robust to
the number of regressors () and LR F-test is not. However, it should be
noted that the LR F-test is based on finite sample distribution, while HRW 2
test is an asymptotic test. Thus, the proposed LR F-test is expected to have a
better small sample properties than HRW test in any case. Figures 9 and 10
show the simulated power functions of LR F-test and HRW test for a single
regressor case.3 As expected, Figure 9 shows the power of LR F-test is
superior to HRW test even in a large sample (%=100). In a small sample (7
=20), as Figure 10 shows, the power difference is more evident.

It is not surprising that the LR F-test is most powerful in this setup. The LR
F-test, derived from the finite sample distribution of R?, actually becomes
equivalent to the classical F-test for the significance of all the explanatory
variables in a regression. It is well known that the F-test is uniformly most
powerful for the null hypothesis.

[Figure 9] Power Comparison of HRW Test vs. LR F-Test ( #=100)
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" Even with #=1000, the critical value of LR F-test is twice higher than and Shea’s and
HRW’s, and about four times higher than Nelson-Startz’s. More detailed results are available
from the author.

'® The power plots are based on 500 replications.
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[Figure 10] Power Comparison of HRW Test vs. LR F-Test ( n=20)
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For a multiple-regressor-multiple-instrument case ( 7>1), the LR F-test needs
to be repeatedly applied for each regressor as Shea (1997) did.!® While LR
E-test does not test the correlation between multiple regressors and multiple
instruments, it can identify which regressor has weak instruments and which
does not. A more important advantage of LR F-test over HRW test is that it
can be adjusted for the degree of endogeneity to incorporate the effect of o,
on IV estimation.20 In the next section, I will suggest an adjustment of the LR
F-test for endogeneity based on an artificial regression.2!

V. BOOTSTRAP TEST FOR INSTRUMENT SCREENING WITH
ENDOGENEITY ADJUSTMENT

Let us consider the model (7) and (8) again.

y=PR+u @)

x=08,21+ 029t ... + 02T v=20+v 8)

! When severe multicollinearity among multiple regressors is suspected, the correction by Shea
(1997) can be applied, too.

® In a single-regressor case, HRW test can similarly be adjusted to incorporate the effect of
endogeneity. Then, however, HRW test loses its generality to be applied to a multiple-regressor
case.

2 Throughout section IV, the random variables are assumed to have a normal distribution. If
the normality assumption is violated, the LR F-test becomes invalid. However, the bootstrap test
proposed in the mext section is robust to distributional assumption.
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The problem of conventional instrument relevance tests is that the degree of
endogeneity (ie. correlation of x and #) is ignored when R2, is measured
from equation (8). To remedy this problem, the following adjustment of R2, is
considered.

RL=R.L(1-R%) (16)

where R?%, is the R? from the artificial regression of # on x, and % is
the residual from IV regression of y on x22 P2 is an endogeneity-penalized
measure of R? between x and z. It is straightforward to see RZ% is not
higher than R% and becomes lower as the degree of endogeneity (RZ,)
becomes higher.23
A problem in testing instrument relevance using RZ is that the exact
distribution of R2, is not tractable. This problem can be overcome by adopting
a distribution-free testing procedure. Bootstrap method, originally introduced by
Efron (1979, 1982), is one such procedure. There have been introduced
numerous ‘resampling’ methods in the literature, such as cross-validation
procedure, recursive residual tests, jackknife methods, Goldfeld-Quant’s test for
heteroskedasticity, etc. Bootstrap method is a relatively new, computer-oriented
resampling method, which utilizes ‘random’ resampling scheme with replacements.
Formally, the basic procedure, when we have a set of observations
{ %1, %3, ..., x,} and a test statistic 3, is as follows.
1) Draw a ‘bootstrap sample’ B, ={ ], x3, ..., x,,} from the original sample
{ %1, %5, ..., x,}. Bach «x} is a random pick from {x,x, ..., x,} with
replacement.
2) Compute 97 using B;.
3) Repeat steps 1) and 2) m times to obtain { 9%, B2, ..., BE}.
4) Approximate the distribution of 3 by the bootstrap distribution F', putting
mass 1/ at each point 3% 3% .. BE.
It has been shown that the bootstrap approximation of the distribution of @
converges to the true one under mild conditions, and its finite sample properties

2 Like B, u is also affected by the problem of poor instruments. However, % is used

because 1) there is no better estimator of #, and 2) the correction using % turns out enough to
correct the problem.

® In (16), the endogeneity adjustment factor, RZ, has an equal weight to RZ. We could
consider variations of the weight on endogeneity penalty. We may possibly find some optimal
weighting scheme for maximum performance of the suggested test. A generalization to this
direction will be investigated in further studies. I am grateful to an anonymous referee for his/her
comment on this possibility.
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are reasonably satisfactory even in the cases where traditional statistical approach
fails. Recent survey on bootstrap methods in econometrics is available in Jeong
and Maddala (1994).

When a statistical inference is made using bootstrap method, a bootstrap
confidence interval must be constructed. Among numerous alternative methods for
constructing bootstrap confidence interval, Efron’s ‘accelerated bias-corrected
percentile ( BC,)" interval is employed in this study. Hall (1988) and Martin
(1990), among others, show BC, method is asymptotically superior to other
methods.24 Efron (1987), Beran (1988), and Diciccio and Tibshirani (1987),
among others, show the small sample performance of BC, method is acceptable.25
Andrews and Buchinsky (2002) develop a three-step method of choosing the
number of bootstrap repetitions for BC, intervals. Using their method, a

researcher can choose B that yields a BC, interval close to the ideal one with

infinite bootstrap repetitions. MacKinnon (2002)’s review of bootstrap inference
surveys recent developments in bootstrap confidence intervals.
The BC, method is to compute the (1-2 @) confidence interval for 6 as

0= G @(z[al), G U (D(z[1—a]))] (17

where G is the cdf of the bootstrap distribution, ¢ is the cdf of the standard
normal distribution, and

(20+2(i))

T a(z+27) (i=a orl—a) (18)

Z[ Z] = Zo+

In (18), 2 is the g-level critical value of the standard normal distribution,
z, is ‘bias constant’ for bias correction, and ¢ is ‘acceleration constant’ for

variance stabilization. z, and ¢ are computed from the sample as

0= 01 2(D)) 19)
3
a=%(—r(228§;32 ) 20)

where ¢; is the finite sample version of the empirical influence function

» They show BC, method, percentilet method, and Beran’s B method are asymptotically
better than the other methods.

» For a brief review of bootstrap confidence intervals, see Jeong and Maddala (1994),
pp.579-582. For more detailed review, see Diciccio and Romano (1988).
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KA —DF +48) — KF)

=l ;

21)

In 21), 9=4F), F is the empirical distribution of the original sample,
and §; is a point mass at x, Thus, ¢; is the derivative of the estimate 7
with respect to the contamination of point x, One-tailed version of the
confidence interval (17) is used to derive the critical point of bootstrap test for
Hy R3=0 against H;: R2>(. For more detailed discussion about BC, method,
readers are referred to Efron (1987).

By using R? instead of RZ, we can screen out relatively weak instruments
in the case of severe endogeneity. For example, consider a case with R% =(.2
and RZ=0.7. Although the bias of IV estimation would be quite high because
of the high endogeneity, the conventional LR tests without endogeneity correction
would most likely accept z as a valid set of instruments because K2, is
considerably greater than zero. However, if R2 is used instead of R%, =z
would not be accepted because RZ, is only 0.06. Naturally, by eliminating such
an instrument set, bias of IV estimation will be reduced.

VI. MONTE CARLO STUDY

To evaluate the new test, a Monte Carlo study is performed. Artificial data
for the simulation were created using the following simple model.

y—frtu 22)
x=8+v 23)
v=yute (24)

where the third equation reflects the relationship between x and 4. It is
straightforward from (22) - (24) to see that y and & are determined once RZ,

and R2, are set. That is,26

- R%, - var(e)

y—‘/ (1-R%—R%) - var(w) 25)
_ R, - var(e)

o= \/ (1 - Riz — Rﬁu) - var(z) (26)

* Without loss of generality, we only consider positive y and positive &.
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Various values of R? and R?, are examined for our Monte Carlo study, and
y, x, 2 u v, and e are created using (22) - (26). For the random number
generation, we assume that » ~ N0O,1), e ~ NO,1) and z are uniformly
distributed with a zero mean and a variance of 10. The true A is set to zero
and the sample size (%) is set to 100.

Table 1 shows the rejection rates of the LR F-test and the bootstrap LR test
with endogeneity correction for various combinations of RZ, and R We
observe the following in Table 1. First, the usual two-tailed t-test of Hy =0
with IV estimator is misleading when the instrument is weak or the regressor is
highly endogenous. For example, when R%,=0.00 and R%,=0.9, the size of
the t-test is as high as 0.382 while the nominal size is 0.05. This phenomenon
becomes less serious as K%, becomes higher, but the tendency is still present
even when RZ is as high as 0.25.28 Second, it is shown in the fourth column,
that the empirical size and power of standard LR F-test are satisfactory but do
not reflect the effect of endogeneity at all. The rejection rates of standard LR
F-test for a particular K2, is constant over the whole range of R%, 00
through 0.9, in Table 1. Third, as expected, the endogeneity-corrected bootstrap
LR test incorporates the effect of endogeneity quite well. For example, let us
consider the case with R2,=0.10. While the LR F-test passes about 90% of
the instruments regardless of the endogeneity level, the bootstrap test passes less
instruments (0.364 through 0.024) as the endogeneity becomes higher (0.0
through 0.9). More specifically, consider the case of R%=0.10 and R%,=0.8.
In this situation, although R2, is not zero, the instruments should not easily
pass the relevance test because the endogeneity level is too high. While the LR
F-test erroncously passes 90.2% of the instruments, the bootstrap test passes only
2.4% of the instruments. This difference is observed in every combination of
R?, and R?, in Table 1. Fourth, it is observed that the bootstrap LR test
produces less accurate empirical size and lower power than the LR F-test, when
x is not endogenous at all (R%,=0). This is certainly a weakness of the
suggested bootstrap test. Nonparametric tests usually sacrifice power to overcome
distributional assumption. The suggested bootstrap test does not seem to be an
exception. However, its empirical size is not severely distorted, and its power
becomes as high as the parametric LR F-test as R becomes higher.

The second question is whether the pretest of instrument relevance improves

77 Note that the sum of K2, and R?, cannot exceed 1 from (25) and (26). The restriction is
necessary to keep RZ,=0. Intuitively, if x and z, and at the same time x and « are closely
correlated, it is impossible for z and # to be independent.

28 Note that, when R?, is 0.25, the correlation coefficient (pxz=@) between x and z
is as high as 0.50.
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the accuracy of statistical inference on the parameter of interest, B. Let us
consider again the t-test of Hy f=( against Hy: f+0. It has been already
shown in Table 1 that the t-test becomes seriously misleading, if irrelevant
instruments are used with no screening pretest. The alternative is a two-step test:
first, perform LR F-test or the bootstrap test on the instruments to check if the
instruments are relevant, and then perform the t-test on A only using the
relevant instruments. Thus, we have three options: (1) direct t-test with no
instrument relevance test, (2) two-step t-test with LR-F pretest for instrument
relevance, (3) two-step t-test with the endogeneity-corrected bootstrap pretest for
instrument relevance. Table 2 compares the accuracy of the three alternative
procedures.

As was explained above, column (1) of Table 2 reaffirms that the direct t-test
with no instrument screening procedure is inaccurate when the instrument is not
good enough. The empirical size of the direct t-test is not satisfactory until RZ

becomes as high as 0.30.29 It is noticed that the t-test tends to over-reject the
null hypothesis as the endogeneity of x increases. Column (2) of Table 2
presents the rejection rate of the two-step t-test with LR-F screening test. The
rejection rate in each case is ‘unconditional’ rate, defined as

number of second stage rejections
number of cases for first stage screening test 27

Rej. rate=P[reject Hyl=

By defining the rejection rate as in (27), we can directly compare the rejection
rate of two-step test to the rejection rate of direct t-test. Note the denominator
of (27) is the same as the denominator of the direct t-test rejection rate.30

Column (2) of Table 2 shows that the two-step t-test with LR-F screening
test eventually produces almost identical rejection pattern to the direct t-test.
Except the cases of RZ,=0(.00, the rejection rates in column (1) and column
(2) are almost the same. Column (2) shows the same tendency of over-rejection
as column (1) in every combination of R% and R2,, when endogeneity of x
is considerable. What this implies is that the LR-F screening test does not
improve the accuracy of statistical inference except when R2,=0.00. It is
impressive in column (2), however, that the LR-F screening test corrects the
severe bias with high endogeneity of x when R%=0.00.

Column (3) in Table 2 presents the unconditional rejection rate of the
two-step t-test with the endogeneity-corrected bootstrap screening test. As shown
in Table 2, the null hypothesis tends to be under-rejected with the bootstrap

® R%,=0.30 mplies that p,,~0.55.

* As explained in Introduction, Hall et al. (1994) compared ‘conditional’ rejection rates of
two-step test to ‘unconditional’ rejection rates of direct test. While such comparison has its own
implication, one should note the difference between the current comparison and their comparison.
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pretest. However, the empirical sizes are generally closer to the nominal rate
(5%) than the other procedures, (1) and (2). Especially when the endogeneity of
x is high, unlike the other two competitors, the test does not show the
tendency of over-rejection.

To summarize, although the results are mixed in some cases, it is shown that
the endogeneity-corrected bootstrap pretest is generally helpful for more accurate
statistical inference with IV estimation. On the contrary, the LR-F pretest in
most cases does not improve the accuracy of inference with IV estimation.3!

' In addition to the power comparison, the bias reduction patterns after alternative screening
tests could interest readers. Unfortunately, however, there existed no significant difference in bias
reduction between the two screening tests, LR F-test and endogeneity-corrected bootstrap LR test.
Though there were a few exceptions, the average biases of IV estimator after the screening tests
were almost identical. The results are available from the author upon request.
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[Table 1] Rejection Rate of LR F-Test and Endogeneity Adjusted Bootstrap Test

Rejection Rate ~ Rejection Rate Rejection Rate
R, R, t-test of Standard Endo. Adjusted
Hy =0 LR F-test Bootstrap LR test
0.00 0.0 .000 042 034
0.00 0.1 .004 052 040
0.00 0.2 010 046 026
0.00 0.3 026 050 024
0.00 04 038 056 054
0.00 0.5 .088 064 024
0.00 0.6 114 064 038
0.00 0.7 182 074 .030
0.00 0.8 270 048 042
0.00 0.9 .382 046 034
0.03 0.0 .000 404 042
0.03 0.1 026 438 034
0.03 0.2 030 378 046
0.03 0.3 .040 392 044
0.03 04 066 426 036
0.03 0.5 .088 462 042
0.03 0.6 084 372 022
0.03 0.7 094 444 016
0.03 0.8 114 402 020
0.07 0.0 .008 790 208
0.07 0.1 034 774 178
0.07 02 026 736 .148
0.07 0.3 064 772 132
0.07 0.4 .052 786 086
0.07 0.5 052 752 062
0.07 0.6 064 706 030
0.07 0.7 .098 770 028
0.07 0.8 .090 748 012
0.10 0.0 018 908 364
0.10 0.1 .028 914 298
0.10 0.2 036 908 274
0.10 0.3 058 910 208
0.10 0.4 044 926 172
0.10 0.5 068 912 122
0.10 0.6 074 908 062
0.10 0.7 .060 934 .040
0.10 0.8 .110 902 024

(continued)
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[Table 1] Rejection Rate of LR F-Test and Endogeneity Adjusted Bootstrap Test

(continued)
Rejection Rate Rejection Rate Rejection Rate
R. | R. t-test of Standard Endo. Adjusted
Hy 8=0 LR F-test Bootstrap LR test
0.15 0.0 030 980 658
0.15 0.1 036 984 570
0.15 02 032 986 .506
0.15 03 056 990 404
0.15 0.4 072 978 358
0.15 0.5 062 982 234
0.15 0.6 074 988 144
0.15 0.7 074 982 094
0.15 0.8 084 986 068
0.20 0.0 044 998 882
0.20 0.1 032 1.000 .804
020 02 .056 1.000 .696
0.20 03 068 1.000 578
0.20 0.4 044 998 488
0.20 05 056 1.000 .364
020 0.6 .060 996 292
0.20 0.7 076 998 210
025 0.0 036 1.000 974
025 0.1 046 1.000 942
025 0.2 .046 1.000 868
0.25 0.3 042 1.000 778
0.25 04 048 1.000 .686
0.25 05 052 996 554
0.25 0.6 052 1.000 462
0.25 0.7 078 1.000 .396
0.30 0.0 050 1.000 .990
0.30 0.1 052 1.000 980
0.30 02 048 1.000 956
0.30 0.3 064 1.000 .894
0.30 0.4 056 1.000 .826
0.30 05 048 1.000 756
0.30 0.6 056 1.000 .684

* The results are based on 500 simulations.
* Bootstrap test is based on 500 bootstrap resamples from the original (y; x; 2;)-
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[Table 2] Unconditional Rejection Rate of Hy =0 with and without
Instrument Screening Tests

25

1 2 3
R, | R Rejection( I)late with Rejection( ]?late after Rejection( I)late after
no screening test LR F-test Bootstrap test
~ 0.00 0.0 .000 .000 .000
0.00 0.1 .004 004 .000
0.00 0.2 .010 .006 .000
0.00 0.3 .026 012 .000
0.00 04 .038 022 .000
0.00 0.5 .088 044 .000
0.00 0.6 114 058 .002
0.00 0.7 .182 068 .002
0.00 0.8 270 048 .002
0.00 0.9 382 046 002
0.03 0.0 .000 .000 .000
0.03 0.1 026 026 .004
0.03 0.2 .030 .030 010
0.03 0.3 .040 036 .008
0.03 0.4 .066 062 018
0.03 0.5 .088 084 026
0.03 0.6 .084 072 012
0.03 0.7 .09%4 082 .006
0.03 0.8 114 114 .006
0.07 0.0 .008 .008 .000
0.07 0.1 034 034 018
0.07 0.2 026 024 012
0.07 0.3 064 064 .034
0.07 0.4 .052 052 .030
0.07 0.5 052 052 .036
0.07 0.6 064 064 024
0.07 0.7 .098 .098 .028
0.07 0.8 .090 .090 012
0.10 0.0 018 018 012
0.10 0.1 028 028 014
0.10 0.2 .036 036 .030
0.10 0.3 .058 058 .040
0.10 0.4 .044 044 .030
0.10 0.5 .068 068 .056
0.10 0.6 .074 074 .034
0.10 0.7 .060 .060 .028
0.10 0.8 .110 .110 .024

(continued)
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[Table 2] Unconditional Rejection Rate of Hy =0 with and without
Instrument Screening Tests

(continued)

¢9) @ ®)

R, R, Rejection Rate with Rejection Rate after Rejection Rate after
no screening_test LR F-test Bootstrap test

0.15 0.0 .030 030 016
0.15 0.1 036 036 026
0.15 0.2 032 032 032
0.15 0.3 056 056 054
0.15 0.4 072 072 .068
0.15 0.5 062 062 052
0.15 0.6 074 074 062
0.15 0.7 074 074 .052
0.15 0.8 .084 084 046
0.20 0.0 044 044 032
0.20 0.1 032 032 026
0.20 0.2 .056 056 056
0.20 0.3 .068 068 .064
0.20 0.4 044 044 042
0.20 0.5 .056 056 .054
0.20 0.6 .060 .060 .056
0.20 0.7 076 076 .066
0.25 0.0 036 036 032
0.25 0.1 046 046 .046
0.25 0.2 046 046 044
0.25 0.3 042 042 .040
0.25 0.4 .048 048 048
0.25 0.5 052 052 052
0.25 0.6 052 052 052
0.25 0.7 078 078 070
0.30 0.0 .050 .050 050
0.30 0.1 052 052 .050
0.30 0.2 .048 .048 .048
0.30 0.3 064 064 .062
0.30 04 056 056 056
0.30 0.5 048 048 046
0.30 0.6 .056 .056 .056

* The results are based on 500 simulations.
* Bootstrap test is based on 500 bootstrap resamples from the original (y;, x; z;).
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[Figure 11] Graphical Presentation of Table 1 (Rejection Rate of LR F-Test and

Endogeneity Adjusted Bootstrap Test)
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[Figure 12] Graphical Presentation of Table 2 (Unconditional Rejection Rate of
Hy =0 with and without Instrument Screening Tests)
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I. SUMMARY AND CONCLUSION

In this paper, two problems in the previous instrument screening tests are
considered. First, an LR test based on the finite sample distribution of R? is
proposed. It is shown that the proposed test is more powerful than the previous
tests at least in small samples. Second, while the degree of endogeneity is an
obvious contributor to bias in [V estimation, no previous tests incorporate the
magnitude of endogeneity into instrument screening procedure. An adjustment for
endogeneity for the LR F-test is suggested in this paper, and the performance of
the tests are presented in a Monte Carlo simulation.
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Appendix: Derivation of Exact Distribution of ( B3;—8)

Given that B, —A=(2'%) " '(z'u), let us define W;=(z'u) and Wp=(z'x).
Then the goal is to find the distribution of ( W/W;). Recall that [ W, W]
has a bivariate normal distribution with mean (g, x,) and variance £ where

#1=0 uy=8z'2)
QE[ 0% 00103 | — Ozuzlz Ow? 2 (A1)
0010, 0 0.z 0R'2
Since  B,,— B=B= Wi/ W,
_p[M
F(B)= P( a SB)
= P(W,— W, B<0 | W>0)P(W,>0) +P(W;— Wy B=0 | W<0)P(W;<0)
= P(W,— W, B<0 and W,>0)+ P(W;— W, B=0 and W;<0) (A2)
Thus,
F(B)= m— B - 0B~ 00,
\/0%f290'10'23+ BZO% ’ oy’ m_2901623+ BZO'%
usB—py Ko 0,B— poy
+ ,—=, A3
V #—200,0,B+B’c; "’ 02"\ —2p0,0,B+ B’} ) (A3)

where ¥ is the standard bivariate normal distribution function:

2 2
—j—mldxdy (Ad)

!P(a,b;c)=mfawf;exp{ 2(1—¢%)

A differentiation of F(B) gives the density function of B:

AB)= A { (505 — 20010p11487 + 1303 }

(A —2000,B+3B) "\ )
1183B— 00,0511+ 12B) + 1501 o
V 27( 0} —20010,B+ 3 B°)° [o(D=0(= ]
ex (111 02B— p0105( 1 + 19B) + 11200)°
P1 201~ DR —200,0,B+ BB
expl — (#%022'—290'10'2#1112'*‘ﬂ%oﬁ)(ozl—zpolobB“"O%Bz)} (A5)
pl 2(1— o)) A% (02 — 2 00,0,B+ 05 B%)

+

where @ is the standard univariate normal distribution function, and
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11103B— 00105111+ 9B) + 1507
o103\ (1— "0t —200,0,B+ 4B

Substituting (A1),

A=V 0h0— 0 =)
T 2(—20,B+0B) P 2l &) }
Nz 2%~ 0.B) v
V 2n(2'2)( 0%~ 20,,B+0°B%)° L)~ o(~ 2]
(22)[ (= 0,,B) — A Fh—20,B+ BY)]
P 2(62— 2 )P —26,,B+5B)
where

J= X2 2)(d}— 0u,B)
V(B NP —20,B+ PB)(2'2)

31

(A6)

(A7)

(A3)
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