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Abstract 

This paper examines sovereign risk dependence and contagion by measuring pair-wise dynamic 

dependences among weekly CDS spreads of four East Asian economies (China, Hong Kong, Japan 

and Korea) for the period from January 2005 to September 2015. We model marginals of the CDS 

spreads using AR-GARCH-t models controlling for global and economy-specific factors to prevent 

potential biases of testing for financial contagion. Then we apply mixture of conditional (time-

varying) Gaussian and symmetrized Joe-Clayton copulas to the standardized residuals for modeling 

dependence. In this paper, contagion is defined as a significant increase in markets’ dependence due 

to an economy-specific shock. 

We first find that there exists contagion between the East Asian sovereign CDS markets. Second, 

the perceived impact of contagion could be different according to whether it is measured by linear 

(Gaussian) or tail dependence. Third, our mixture of copulas approach successfully reflects this 

heterogeneity of sovereign risk contagion and shows that the linear and the upper tail dependences 
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trade off each other once contagion occurs. Lastly, our results indicate that Japan plays the most 

important role in the East Asian sovereign CDS market in terms of the linear dependence whereas 

China and Korea are crucial in terms of the upper tail dependence. 
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1. Introduction 

Does sovereign risk contagion exist between East Asian economies? If so, how does it appear in 

terms of the co-movements between their markets? This paper aims to answer these questions by 

exploring pair-wise dependence between sovereign credit default swap (CDS) markets of four East 

Asian economies – China (CN), Hong Kong (HK), Japan (JP), and South Korea (KR) - for the period 

from January 2005 to September 2015. Figure 1 exhibits CDS spreads of these economies over the 

analyzed period. It shows that CDS spreads of the East Asian economies move together in general as 

well as the degree of the co-movements seems to be stronger for the periods of economic turmoils, 

such as the U.S. financial crisis in 2007-2008 and the Eurozone debt crisis in 2010. 

 

 

Figure 1. Weekly series of sovereign CDS spreads of China (CN), Hong Kong (HK), Japan (JP) and Korea (KR) in 

basis points for the period from December 2004 to September 2015. 

 

There are several sources of biases, generally accepted in academic literatures, in testing for 

financial contagion. Forbes and Rigobon (2002) report that heteroscedasticity biases tests for 

contagion based on the conventional correlation coefficients. Corsetti et al. (2005) show that failing 

to distinguish between common and country-specific components of market returns induces a bias in 

testing for contagion. In this regard, we first filter out determinants of sovereign risk and 

heteroscedasticity from CDS spreads using AR-GARCH-t models to prevent these potential biases. 
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The mean equation of our AR-GRARCH-t filter has global and local variables affecting sovereign 

risk as regressors. We then apply time-varying bivariate copulas to the standardized filtered residuals 

for assessing dynamic pair-wise dependence structures. Parameters of copula functions are assumed 

to follow dynamic processes conditional on the available information as in Patton’s (2006) study. To 

account for the linear and tail dependences simultaneously, we employ a mixture of the Gaussian and 

the symmetrized Joe-Clayton copulas. 

Throughout the paper, we define contagion as a significant increase in markets’s dependence due 

to an economy-specific (idiosyncratic) shock to one economy
1
. In order to identify contagion arose 

from economy-specific shocks, we introduce dummy variables in the dynamic processes of copula 

parameters. 

Our study makes several contributions over the empirical literature on financial contagion. First, 

we focus on sovereign risk contagion between East Asian economies. Unlike studies on stock or 

currency market contagion, little attention has been paid to Asian economies in the discussion of 

sovereign risk contagion.
2
 Most of the previous research on sovereign risk contagion analyzed 

contagion between Eurozone economies after the 2010 Eurozone debt crisis
3
. Second, we investigate 

contagion in terms of both the linear (Gaussian) and tail dependence using a time-varying mixture 

copula model. Time-varying mixture copulas are useful to analyze different kinds of dynamic 

dependence structures simultaneously. There have previously been a few studies analyzing financial 

markets’ dependence using time-varying mixture copulas.
4
 However, they only combined the upper 

                                      
1
 Our definition of contagion is a slight modification of Forbes and Rigobon’s (2002) where financial contagion is 

defined as “a significant increase in cross-market linkage after a shock to one country”. 
 

2
 To the best of our knowledge, Caceres and Unsal (2013) and Wong and Fong (2011) are the only previous literatures 

on sovereign risk contagion between Asian economies. 
 

3
 Fong and Wong (2012), Giordano et al. (2013), Gómez-Puig and Sosvilla-Rivero (2014), Gorea and Radev (2014), 

Kalbaska and Gątkowski (2012), Metiu (2012) and Suh (2015). 
 

4
 Chang (2012) used a time-varying mixture of the Gumbel and the Clayton copulas to model asymmetric dependence 

between crude oil spot and futures markets. Hsieh and Huang (2012) also adopted a time-varying mixture of the 

Gumbel and the Clayton copulas for asymmetric dependence modeling. Wu et al. (2012) employed a time-varying 

mixture of the Clayton and the Survival Clayton copulas to explore the asymmetric tail dependence structure between 

the oil prices and the U.S. dollar exchange rate. 
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and the lower tail dependences and examine dependence structure rather than contagion effect 

between financial markets. Our model combines the linear and the tail dependences in both sides 

together to explore not only dependence structure but also contagion effect. Furthermore, research on 

financial contagion using copulas have employed modifications of static copulas
5
 or time-varying 

but non-mixed copulas
6
. Our suggested model is probably most general to investigate contagion 

using copulas. Lastly, we show that an economy with a contagious effect on other economies in 

terms of one dependence measure can be ineffective in terms of another dependence measure. 

We have four main findings. First, our analysis shows that there exists contagion between East 

Asian sovereign CDS markets. That is, sovereign CDS shocks from one economy can spill over to 

others. As such, the pair-wise dependences are significantly changed even after controlling potential 

biases of testing for contagion. Second, the perceived impact of contagion could be different 

according to whether it is measured by linear or tail dependence. Third, our mixture of copulas 

approach successfully reflects this heterogeneity of sovereign risk contagion by combining linear and 

tail dependence measures and allowing the individual dependence measures to respond to shocks 

through their own dynamic processes. It shows that the linear dependence and the upper tail 

dependence trade off each other once contagion occurs: (1) shocks increasing the upper tail 

dependence will decrease the linear dependence and (2) shocks increasing the linear dependence will 

decrease the upper tail dependence. Lastly, our results indicate that Japan plays the most important 

role in the East Asian sovereign CDS market in terms of the linear dependence whereas China and 

Korea are crucial in terms of the upper tail dependence. 

                                      
5
 Rodriguez (2007), Aloui et al. (2011), Abbara and Zevallos (2014), Weiß (2012), Ye et al. (2012), Loaiza-Maya et al. 

(2015) and many others. 
 

6
 Chen et al. (2014), Kenourgios et al. (2011), Manner and Candelon (2010), Philippas and Siriopoulos (2010), Samitas 

and Tsakalos (2013) and Wen et al. (2012). 
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The remainder of this paper is organized as follows. Section 2 introduces the econometric 

methodologies for our research. Section 3 deals with the data used in this paper. Section 4 explains 

the empirical results. Lastly, Section 5 concludes. 

 

2. Econometric Methodology 

We take advantage of a conditional (time-varying) copula to analyze time-varying co-movements 

between the CDS spreads. A main advantage of copulas is that they enable us to analyze dependence 

structures of random variables entirely separate from their marginal distributions. 

Let X, Y be continuous random variables with marginal distributions (densities) X
F ( X

f ), Y
F ( Y

f ) 

respectively and the joint distribution (density) ,X Y
F ( ,X Y

f ). According to Sklar’s theorem (Sklar, 

1959), the joint density of (X, Y) can be factored into marginals and a dependence density using a 

function 
2

( , ) : [0,1] [0,1]C u v   called a “copula”: 

 
,

( , ) ( ( ), ( ))
X Y X Y

F x y C F x F y  or ,
( , ) ( ) ( ) ( ( ), ( ))

X Y X Y X Y
f x y f x f y c F x F y   , (Eq. 1) 

where 

2 ( , )
( , )




 

C u v
c u v

u v
. Note that the above copula is unconditional and static. 

Patton (2006) extended Sklar’s theorem in (Eq. 1) into a conditional version: 

, | | |

, | | | | |

or

( , | ) ( ( | ), ( | ) | )

( , | ) ( | ) ( | ) ( ( | ), ( | ) | ),

t t t

t t t t t

X Y t X t Y t t

X Y t X t Y t X t Y t t

F x y C F x F y

f x y f x f y c F x F y

  

    

    

        

 

where t
  denotes a time-varying conditioning information set given at time t. The function

( , | )
t

C u v   is called a conditional (or time-varying or dynamic) copula. This extension allows us to 

apply copula theory to a dynamic dependence analysis. 
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Another advantage of copulas is that they allow tail dependence measures, which represent the 

probability of two random variables having upward or downward extreme co-movements together. If 

we are particularly interested in extreme events, the concept of tail dependences can be very useful 

for measuring dependence around the tails of a distribution. The upper and the lower tail 

dependences of two random variables X and Y are defined and obtained from copula functions as 

 
1 1 1

0 0 0

1 2 ( , )
lim Pr[ | ] lim Pr[ | ] lim (0,1]

1

( , )
lim Pr[ | ] lim Pr[ | ] lim (0,1]

U

X Y Y X

L

X Y Y X

C
F F F F

C
F F F F

  

  

  
    



 
    



  

  

  

  

 
       



       

 (Eq. 2) 

If 0U  ( 0L  ), then the copula ),( vuC  has no upper (lower) tail dependence. 

 

2.1. Marginal distribution specification 

It is well known that financial returns have some stylized facts such as serial correlation, fat tail, 

and volatility clustering. Ignoring heteroscedasticity can lead to misidentification of contagion 

(Forbes and Rigobon, 2002). Thus, we adopted “AR-GARCH-t” type models to control the stylize 

features of financial asset returns. 

Let 1

i i i

t t t
y CDS CDS


  , where 

i

t
CDS  is the CDS spread of economy i at the tht  week for i = CN, 

HK, JP, KR. For each i, we suppose: 

 

, ,

0 , ,

1 1

1 1

2
,  ,

G L
i i g i g l i i i

t k k t k k t t

k k

i
i i i i i i i i i

t t t m t m t t ti

y x x

df

df

   

        

 

 

   


   

 
 (Eq. 3) 

where ,

g

k t
x  represents common (global) factors influencing sovereign risk of all East Asian 

economies, ,

i

k t
x  represents economy-specific factors of economy i ’s sovereign risk, and 

2
( )

i

t
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represents conditional variances with heteroscedasticity. The standardized AR-GARCH-t filtered 

residual 
i

t
  is assumed to follow an i.i.d. student-t distribution with degrees of freedom, 

i
df . 

The evaluation of goodness-of-fit for marginals is of great importance in copula modeling. We 

employed the Ljung-Box statistic for testing for serial correlations of the 1
st
 – 4

th
 moments of the 

{ }
i

t
  series and the Engle’s Lagrange multiplier (LM) statistic to examine heteroscedasticity of the 

{ }
i

t
  series. 

For GARCH specification, we considered various GARCH type models: the standard GARCH, 

the GJR-GARCH, the Integrated-GARCH (I-GARCH), the GARCH in Mean (GARCH-M) and the 

I-GARCH-M (Integrated GARCH in Mean) models.
7
 In our analysis, CN and KR were fitted to the 

I-GARCH-M model because of the existence of risk premium effect in the conditional mean 

equation. For JP and HK, the I-GARCH models were chosen. The GJR-GARCH model was not 

selected for any economy. 

 

2.2. Explanatory variables in the conditional mean equation 

Corsetti et al. (2005) has pointed out that failing to distinguish between common and country-

specific components of market returns can result in a bias for testing contagion. In this paper, we 

included various global and local factors as regressors in the mean equation for the individual CDS 

spread. These regressors were selected based on previous studies about sovereign risk such as Blaise 

Gadanecz et al. (2014), Erdem and Varli (2014), Longstaff et al. (2011), Hilscher and Nosbusch 

(2010) and many others. 

 

2.2.1. Global variables. Five common risk factors ( ,

g

k tx ) were considered: the global stock market 

proxied by weekly returns reported by MSCI World (%), global financial market sentiment proxied 

                                      
7
 See Tsay (2010) for more details about GARCH models. 
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by weekly changes of the VIX (%), funding liquidity in the banking sector proxied by weekly 

changes of the TED spread (bp), term-structure of interest rates proxied by weekly changes of the US 

treasury 10-year and 3-month yield spread (bp), and commodity market proxied by weekly returns of 

the WTI spot price (%). Note that raw data of MSCI and WTI prices are denominated by USD. 

 

2.2.2. Local variables. Five economy-specific risk factors ( ,

i

k tx ) were considered: local stock 

markets proxied by weekly returns of the MSCI for each country (%), currency markets proxied by 

weekly appreciation of each currency against the USD (%), overall local economic conditions 

proxied by weekly changes of the annual growth rate of the quarterly GDP (%), government debt 

condition proxied by weekly changes of government debt divided by the annual GDP (%), and 

liquidity buffers proxied by weekly increasing rates of foreign reserve (%). Note that all raw data of 

GDP, government debt, and foreign reserve before normalizing are denominated by USD. 

 

2.3. Copula function specification 

In this paper, the conditional Gaussian (GA) and symmetrized Joe-Clayton (SJC) copula 

functions
8
 and their mixture (GASJC) were used to explore the dynamic relationship between East 

Asian sovereign CDS markets. Among the various copula models, we chose the GA and the SJC 

copulas because they describe dynamic movements of linear dependence and tail dependences in 

both sides, respectively. The processes of time-varying dependence parameters are assumed to 

follow those suggested in Patton (2006), with additional dummy variables added to test for existence 

and direction of contagion. More details of these dummies are presented in Section 2.3.2. Goodness-

of-fit for the copulas were evaluated by the joint hit test proposed by Patton (2006). 

 

2.3.1. Mixture of the Gaussian and the SJC copulas 

                                      
8
 See Patton (2006) for more details about the GA and the SJC copulas. 
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Based on the fact that a convex liner combination of a finite set of copulas is again a copula 

(Nelsen, 2013), we define the following mixture of the GA (
GA

C ) and the SJC (
SJC

C ) copulas as 

( , ; , , ) ( , ; ) ( , ; , )
U L U L

GASJC GA GA SJC SJC
C u v w C u v w C u v       , 

where   is the Gaussian correlation, 
U

  is the upper tail dependence, 
L

  is the lower tail 

dependence and , [0,1]
GA SJC

w w   satisfying 1
GA SJC

w w  . Our mixture copula can reflect both linear 

and tail dependences by combining the GA and the SJC copulas. The density of the GASJC copula 

can be written as 

2 ( , ; , , )
( , ; , , ) ( , ; ) ( , ; , )

U L
U L U LGASJC

GASJC GA GA SJC SJC

C u v
c u v w c u v w c u v

u v

  
     


  

 
, 

where 

2 ( , ; )
( , ; ) GA

GA

C u v
c u v

u v







 
 and 

2 ( , ; , )
( , ; , )

U L
U L SJC

SJC

C u v
c u v

u v

 
 




 
. 

The upper and lower tail dependences of the GASJC copula are calculated by using the following 

formulas: 

1

0

1 2 ( , )
lim

1

( , )
lim

U U U UGASJC
GA SJC SJC

L L L LGASJC
GA SJC SJC

C
w w w

C
w w w





  
   



 
   











 
   



   

 

respectively unless 1 . Therefore, both the upper and lower tail dependences of the GASJC 

copula are inherited from the SJC copula. 

 

2.3.2. Dependence parameter specification 

We specified the processes of time-varying dependence parameters the same as Patton (2006) did 

with additional dummy variables included to test for the existence and direction of sovereign risk 

contagion. 
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2.3.2.1. Test for contagion. We tested the existence and direction of sovereign risk contagion by 

including dummy variables indicating economy-specific shocks in the copula parameter equations. 

Dummies are defined as follows: 

A shock to economy i is defined as a situation of Pr[ ] 95%
i i i

t t t
U     , where 

i

t
  is the 

unstandardized residual in (Eq. 3) and 
i

t
  is a realization of 

i

t
  for , , ,i CN HK JP KR . An 

occurrence of this type of shock can be interpreted as a situation of jump in the idiosyncratic 

component of a CDS spread. There are several recent studies reporting empirical evidence that jumps 

in asset prices are related to contagion between financial markets. Li and Zhang (2013) provided 

evidence of asymmetric contagion from jumps between international stock markets, with the US 

market typically having more influence on other markets than the reverse. Aït-Sahalia et al. (2015) 

found that cojump behavior of the US and the Chinese stock markets has been stronger since the 

subprime crisis, which is closely linked with contagion. Jawadi et al. (2015) reported asymmetric and 

nonlinear spillover effects between jumps in the US and the European stock markets. 

To investigate the effect of shocks on dependence between CDS markets, we defined two dummy 

variables 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D  for each pair ( , )i j  of economies, representing the time of economy-

specific shocks to the economy i and j, respectively, as 

 
( , )

1,
,

{ }
i j i i k

t t t t
k i j

D d d Max d


    and 
( , )

2,
,

{ }i j j j k

t t t t
k i j

D d d Max d


   , (Eq. 4) 

where 
{ 0.95}

1 k
t

k

t U
d


  for , , , , ,i j k CN HK JP KR . Here, i

td  stands for shocks to economy i and 

,

{ }
i k

t t
k i j

d Max d


  stands for shocks occurring outside the economy pair ( , )i j . Thus, 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D  

respectively denote the time of economy-specific shocks in economies i and j that never overlaps 

with any other shocks outside economies i and j.  
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Note that we remove the effects of shocks occurring outside the pair ( , )i j  from i

td  and j

td  to 

define 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D , respectively. This is why we want to explore the “pure” relationship 

between economies i  and j  without any interference from outside variables, such as possible 

systematic shocks remaining unfiltered in the mean and volatility equations. The remaining 

systematic effects could be incorporated through frailty factors, however, we just removed their 

possible impacts by defining 
( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D  as (Eq. 4) for the sake of simplicity. 

2.3.2.2. Specification of time-varying dependence parameters. Using the dummy variables 

defined in (Eq. 4), we slightly modified Patton’s (2006) original specifications. We define the time-

varying Gaussian dependence (
t

 ) and the time-varying upper and lower tail dependences (
U

t
 , 

L

t
 ) 

of each pair ( , )i j  of economies as 

 

10
1 1

0 1 1 2 3

1

10

0 1 1 2 3

1

10

0 1 1 2

1

1
( ) ( )

10

1
| |

10

1
| | ,

10

t t t s t s t

s

U U U U U U

t t t s t s t

s

L L L L L

t t t s t s

s

u v D

u v D

u v

     

     

    

 

  



  



  



 
       

 

 
      

 

 
     

 







 (Eq. 5) 

where ( )   is the CDF of (0,1)N , 
i

t t
u U , 

j

t t
v U  and 

( , )

1,

i j

t t
D D  or 

( , )

2,

i j

t
D . The logistic 

transformations 
(1 )

( )
(1 )

x

x

e
x

e






 


 and 

1
( )

(1 )x
x

e
 


 are used to keep 1 1

t
    and 

0 , 1U L

t t    respectively. 

We want to point out two observations here. First, we ran the regression twice for each pair ( , )i j  

of economies: one with 
( , )

1,

i j

t tD D , the other with 
( , )

2,

i j

t tD D . Positive significance of 
( , )

1,

i j

t
D (

( , )

2,

i j

t
D ) 

would imply existence of contagion from economy i ( j ) to economy j ( i ), whereas negative or 

insignificant estimates would be natural because our definitions of dummies are based on 
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idiosyncratic shocks. The second point is that we applied dummy variables asymmetrically: they are 

included in the upper tail dependence, but not in the lower tail dependence.
9
 The reason for this 

asymmetric modeling is to improve the identification of our mixture of copulas. Furthermore, our 

area of interest is with the impact of extreme “bad” news, related to a sharp increase in CDS spreads 

and the upper tail dependence. 

 

2.4. Parameter estimation 

Among the various estimation procedures of copula functions and marginal models, we applied 

the canonical maximum likelihood (CML) method. The CML method is a semi-parametric two-step 

estimation method, as a variation of the inference function for the marginal (IFM) method proposed 

by Joe and Xu (1996). The difference between the CML and the IFM is that the CML uses empirical 

marginal distributions instead of parametric margins. 

Let  
1

,
T

t t t
x y


 be the observed paired data of two random variables X and Y. The joint probability 

density function of X and Y can be represented as 

 
,

( , ; ) ( ), ( ); ( ; ) ( ; )
X Y X Y C X X Y Y

f x y c F x F y f x f y      

by using (Eq. 1), where 
C

  is the vector of parameters in a copula, X  and Y  denote the 

vector of parameters in the marginal distributions of X and Y respectively, and   is the union of 

X , Y  and 
C

 . Hence, the log-likelihood function is decomposed into the sum of the log-

likelihood functions of the marginals and the copula density: 

    
1 1

; ; ; ; ; .( ) ln ( ), ( ) ln ( ) ln ( )
X Y C X Y

T T

X t Y t X t Y t

t t

L c F x F y f x f y
 

           (Eq. 6) 

The CML method is a two-step procedure using the decomposition in (Eq. 6), similar to the IFM 

method. As the first step, the margins are estimated by using the empirical distributions: 

                                      
9
 Chen et al. (2014) measured the contagion effect between U.S. and Chinese stock markets during the financial crisis 

using a modified Clayton copula, which considers effects of contagion on the lower tail dependence only. 
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1

1ˆ ( ) 1
t

T

X X x
t

F x
T




   and  
1

1ˆ ( ) 1
t

T

Y Y y
t

F y
T




  . 

In the second step, the copula parameters are conditionally obtained using the estimated empirical 

distributions ˆ
X

F  and ˆ
Y

F  by 

 
1

ˆ ˆ ˆmax ln ( ), ( );
C

T
CML

C X t Y t C

t

c F x F y




   . 

 

3. Data 

We empirically examined all possible pair-wise dynamic dependence structures between the four 

East Asian sovereign CDS markets to analyze sovereign risk contagion due to extreme shocks. CDS 

spreads are probably the most popular market-based measure of sovereign credit risk because they 

reflect the change of both global and local economic conditions which have an effect on an economy 

(Longstaff et al., 2007). The CDS data collected covers every Wednesday from 29 December 2004 to 

15 September 2015 which gives 561 weekly CDS spread differences. For missing data, we used the 

data on the previous trading date. Table 1 shows summary statistics of the weekly changes of the 

CDS spreads. 

Table 1. Summary statistics of weekly differences of the CDS spreads 

Economy Min 1Q* Median 3Q* Max Mean Stdev Skew Kurt 

CN -60.32 -2.44 -0.07 2.45 131.72 0.18 9.94 3.63 58.43 

HK -32.10 -1.38 -0.04 1.73 24.10 0.05 4.92 -0.34 8.48 

JP -40.98 -1.45 -0.03 1.43 41.44 0.08 5.58 0.59 16.53 

KR -264.02 -2.74 -0.26 2.65 174.45 0.08 18.48 -2.95 93.36 

Note: This Table provides summary statistics of Wednesday-to-Wednesday weekly changes of CDS spreads (in basis 

points) of four East Asian economies: CN (China), HK (Hong Kong), JP (Japan), and KR (Korea). The data covers from 

January 3, 2005 to September 30, 2015, which corresponds to a sample of 561 observations. 

*1Q and 3Q means 25% and 75% quartiles respectively. 

In Table 1, the means of the weekly changes are close to zero for all economies. The skewnesses 

of HK and JP are nearly zero whereas those of CN and KR are substantially larger than and smaller 
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than zero, respectively. It is natural to expect symmetry or positive skewness of CDS spread changes 

because financial asset prices are more sensitive to bad news than good news. The negative skewness 

of KR is a result of the minimum value (-264.02 bp)
10

 which is a realization for the period between 

29 October 2008 and 05 November 2008
11

. All data series exhibit excess kurtosis implying heavy 

tails for the unconditional distributions of the weekly changes. These observations are consistent 

with assumptions of the AR-GARCH-t models considered in Section 2.1. 

Our data source for weekly CDS spreads, MSCI’s, VIX, U.S. 3-month LIBOR, U.S. 90-day T-bill 

rate, as well as for monthly foreign reserves, is Bloomberg
12

. Weekly U.S. Treasury yields and WTI 

spot prices were obtained from the U.S. Department of Treasury
13

 and the U.S. Energy Information 

Administration (EIA)
14

 respectively. For weekly currency rates, we used the U.S. Board of 

Governors of the Federal Reserve System
15

. We collected quarterly GDP and government debt data 

from the General Government Debt to GDP data calculated by BIS
16

. Note that we ran our regression 

on a weekly basis. To accommodate the data of different frequencies, we transformed monthly or 

quarterly data into weekly frequency using linear transformation.
17

 

 

4. Empirical Results 

                                      
10

 Skewness of KR calculated excluding this minimum value is 6.8639 which is a positive value. Furthermore, if we 

calculate it excluding the minimum value as well as the maximum value (174.45 basis points) together, the result is 

3.8304 which is also a positive value. 
 

11
 For this period, there were economic and political events causing global CDS spreads to decrease. On 29 October 

2008, FRB decided to lower its target for the federal funds rate 0.5% to 1.0% and the discount rate 0.5% to 1.25%. On 

04 November 2008, Barack Obama was elected the 44
th

 president of the United States. A relatively larger decrease in 

the CDS spread of KR might be due to the currency swap arrangement of up to 30 billion U.S. dollars between U.S. 

and KR that occurred on 30 October 2008. 
 

12
 Ticker (Variable): “SOVR”(Sovereign CDS spreads), “MXWO Index” (MSCI World), “MXCN Index”/“MXHK 

Index”/“MXJP Index”/“MXKR Index” (MSCI’s of CN/HK/JP/KR), “VIX Index” (VIX), “US0003M Index” (U.S. 3-

month LIBOR), “USGB090Y Index” (U.S. 90-day T-bill rate), “WIRACHIN Index”/“532.055 Index”/“WIRAJAPA 

Index”/“542.055 Index” (Foreign reserve of CN/HK/JP/KR). 
 

13
 https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yieldAll 

 

14
 http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm 

 

15
 https://www.federalreserve.gov/releases/h10/hist/ 

 

16
 http://www.bis.org/statistics/totcredit.htm 

 

17
 Gorea and Radev (2014) employed a similar accommodation. 
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In this section, we present the results of estimation. First we present the results of the marginal 

models, then we discuss the results of the copula models. 

 

4.1. Estimation results of marginal distribution 

The AR(m)-GARCH(p,q)-t models mentioned in Section 2.1 were estimated by MLE for various 

combinations of (m, p, q). We selected the most suitable models based on the values of AIC and 

SBC among the model specifications satisfying i.i.d. assumptions on the standardized residuals. 

Table 2 shows the selected estimation results for the conditional mean equation of the marginal 

distributions of each economy. 

Table 2. MLE results of marginal distributions : Conditional mean equations 

  Variable   CN   HK   JP   KR 

Conditional mean equation                 

  
Constant 

 
-0.5427** 

 
-0.0303 

 
-0.0277 

 
-0.5398* 

  
  

 
(0.2635) 

 
(0.0637) 

 
(0.0260) 

 
(0.2802) 

 
Global Stock   -0.4217***   -0.1752**   -0.0314   -0.7035*** 

 
factor   

 
(0.1018) 

 
(0.0756) 

 
(0.0219) 

 
(0.1184) 

  
Vol 

 
-0.1364** 

 
-0.0210 

 
-0.0061 

 
-0.1690** 

  
  

 
(0.0595) 

 
(0.0491) 

 
(0.0183) 

 
(0.0690) 

  
TED 

 
-0.0332*** 

 
-0.0130 

 
-0.0061*** 

 
-0.0023 

  
  

 
(0.0124) 

 
(0.0101) 

 
(0.0022) 

 
(0.0124) 

  
10Y-3M 

 
-0.0288*** 

 
-0.0106 

 
-0.0022 

 
-0.0182* 

  
  

 
(0.0100) 

 
(0.0072) 

 
(0.0019) 

 
(0.0110) 

  
WTI 

 
-0.0207 

 
-0.0158 

 
-0.0046 

 
-0.0166 

 
      (0.0241)   (0.0168)   (0.0041)   (0.0263) 

 
Economy- Stock 

 
-0.0007 

 
-0.0705* 

 
-0.0099 

 
-0.0725 

 
specific   

 
(0.0385) 

 
(0.0418) 

 
(0.0104) 

 
(0.0518) 

 
factor FX 

 
-0.1303 

 
-1.1159 

 
-0.0057 

 
-0.1076 

  
  

 
(0.4883) 

 
(1.2866) 

 
(0.0174) 

 
(0.1097) 

  
GDP 

 
-0.3850 

 
-1.0279* 

 
-0.0871 

 
1.8839 

  
  

 
(1.5272) 

 
(0.5489) 

 
(0.2813) 

 
(1.4745) 

  
Debt 

 
-4.6586** 

 
-0.7926 

 
-0.1617 

 
-0.4947 

  
  

 
(2.1589) 

 
(3.7488) 

 
(0.3889) 

 
(1.1810) 

  
Foreign 

 
-0.5602* 

 
-0.0908 

 
-0.0231 

 
-0.7634 

 
  reserve   (0.3322)   (0.2429)   (0.1005)   (0.5235) 

Note: This Table provides parameter estimates of conditional mean equations in the marginal distribution models. Values 

in parentheses are standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, 

respectively. 
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In Table 2, the estimated coefficients of the regressors in the conditional mean equation show 

consistent results with previous literature on the determinants of sovereign risk.
18

 Stock markets, 

term structure, GDP growth, and foreign reserve decrease the sovereign risk, whereas volatility, TED 

spread, currency rate, and government debt increase it. Furthermore, global variables play more 

important roles than local variables in determining the premium of sovereign credit risk, which is 

consistent with findings by Longstaff et al. (2011). 

Table 3. MLE results of marginal distributions: Residual and conditional variance equations 

  Variable   CN   HK   JP   KR 

Residual equation               

  
AR(1) 

 
-0.1266*** 

 
-0.1266*** 

   
-0.0739** 

    
(0.0400) 

 
(0.0404) 

   
(0.0337) 

  
AR(2) 

   
-0.0720* 

   
-0.1801*** 

      
(0.0414) 

   
(0.0286) 

  
AR(3) 

   
-0.0730* 

   
-0.1004*** 

      
(0.0393) 

   
(0.0258) 

  
AR(4) 

       
-0.1260*** 

          
(0.0206) 

  
AR(6) 

       
-0.0521* 

          
(0.0278) 

  
AR(7) 

   
-0.0889** 

    

      
(0.0376) 

    

  
AR(13) 

       
-0.0790** 

          
(0.0326) 

  
Risk   -0.1731*           -0.2460** 

    premium   (0.1049)           (0.1149) 

Conditional variance equation             

  
Constant 

 
-0.1380** 

 
-0.0640* 

 
-0.0030** 

 
-1.5225*** 

    
(0.0647) 

 
(0.0337) 

 
(0.0015) 

 
(0.4539) 

  
ARCH(1) 

 
-0.1703*** 

 
-0.1417*** 

 
-0.2231*** 

 
-0.5470*** 

    
(0.0255) 

 
(0.0237) 

 
(0.0203) 

 
(0.0476) 

  
GARCH(1) 

 
-0.8297*** 

 
-0.8583*** 

 
-0.7769*** 

 
-0.2460** 

    
(0.0255) 

 
(0.0237) 

 
(0.0203) 

 
(0.1149) 

  
GARCH(6) 

       
-0.4530*** 

  
                (0.0476) 

  
Degree of   -3.7850***   -3.7693***   -3.4200***   -3.4014*** 

    Freedom   (0.0254)   (0.0294)   (0.0210)   (0.0271) 

    lnL   -1,598   -1,363   -1,289   -1,677 

  
AIC 

 
-3,227 

 
-2,763 

 
-2,606 

 
-2,606 

    SBC   -3,297   -2,841   -2,667   -2,667 

Note: This Table provides parameter estimates of residual and conditional variance equations in the marginal distribution 

models. Values in parentheses are standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% 

significance levels, respectively. 

                                      
18

 Blaise Gadanecz et al. (2014), Erdem and Varli (2014), Hilscher and Nosbusch (2010), Longstaff et al. (2011) and 

many others. 
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Table 3 shows the estimated results for the residual and the conditional variance equations of the 

marginal distributions. All CDS markets are fitted to the I-GARCH model, meaning that each of the 

CDS spreads has heteroscedasticity with infinite unconditional variance. Additionally, CN and KR 

are revealed to have the risk premium effect and fit the I-GARCH-M model. The results of negative 

risk premium parameters
19

 of CN and KR are consistent with the skewness values of CN and KR
20

 

in Table 1. 

Table 4. Goodness of Fit Test for marginal distributions 
  

Statistic Variable   CN   JP   KR   HK 

Q(6~24)* 1st moment 
 

7.8000  
 

21.5900  
 

9.8500  
 

6.2600  

   
[0.2532] 

 
[0.6035] 

 
[0.1311] 

 
[0.3945] 

 
2nd moment 

 
3.6000  

 
0.2600  

 
4.7600  

 
2.1900  

   
[0.7303] 

 
[0.9997] 

 
[0.5752] 

 
[0.9017] 

 
3rd moment 

 
0.6200  

 
0.0400  

 
0.0200  

 
4.3000  

   
[0.9961] 

 
[1.0000] 

 
[1.0000] 

 
[0.6355] 

 
4th moment 

 
0.6200  

 
0.0300  

 
0.0100  

 
1.8100  

      [0.9961]   [1.0000]   [1.0000]   [0.8519] 

LM(1~12)** 1st moment   3.3102    0.0010    4.1228    0.2925  

      [0.6523]   [0.9742]   [0.1273]   [0.5886] 

*Q(6~24) stands for the Ljung-Box statistic with the minimum p-value among Q(6), Q(12), Q(18) and Q(24), where 

Q(m) represents the Ljung-Box statistic of order m. P-values (in brackets) indicate acceptance of the null hypothesis of 

no serial correlation at the 10% significance level. 

**LM(1~12) stands for the Engle's LM statistics with the minimum p-value among LM(1)-LM(12), where LM(m) 

represents the LM statistic of order m. P-values (in brackets) indicate acceptances of the null hypothesis of no 

heteroscedasticity at the 10% significance level. 

Table 4 reports the results of the goodness-of-fit tests for the marginals. All marginal distribution 

models passed the Ljung-Box tests at the 10% significance level, meaning that there are no serial 

correlations in the 1
st
 – 4

th
 moments of the standardized residuals. Also, all models passed the LM 

tests at the 10% significance level, indicating no heteroscedasticity in the standardized residuals. 

Hence, we can conclude that the estimated models are well specified enough to describe the weekly 

changes of the CDS spreads and satisfy the i.i.d. assumptions on the standardized filtered residuals. 

                                      
19

 Negative sign of the risk premium parameter in the GARCH-M model means that a protection seller on a more 

volatile reference asset will expect more profit from a larger decrease in the CDS spread from the trade date. 
 

20
 See the footnote 10. 
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4.2. Estimation results of static copulas 

Table 5 reports the parameter estimates for the static copula functions. In the GA copulas, all pairs 

of CDS markets have positive static Gaussian correlations. In the static SJC copulas, all pairs of CDS 

markets except for ( , )KR HK  show 0U L   , meaning they have asymmetric tail dependences 

with stronger co-movements in the upper tail than the lower tail, as expected. 

Table 5. MLE results of static copulas 

Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Static non-mixed copulas           

 
GA   0.4387*** 0.7513*** 0.4631*** 0.4115*** 0.3378*** 0.4638*** 

  
  (0.0013) (0.0006) (0.0013) (0.0014) (0.0015) (0.0013) 

  
lnL 58 229 66 50 33 66 

  
AIC -116 -458 -132 -101 -66 -132 

 
  SBC -116 -458 -132 -101 -66 -132 

 
SJC U  0.3062*** 0.5727*** 0.3166*** 0.2451*** 0.2287*** 0.2486*** 

   
(0.0021) (0.0009) (0.0022) (0.0022) (0.0022) (0.0025) 

  
L  0.2296*** 0.5453*** 0.2659*** 0.2051*** 0.0946*** 0.2954*** 

   
(0.0024) (0.0024) (0.0024) (0.0023) (0.0023) (0.0022) 

  
lnL  66 227 72 53 37 66 

  
AIC -132 -454 -144 -106 -75 -132 

 
  SBC -132 -454 -144 -106 -75 -132 

  
Hit Test 0.2002  0.7084  0.7082  0.9979  0.9312  0.6564  

Static GASJC copulas 
     

 
GA   0.1503*** 0.8433*** 0.2842*** 0.4817*** -0.3881 0.6926*** 

  
  (0.0067) (0.0009) (0.0106) (0.0093) (0.3918) (0.0066) 

  
Weight 0.4233*** 0.7997*** 0.6703*** 0.2556*** 0.0500* 0.6152*** 

   
(0.5242) (0.1773) (0.7976) (0.2450) (0.2558) (0.0100) 

 
SJC U  0.5242*** 0.1773*** 0.7976*** 0.2450*** 0.2558*** 0.0100 

   
(0.0053) (0.0112) (0.0004) (0.0039) (0.0038) (0.0123) 

  
L  0.4201*** 0.2026*** 0.5012*** 0.1754*** 0.1192*** 0.0101 

  
  (0.0061) (0.0082) (0.0031) (0.0047) (0.0050) (0.0109) 

  
Weight 0.5767*** 0.2003*** 0.3297*** 0.7444*** 0.9500*** 0.3848*** 

 
    (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) 

 
  lnL 69  242  81  53  37  73  

  
AIC -137  -485  -161  -107  -75  -146  

    SBC -137  -485  -161  -107  -75  -146  

Note: This Table provides parameter estimates of static copulas with standard errors in parentheses. ***, **, * indicate 
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statistical significance at the 1%, 5%, and 10% significance levels, respectively. 

In Table 5, the static GASJC copulas also show overall positive GA dependences and asymmetric 

tail dependences skewed upward. These results are consistent with the non-mixed static copulas, 

implying that the static GASJC copula harmonizes the static GA with the static SJC copulas well. All 

dependence parameter estimates in Table 5 are used as initial guesses to estimate constant terms in 

parameter equations of the corresponding dynamic copulas. The weight estimates of static GASJC 

copulas are used as initial guesses to estimate weight parameters of GASJC copulas. 

 

4.3. Estimation results of non-mixed dynamic copulas 

As stated in (Eq. 5), the Gaussian and the upper tail dependence equations in our dynamic copulas 

have one of the dummies defined in (Eq. 4) to identify sovereign risk contagion. The set  

( , )
1,{ | 1, 1 561}i j

tt D t   ( , )
2,({ | 1, 1 561})i j

tt D t    stands for the times of an extreme 

idiosyncratic shock to economy i ( j ) for the economy pair ( , )i j . Table 6 shows sizes of the 

samples with values of the dummies equal to 1 for each pair of economies. 

Table 6. Sizes of samples with the dummies equal to 1 

Dummy (CN,JP) (CN,KR) (CN,HK) (JP,KR) (JP,HK) (KR,HK) 

( , )

1
1

i j
D   7 12 10 18 15 8 

( , )

2
1

i j
D   15 11 15 9 12 14 

( , ) ( , )

1 2
1

i j i j
D D   1 6 4 4 1 3 

Note: This Table reports the number of samples where the values of dummy variables are equal to 1 for each pair ( , )i j  

of economies. 
( , )

1

i j
D  and ( , )

2

i j
D  stand for idiosyncratic shock on economy i  and j  in the pair ( , )i j , 

respectively. 

In Table 6, note that the number of observations satisfying 
( , )

1,
1

i j

t
D   or 

( , )

2,
1

i j

t
D   is considerably 

smaller than 28 which is the size of { | 1, 1 561}k
tt d t    for all economy pairs. This is because 

we removed effects of shocks that occurred outside of the pair ( , )i j  from i

td  and j

td  to define 

( , )

1,

i j

t
D  and 

( , )

2,

i j

t
D , respectively. Furthermore, the sizes of samples with 

( , ) ( , )

1, 2,
1

i j i j

t t
D D   are even 

smaller for all economy pairs. This is because dummies are defined based on idiosyncratic shocks.  
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As stated in Section 2.3.2, positive significance of 
( , )

1,

i j

t
D (

( , )

2,

i j

t
D ) would imply the existence of 

contagion from economy i ( j ) to economy j ( i ), whereas negative or insignificant estimates 

would be natural because our definitions of dummies are based on idiosyncratic shocks. Thus, we are 

only interested in the cases of dummies with positive coefficients which represent contagion. 

 

4.3.1. Estimation results of the dynamic non-mixed copulas 

4.3.1.1. Results of dynamic GA copulas. Tables 7-1 and 7-2 report estimated results of the dynamic 

GA copulas with dummy variables 
1

D  and 
2

D , respectively. Both dynamic GA copula models 

exhibit better explanatory power than the static GA copulas in terms of the values of AIC and SBC. 

Table 7-1. MLE results of dynamic GA copulas with D1 as the dummy 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D1 as a regressor 

 
  Constant 0.0319*** 5.6038*** 0.3076*** 0.3190*** 0.9658*** 2.0649*** 

  
  (0.0034) (0.0015) (0.0109) (0.0156) (0.0254) (0.0143) 

  
AR(1) 1.9289*** -4.9079*** 1.2817*** 0.8579*** -0.7829*** -2.1236*** 

  
  (0.0115) (0.0023) (0.0287) (0.0547) (0.0678) (0.0180) 

  
MA(10) 0.2205*** 0.2014*** 0.2669*** 0.4948*** 0.1059*** -0.0606*** 

  
  (0.0045) (0.0015) (0.0074) (0.0172) (0.0094) (0.0129) 

  1
D  -0.2728*** -0.0603*** -0.0937*** 0.0132** -0.1633*** -0.4186*** 

  
  (0.0064) (0.0011) (0.0070) (0.0061) (0.0061) (0.0082) 

  
lnL 67  235  69  58  34  70  

  
AIC -134 -470 -139 -116 -67 -140 

 
  SBC -134 -470 -139 -116 -67 -140 

Note: This Table provides parameter estimates of dynamic GA copulas with D1 as the dummy. Values in parentheses are 

standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. 

In Table 7-1, only ( , )JP KR  has positive and significant 
1

D . This means that the linear 

dependence of sovereign risks between JP and KR will increase by (0.0132) , on average, if a shock 

hits JP. That is, contagion from JP to KR exists. Also, in Table 7-2, ( , )JP KR  is the only pair 

having positive and significant 
2

D  indicating a shock on KR will increase the linear dependence of 

sovereign risks between JP and KR as much as (0.3694) , on average. 
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Table 7-2. MLE results of dynamic GA copulas with D2 as the dummy 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D2 as a regressor 

 
  Constant 1.1124*** 0.4297*** 0.4734*** 0.2045*** 0.5743*** 0.5890*** 

  
  (0.0221) (0.0292) (0.0089) (0.0067) (0.0199) (0.0116) 

  
AR(1) -1.3079*** 1.9975*** 0.9893*** 1.2065*** 0.3335*** 0.8630*** 

  
  (0.0527) (0.0383) (0.0203) (0.0242) (0.0599) (0.0244) 

  
MA(10) 1.0123*** 0.0952*** 0.3177*** 0.3904*** 0.1203*** 0.1381*** 

  
  (0.0136) (0.0038) (0.0060) (0.0088) (0.0087) (0.0054) 

  2
D  -0.1328*** -0.4762*** -0.3444*** 0.3694*** -0.1626*** -0.3724*** 

  
  (0.0069) (0.0072) (0.0053) (0.0082) (0.0059) (0.0062) 

  
lnL 64  235  74  60  34  70  

  
AIC -128 -470 -147 -120 -67 -140 

    SBC -128 -470 -147 -120 -67 -140 

Note: This Table provides parameter estimates of dynamic GA copulas with D2 as the dummy. Values in parentheses are 

standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. 

Combining these results, we can infer that there exists a two-way sovereign risk contagion in 

terms of the linear dependence (we call this “linear contagion” later on) between JP and KR. 

 

4.3.1.2. Results of dynamic SJC copulas. Table 8-1 and 8-2 report estimated results of the dynamic 

SJC copulas with dummy variables 
1

D  and 
2

D , respectively. Similar to the case of the GA copulas, 

the dynamic SJC copulas are superior to the static SJC copulas in terms of AIC and SBC. 

In Table 8-1, ( , )CN KR  and ( , )CN HK  exhibit positive and significant 
1

D ’s. This means that 

there exists one-way contagion from CN to KR and from CN to HK in terms of the upper tail 

dependence (we call this “upper tail contagion” from now on). That is, taking the case of ( , )CN KR  

as an example, the CDS market’s expectation on the likelihood of the default of KR given the near 

default of CN increases by (1.0123) , on average, if a shock hits CN.
21

 In Table 8-2, however, no 

dummy has positive significance. All parameter estimates of 
2

D ’s are  negative except for 

( , )CN KR . Although ( , )CN KR  has a positive dummy effect, it is insignificant. 

                                      
21

 Recall that tail dependences are defined as limits of conditional probabilities from (Eq. 2). 
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Table 8-1. MLE results of dynamic SJC copulas with D1 as the dummy 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D1 as a regressor 

 
U  Constant 0.7491*** 5.5062*** 5.6589*** 7.8579*** 0.3720*** 2.8676*** 

  
  (0.1014) (0.0052) (0.0776) (0.1185) (0.0812) (0.1194) 

  
AR(1) 1.6832*** -3.0794*** -2.4605*** -5.1118*** -3.0246*** 2.1992*** 

  
  (0.1752) (0.0144) (0.0713) (0.0585) (0.1118) (0.0841) 

  
MA(10) -7.0494*** -17.0008*** -22.2439*** -27.2779*** -0.8929*** -19.1836*** 

  
  (0.2311) (0.0799) (0.2854) (0.4920) (0.2435) (0.4974) 

  1
D  -6.6845*** 1.0123*** 0.6943*** -13.0895*** -1.8394*** -6.5863*** 

  
  (0.1077) (0.0039) (0.0348) (0.1904) (0.0617) (0.2115) 

 
L  Constant 2.4965*** 8.4394*** 3.9960*** 0.9862*** 4.9922*** 1.0768*** 

  
  (0.0675) (0.0247) (0.0625) (0.0920) (0.0814) (0.2517) 

  
AR(1) -3.5336*** -6.2654*** -1.3806*** -2.6688*** -4.8488*** -2.3736*** 

  
  (0.1329) (0.0157) (0.0616) (0.2857) (0.0568) (0.6410) 

  
MA(10) -11.1605*** -26.9429*** -22.2471*** -6.2307*** -26.4740*** -3.9385*** 

 
    (0.2996) (0.0144) (0.3272) (0.2268) (0.2539) (0.4053) 

 
  lnL 72  243  95  64  41  79  

  
AIC -145 -487 -190 -127 -83 -158 

    SBC -145 -487 -190 -127 -83 -157 

Note: This Table provides parameter estimates of dynamic SJC copulas with D1 as the dummy. Values in parentheses are 

standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. 
 

Table 8-2. MLE results of dynamic SJC copulas with D2 as the dummy 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D2 as a regressor 

 
U  Constant 5.4366*** 6.3979*** 4.5820*** 4.7254*** -0.4322*** 1.3314*** 

  
  (0.0785) (0.0108) (0.0872) (0.0846) (0.0839) (0.1030) 

  
AR(1) -5.2551*** -4.0660*** -1.0536*** -1.5963*** -1.2437*** 1.9115*** 

  
  (0.0376) (0.0749) (0.0744) (0.0960) (0.2608) (0.0977) 

  
MA(10) -16.5001*** -17.7788*** -18.6548*** -20.4246*** 0.1006 -9.4080*** 

  
  (0.2968) (0.3482) (0.3107) (0.2903) (0.2338) (0.3416) 

  2
D  -1.0202*** 0.0157 -17.1909*** -0.7285*** -1.1912*** -8.5013*** 

  
  (0.0332) (0.0125) (0.1312) (0.0453) (0.0486) (0.1993) 

 
L  Constant 2.2781*** 8.5959*** 4.0866*** 1.0275*** 4.7885*** -1.4544*** 

  
  (0.0644) (0.0483) (0.0653) (0.0677) (0.1328) (0.0248) 

  
AR(1) -3.1054*** -6.8159*** -1.5422*** -3.0180*** -4.8618*** 4.8615*** 

  
  (0.1189) (0.0095) (0.1048) (0.1601) (0.0576) (0.0328) 

  
MA(10) -11.3643*** -27.3753*** -22.9565*** -5.8050*** -24.9880 -2.3375*** 

  
  (0.2723) (0.3716) (0.1977) (0.2210) (0.6635) (0.1042) 

 
  lnL 73  244  96  63  41  80  

  
AIC -145 -488 -193 -126 -81 -161 

    SBC -145 -488 -193 -125 -81 -161 

Note: This Table provides parameter estimates of dynamic SJC copulas with D2 as the dummy. Values in parentheses are 

standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. 
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4.3.1.3. Motivation for mixture of dynamic copulas. Note that the economy pairs with linear 

contagion and those with upper tail contagion are not only different but also separated completely. 

This implies that the perceived impact of sovereign risk contagion between East Asian economies 

could be different according to whether it is measured by linear or tail dependence. Therefore, non-

mixed copula models are not enough to fully describe this complex dependence structure. 

Furthermore, the SJC copulas are superior to the Gaussian copula in terms of AIC and SBC for all 

pairs of economies. These results suggest that simultaneous introduction of the linear dependence 

and the tail dependences can improve the ability of a model to investigate effects of contagion on 

dependence structures between the East Asian sovereign CDS markets. 

 

4.4. Estimation results of the mixture of dynamic copulas 

4.4.1. Estimation results 

Table 9-1 and 9-2 present estimated results of the dynamic GASJC copulas with dummy variables 

1
D  and 

2
D , respectively. The results imply usefulness of our mixture approach. 

First, they fit better than the dynamic non-mixed copulas in terms of the values of AIC and SBC 

for all pairs of economies. Second, the dynamic GASJC copulas show consistent results with non-

mixed dynamic copulas: the linear contagion ( JP KR ) in the dynamic GA copulas and the upper 

tail contagion ( CN KR  and CN HK ) in the dynamic SJC copulas still remain significant in 

the dynamic GASJC copulas. Third, our model can furthermore identify contagion that is not 

detected by the non-mixed copulas. In the GA dependence equations of Table 9-1 and 9-2, 

( , )CN JP  has positive and significant 
1

D  and 
2

D , which is not the case of the dynamic GA copula. 

Also, ( , )KR HK  in Table 9-1 has positive and significant 
1

D  in the upper tail dependence equation 

meaning existence of one-way upper tail contagion from KR to HK, which is not the case of the 

dynamic SJC copula in Table 8-1. Therefore, we can conclude that our mixture of copulas approach 
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successfully reflects the heterogeneity of sovereign risk contagion by combining linear and tail 

dependence measures and allowing the individual dependence measures to respond to shocks 

through their own dynamic processes. 

 

Table 9-1. MLE results of dynamic GASJC copulas with D1 as the dummy 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D1 as a regressor 

 
  Constant -0.2315*** 6.2258*** 0.3608*** -0.5963*** 2.2459*** 2.5828*** 

  
  (0.0029) (0.0731) (0.0097) (0.0115) (0.0608) (0.0325) 

  
AR(1) 2.5015*** -5.5146*** 2.7109*** 2.2061*** -2.1974*** -2.4240*** 

  
  (0.0076) (0.0508) (0.0147) (0.0238) (0.0319) (0.0158) 

  
MA(10) 0.9839*** 0.3579*** 0.0189*** 0.8717*** 1.3053*** -1.0395*** 

  
  (0.0119) (0.0179) (0.0062) (0.0176) (0.1028) (0.0258) 

  1
D  1.3753*** -0.0115 -2.0454*** 1.8503*** -5.1198*** -1.9621*** 

  
  (0.0723) (0.0145) (0.0269) (0.0496) (0.0450) (0.0451) 

  
Weight 0.2010*** 0.4703*** 0.2442*** 0.0990*** 0.0963*** 0.2912*** 

 
    (0.0125) (0.0299) (0.0129) (0.0050) (0.0062) (0.0180) 

 
U  Constant -0.2694*** 7.4279*** 5.9823*** 8.7370*** -0.4385*** 4.5594*** 

  
  (0.1042) (0.1239) (0.0830) (0.0606) (0.0884) (0.0758) 

  
AR(1) 1.4574*** -2.6917*** -1.9363*** -5.4478*** -2.3979*** 2.8500*** 

  
  (0.2044) (0.1055) (0.0352) (0.0336) (0.1912) (0.0660) 

  
MA(10) -1.8590*** -29.9853*** -29.9932*** -29.9965*** 0.7644*** -29.9983*** 

  
  (0.2303) (0.8210) (0.2675) (0.2352) (0.2350) (0.2942) 

  1
D  -6.6830*** 1.5583*** 4.9611*** -13.0880*** -1.0093*** 0.9089*** 

  
  (0.0423) (0.0870) (0.0541) (0.0423) (0.0562) (0.1140) 

 
L  Constant 2.4052*** 8.6721*** 4.2056*** 0.8764*** 5.5549*** 3.8036*** 

  
  (0.0721) (0.1820) (0.0517) (0.0452) (0.1416) (0.0570) 

  
AR(1) -3.6085*** -6.5034*** -3.0991*** -3.0180*** -4.8448*** -4.5676*** 

  
  (0.1272) (0.0491) (0.0945) (0.0783) (0.0481) (0.0733) 

  
MA(10) -13.2509*** -29.9787*** -25.9827*** -3.8538*** -29.9956*** -10.7459*** 

  
  (0.3992) (0.8295) (0.1912) (0.1564) (0.6681) (0.2322) 

  
Weight 0.7990*** 0.5297*** 0.7558*** 0.9010*** 0.9037*** 0.7088*** 

 
    (0.0477) (0.0315) (0.0473) (0.0557) (0.0544) (0.0431) 

 
  lnL 78  254  100  67  42  84  

  
AIC -156 -509 -200 -135 -85 -168 

    SBC -155 -509 -200 -135 -85 -168 

Note: This Table provides parameter estimates of dynamic GASJC copulas with D1 as the dummy. Values in parentheses 

are standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels, respectively. 
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Table 9-2. MLE results of dynamic GASJC copulas with D2 as the dummy 

  Regressor (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Copula parameters with D2 as a regressor 

 
  Constant 4.2037*** 2.1364*** 7.4991*** -0.8891*** 0.3199*** 0.9435*** 

  
  (0.0883) (0.1137) (0.0477) (0.0195) (0.0437) (0.0294) 

  
AR(1) -2.6189*** 0.7384*** -1.8078*** 3.3219*** 0.0926** 1.3111*** 

  
  (0.0638) (0.0649) (0.0387) (0.0307) (0.0418) (0.0367) 

  
MA(10) 6.3427*** -0.3569*** -5.5858*** 0.9464*** 0.6349*** -0.0872*** 

  
  (0.0817) (0.0711) (0.0530) (0.0183) (0.0545) (0.0227) 

  2
D  5.2611*** -3.0252*** -3.5329*** 6.5393*** -2.5954*** -1.5538*** 

  
  (0.1641) (0.0356) (0.0352) (0.0649) (0.0981) (0.0312) 

  
Weight 0.0988*** 0.4139*** 0.1253*** 0.0684*** 0.0888*** 0.4741*** 

  
  (0.0066) (0.0267) (0.0080) (0.0049) (0.0053) (0.0244) 

 
U  Constant 5.2846*** 5.9133*** 5.3239*** 5.1999*** -0.3536*** 2.7074*** 

  
  (0.0590) (0.0003) (0.0292) (0.0377) (0.0250) (0.1231) 

  
AR(1) -5.0578*** -2.5728*** -1.6076*** -1.6990*** -1.3809*** 5.6964*** 

  
  (0.0373) (0.0001) (0.0572) (0.0848) (0.0416) (0.0756) 

  
MA(10) -18.6757*** -22.8412*** -23.1027*** -22.4970*** 0.1814*** -29.9994*** 

  
  (0.2213) (0.0005) (0.0579) (0.0858) (0.0418) (0.6709) 

  2
D  -1.4458*** 5.3406*** -17.1858*** -1.0434*** -0.8168*** -8.4946*** 

  
  (0.0440) (0.0002) (0.0423) (0.0584) (0.0429) (0.0423) 

 
L  Constant 1.8014*** 8.2824*** 4.4490*** 0.8303*** 4.9787*** 1.5634*** 

  
  (0.0367) (0.0004) (0.0259) (0.0304) (0.0409) (0.0865) 

  
AR(1) -2.3332*** -6.7026*** -1.3778*** -3.6813*** -4.8988*** 5.7830*** 

  
  (0.0451) (0.0007) (0.0625) (0.0516) (0.0447) (0.0530) 

  
MA(10) -13.2470*** -27.3115*** -26.0719*** -3.9821*** -24.9103*** -29.9986*** 

  
  (0.1935) (0.0006) (0.0502) (0.0528) (0.0433) (0.7426) 

  
Weight 0.9012*** 0.5861*** 0.8747*** 0.9316*** 0.9112*** 0.5259*** 

  
  (0.0534) (0.0351) (0.0520) (0.0552) (0.0571) (0.0359) 

 
  lnL 77 257 103 67 41 86 

  
AIC -154 -514 -205 -135 -82 -172 

    SBC -154 -514 -205 -135 -82 -172 

Note: This Table provides parameter estimates of dynamic GASJC copulas with D2 as the dummy. Values in parentheses 

are standard errors. ***, **, * indicate statistical significance at the 1%, 5%, and 10% significance levels respectively. 

Notice that no pair of economies has linear and upper tail contagions simultaneously in the 

dynamic GASJC copula: if contagion exists between a pair of economies, the coefficient estimates of 
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the corresponding dummies in t  and U

t  have opposite signs. Furthermore, if a pair of 

economies have linear (upper tail) contagion not in the non-mixed models but in the mixture model, 

generally the coefficient estimate of the corresponding dummy in the U

t ( t ) of the mixture model 

is smaller than that of the non-mixed model. Based on these results, we can infer that the linear 

dependence and the upper tail dependence trade off each other once contagion occurs: (1) shocks 

increasing the upper tail dependence will decrease the linear dependence and (2) shocks increasing 

the linear dependence will decrease the upper tail dependence.  

Figure 2 summarizes our inferences about the existence and direction of sovereign risk contagion 

between East Asian economies based on the dynamic GASJC copula model. It shows that an 

economy with a contagious effect on other economies in terms of one dependence measure can be 

ineffective in terms of another dependence measure. JP plays the most important role in the East 

Asian sovereign CDS market in terms of linear contagion. In terms of upper tail contagion, however, 

CN and KR are crucial. Furthermore, HK is the most vulnerable to upper tail contagion among the 

four economies. 

 

Linear(Gaussian) Contagion  Upper tail Contagion 

   

 

Figure 2. Existence and direction of contagion in the East Asian sovereign CDS market, where contagion is defined 

as a significant increase in market dependence due to an idiosyncratic shock to one economy. 
 

 

4.4.2. Goodness of fit test. In Table 10, we present the results of the bivariate hit tests. We divided 

the support of the copulas into seven regions and tested whether the copula models are well specified 

JP 

KR 

HK 

CN 

JP 

KR 

HK 

CN 
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in all regions for each economy pair.
22

 A p-value less than 0.1 indicates a rejection of the null 

hypothesis that the model is well specified. 

Table 10. Joint hit test results for the copula models 

Model (CN, JP) (CN, KR) (CN, HK) (JP, KR) (JP, HK) (KR, HK) 

Static GA 0.0283  0.3519  0.5398  0.9885  0.8972  0.6502  

 
SJC 0.2002  0.7084  0.7082  0.9979  0.9312  0.6564  

 
GASJC 0.3199  0.7664  0.8007  0.9975  0.9168  0.7527  

Dynamic GA(
1

D ) 0.0354  0.3628  0.5422  0.9981  0.9138  0.6713  

 
SJC(

1
D ) 0.1984  0.8908  0.6125  0.9996  0.9578  0.7320  

 
GASJC(

1
D ) 0.4173  0.8821  0.5551  0.9990  0.9624  0.7870  

 
GA(

2
D ) 0.0346  0.3415  0.5349  0.9981  0.9149  0.6626  

 
SJC(

2
D ) 0.1864  0.8964  0.6051  0.9997  0.9547  0.7284  

  GASJC(
2

D ) 0.3246  0.8777  0.5158  0.9992  0.9568  0.7487  

Note: This Table reports the p-values from joint hit tests. A p-value less than 0.1 indicates a rejection of the null 

hypothesis that the model is well specified. 

GA copulas passed the test at the 10% significance level for all economy pairs except (CN, JP). 

SJC and GASJC copulas passed the test at the 10% significance level for all economy pairs. 

Furthermore, the overall p-values are the largest for GASJC copulas whereas the smallest for GA 

copulas. These results imply that introducing tail dependences and mixing them with the Gaussian 

dependence would enhance the explanatory power of a model for dependence structure and 

contagion. 

 

5. Conclusion 

This paper examined sovereign risk contagion between East Asian economies using a mixture of 

dynamic GA and SJC copulas based on the sovereign CDS spreads of CN, HK, JP and KR. 

Throughout the paper, contagion is defined as a significant increase in markets’ dependence due to 

an economy-specific shock. In order to identify contagion that arose from this type of shock, we 

                                      
22

 All detailed settings of the test are the same as in Patton’s (2006) study. 
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introduced dummy variables into parameter equations of the dynamic copulas. We filtered the CDS 

spreads using AR-GARCH-t models controlling for global and economy-specific factors to prevent 

potential biases of testing for financial contagion reported in by Forbes and Rigobon (2002) and 

Corsetti et al. (2005). Then we applied mixture of conditional (time-varying) Gaussian and 

symmetrized Joe-Clayton copulas to the standardized residuals for modeling pair-wise dependence 

between economies. 

The main findings of our study are as follows. First, we found evidence that contagion exists 

between the East Asian sovereign CDS markets. Second, the perceived impact of contagion could be 

different according to whether it is measured by linear or tail dependence. Third, our mixture of 

copulas model successfully reflects this heterogeneity of sovereign risk contagion by combining 

linear and tail dependence measures and allowing the individual dependence measures to respond to 

shocks through their own dynamic processes. It showed that the linear dependence and the upper tail 

dependence trade off each other once contagion occurs. Lastly, Japan plays the most important role 

in the East Asian sovereign CDS market in terms of linear dependence, whereas CN and KR are 

crucial in terms of upper tail dependence. 
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