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About Prior

This paper is about ‘prior’ for statistical inference:
a new approach to construction of prior
new usage of prior

Prior information is regarded as non-sample, or
before-sample information.

Prior could contain information on any unknowns or
unobservables for statistical inference and forecasting:

prior for parameters given a parametric model.
prior for models in model selection and averaging
and more



Prior for Parametric Inference

Given a density f (x|θ) and prior π(θ), the posterior is
obtained:

π(θ|x) =
f (x|θ)π(θ)

mπ(x)

where
mπ(x) =

∫
f (x|θ)π(θ)dθ

is the marginalized density.
Prior and sample information are combined to yield
posterior

posterior after-data
belief


∝ likelihood sample

information


× prior before-data

belief





Literature on Determination of Prior

Subjective priors: De Groot (1970), de Finetti (1972),
Lindley (1982)
Conjugate priors
Non-informative priors: Laplace (1812), Jeffrey (1961),
Hartigan (1964), Jaynes (1968, 1983), Villegas (1977, 1981,
1984)
Empirical Bayes: Robbins (1956), Carlin and Louis (1996),
Gholami et al. (2015), Efron (2015).



Prior Information

Prior may contain all the relevant, direct and indirect,
information on the unknowns.

Prior is for weighing different possibilities of unknowns to
make the best possible decision or inference.

As such, prior should depend on model specification,
direct versus indirect information, sampling anomalies
(randomness), alternative rules for decision making, etc.



Prior - Extended Concept and Usage

- In the presence of heterogeneity: Heterogeneity may exist
across cross-sectional or time-series domain. Use indirect
evidence from other (concurrent) related samples. e.g. a
medical example in a later section

- In the presence of specification uncertainty: Use the fact
that [the likelihood and prior combined] matches the
marginal density of observations.

- In the presence of gap between two disciplines: The
frequentist confidence statement and the Bayesian
probability statement may not be the same.

- Application for meta analysis: In meta analysis different
statistics may contain different amount of information for
the unknown



Deconvolution (1)

Xi, i = 1, · · · , n, is a set of observables from a parametric
family of densities fθ(·) ≡ f (·, θ) for θ ∈ Θ ⊂ IRk.
An (unknown) prior density π(θ) has produced θ̃with a
realized value θ ∈ Θ. Then, Xi is produced from f (x|θ).
The marginal density of xi from π, mπ(xi), is defined as

mπ(xi) =

∫
f (xi|θ)π(θ)dθ.

An inverse problem to obtain π from mπ can be established.
xi, i = 1, ..., n could be the past data or the current data, the
former case being called empirical Bayes and latter
compound decision problem. (Robbins (1951,1956))



Deconvolution (2)

From the definition of marginalized density, mπ(xi),

mπ(xi) =

∫
f (xi|θ)π(θ)dθ,

we consider an inverse problem of estimating π from mπ.
Estimating π from mπ is the problem of deconvolution, the
”Bayes deconvolution”, which is a well known ill-posed
problem. (Efron (2015))
Also, m is often not directly available.
We discuss a convenient approach to estimating π(θ).



Alternative Approach (1)

Given the marginal density,

mπ(x) =
∫

f (x|θ)π(θ)dθ,

take logarithms on both sides

log(mπ(x)) = log
∫

f (x|θ)π(θ)dθ.

Take expectations of log(mπ(x)) with respect to the (true)
density of x, m(x):

Em[log(mπ(x))] =
∫

m(x) log(mπ(x))dx.



Alternative Approach (2)

Define a measure of discrepancy between m and mπ

d(m, mπ) = Em
[

log
m(x)

mπ(x)

]
= Em[log(m(x))] − Em[log(mπ(x))] (1)

which is the Kullback-Leibler distance (relative entropy
distance) between m and mπ.
We know that

d(m, mπ) > 0, = 0 iff m = mπ

Our solution for π is the one that minimizes d(m, mπ).
Notice that the first term on the RHS of (1) has nothing to
do with π, which implies the following useful result.



Lemma
Let mπ(x) be as defined in (1). Then, it is true that

argmin
π

(d(m, mπ)) = argmax
π

(Em[log(mπ(x))]) (2)

From the above lemma, our solution for π is the one that
maximizes Em[log(mπ(x))] in (1):

Em[log(mπ(x))] =
∫

m(x) log(mπ(x))dx

=

∫
m(x) log

(∫
f (x|θ)π(θ)dθ

)
dx. (3)



Specification for π

We consider π(θ) satisfying certain moment conditions.
Consider the following problem:

max
π

∫
π(θ) logπ(θ)dθ

subject to
∫
θrπ(θ)dθ = µr

′, r = 1, . . . , p. (4)

That is, we consider π(θ) as the maximum entropy density
subject to a set of moment conditions.
The max-entropy density reflects the full uncertainty about
π: Only a set of sure information, the moment conditions,
are taken care of.
Thus, it is the most conservative density available, given
the sure information.



It is well known that the solution πme(θ) of this problem is

πme(θ) =
exp(

∑
r λrθ

r)∫
exp(

∑
r λrθr)dθ

= exp

( p∑
r=1

λrθ
r + λ0

)
(5)

where λ0 = − log
(∫

exp(
∑p

r=1 λrθ
r)dθ

)
.



Alternative Approach (3)

Now, with πme in place of π, we have

Em [log(mπme(x))] =
∫

m(x) log

(∫
f (x|θ) exp

[ p∑
r=0

λrθ
r

]
dθ

)
dx. (6)

Let λ∗ be the solution for λ = (λ0, · · · , λp)
′:

λ∗ = argmax
λ

∫
m(x) log

(∫
f (x|θ) exp

[ p∑
r=0

λrθ
r

]
dθ

)
dx. (7)



Empirical Version

Let ΘJ ⊂ Θ for ΘJ = {θj : j = 1, . . . , J}, a discrete subset of Θ.
Given a sample xi, i = 1, · · · , n, and ΘJ, we define the
empirical objective function:

Em̂[log(m̂πme(x))] =
n∑

i=1

1
n

log

 J∑
j=1

f (xi|θj) exp

[ p∑
r=0

λrθj
r

] . (8)

Define the solution λ̃n,J of the empirical optimization:

λ̃ = argmax
λ

Em̂[log(m̂πme(x))]. (9)



Asymptotics

Let P̂πme

n,J be the probability measure induced by m̂πme with a
sample of size n and ΘJ:

P̂πme

n,J (t) =
n∑

i=1

m̂πme(xi)1(xi6t)(t).

It is natural to consider the relation between P̂πme

n,J (t) and
Pπme

(t), the ‘true’ probability measure defined by

Pπme
(t) =

∫ t

−∞ mπme(x)dx

Indeed, P̂πme

n,J (t) converges to P(t)π
me

.



Theorem 1
Assume that {Xi} is a stationary and ergodic process. Assume
that f (·|θ) is continuous in x for every θ, that f (x|·) is continuous
in θ for every x, and that π(·) is continuous in θ. Let λ∗ be the
unique solution of the problem (7) and λ̂n,J be that of the problem
(9). Then we have

λ̂n,J
p−→ λ∗ as n, J →∞.



Theorem 2
Under the same conditions as in Theorem 1, it is true that

lim
n,J→∞ Q

(
sup
t∈R

|P̂πme

n,J (t) − Pπme
(t)| > ε

)
= 0

where Q is the probability measure of the sample implied by
m(x), Q(t) = Pπme

(t) =
∫t
−∞ m(x)dx.



Algorithms

Grid search method is slow and inefficient but most
reliable with a reasonable dimension of grids for a model
with a low dimensional parameter space.
Nelder-Mead direct search algorithm may be a reasonable
option, which does not involve gradient information.

- Computationally inefficient, but it works successfully for
wide class of problems.

- Starts with a simplex of n + 1 vertices in the search region
of Rn.

- Then the algorithm transforms the simplex along the
surface by reflection, expansion, contraction or shrinkage
for each iteration step.



Application (1)

Example 1: Misspecification

f (·|θ) : Xi ∼ N(θ, 1)
π(θ) : θ ∼ N(1, 0.5)

m(x) is obtained from

m̂(x) =
J∑

j=1

f (x|θj)π(θj).

Get xi, i = 1, ..., n from m̂(x). Estimate λ and π from (9).
Figure 4: Get π̂, given the true f

f (·|θ) : Xi ∼ N(θ, 1).

Figure 5: Get π̂, given a wrong f

f (·|θ) : Xi ∼ N(θ, 0.5).







Application (2)

Example 2
Cancer surgery involving the removal of surrounding
lymph nodes.

Data: (Data set from Seoul National University Hospital)
N= 548 surgeries (individuals), each reporting

n = #(nodes removed) and x = #(nodes found positive).

(Results to be included.)



Conclusions (1)

We discuss a new approach to the estimation of prior based
on minimization of relative entropy applied to the Bayes
deconvolution.
Estimation could done either by the past data or by the
current data.
Estimation by the current data brings us to a new area of
compound decision problem, idea of which is due to
Robbins (1951,1955).
Can use indirect evidence from other (concurrent) related
samples to get a prior and posterior which brings a more
sensible inference basis, e.g. a medical example.



Conclusions (2)

Provide a natural mitigator of the problem of model
misspecification, using the fact that the likelihood and
prior combined matches the marginal density of
observations.
A new inference method for detecting misspecification can
be explored.
May study a framework for finite sample analysis in the
frequentist approach.


