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This article analyzes the productivity growth in Korean agriculture with 
data on multiple crops, over the five years, from 1998 to 2002. 
Measurements are obtained from the estimation of a stochastic multi-output 
distance function. This study corrects for sample selection bias in the context 
of a translog functional form that appears when some farms produce only a 
subset of the potential outputs. The results find that technological change has 
caused a significant productivity change. Larger farms experience the 
highest rate of productivity growth by the greatest rate of scale effect. More 
human capital also leads higher productivity growth rates. 
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I. INTRODUCTION 
 
Korea has devoted considerable effort in improving productivity, 

growth, and competitiveness. The agricultural sector has relied heavily on 
protectionist policies and has not experienced the rapid economic growth 
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compared to other parts of the Korean economy. Productivity growth is 
now an important topic in Korean agriculture, particularly in the context 
of market opening in international competitiveness. Agricultural imports 
are expected to increase through further market liberalization, given 
current trade agreements, and negotiations, such as DDA and FTAs. 

Many Korean commentaries have discussed the influence of trade 
reform on Korean agriculture (e.g., Choi et al., 2000; Kim and Lee, 2004), 
noting that domestic prices in Korea are far above import prices for many 
agricultural commodities. Productivity gains have been regarded by some 
agricultural economists and agricultural policy practitioners as the best 
way for Korean agriculture to compete with imports. Thus, considerable 
public efforts have been devoted to improving productivity (e.g., Kim, 
1997; Lee, 1998). 

In order to better understand the recent performance of these efforts, 
this paper analyzes the productivity growth in Korean agriculture with 
panel data on multiple crops over the five-year span from 1998 to 2002.  
Panel data provide more reliable evidence on Korean farms’ performance 
because the data enables us to track the performance of each producer 
through a sequence of time periods. 

There is no study for agricultural productivity growth in Korea, 
especially in the context of multiple crops. While panel data are also used 
in the existing literature, data in these studies come exclusively from 
livestock farms. For example, Brümmer et al. (2002) consider dairy farms 
for three European countries (Germany, The Netherlands, and Poland), 
over the period from 1991 to 1994 and with outputs of milk, meat and 
other products. Paul et al. (2000) use four outputs from New Zealand 
farms (wool, lamb, mutton or sheep, and beef or deer). The analysis of 
farms producing multiple crops from different regions over time yields 
indications of heterogeneous productivity changes in agricultural 
production patterns. 

This paper applies a panel data production frontier model to measure 
productivity growth of farms in Korea. Specifically, this study estimates a 
stochastic multi-output distance function to accommodate multiple 
outputs and inputs within the frontier framework1. Panel data frontier 

____________________ 
1 Since our panel data do not include prices, productivity growth is measured using a primal 
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models allow the measurement of farm and time specific indices of 
technical efficiency changes (i.e., technical efficiency is allowed to vary 
across producers and through time for each producer). Furthermore, 
stochastic frontier econometric techniques explain deviations from best-
practice productivity with a two-part error term including a statistical 
noise from measurement error and a technical inefficiency arising from 
farms not reaching the production frontier boundary. This contrasts with 
conventional econometric approaches that fit a function through the data 
assuming a normal error distribution and with nonparametric or 
deterministic econometric frontier approaches that limit statistical 
inference (Paul et al., 2000). 

The methodology used to measure multi-output productivity growth 
and its components is derived from several sources; Kumbhakar and 
Lovell (2000) provide an analytical framework for estimation and 
decomposition of TFP growth using cost and profit frontier functions in 
the context of multi-output production technology. Brümmer et al. (2002) 
expand on existing literature by estimating and decomposing traditional 
TFP growth into technical change, technical efficiency, allocative 
efficiency (of inputs and outputs), and scale components, all in the 
context of primal multi-output technology. 

This paper also provides evidence about the importance of sources 
leading overall productivity growth and heterogeneous adjustments of 
Korean farms based on the production technology available to farms. As 
well as measurement of productivity growth rates of farms, productivity 
growth is decomposed as technical change, technical efficiency change, 
and scale effects. Productivity growth rates are different by categories of 
farm size, operator human capital, and crops, which result from 
heterogeneous sources causing productivity growth across farm sizes, 
farm characteristics, and output composition. These issues are all vitally 
important to Asian countries, such as China, Japan, and Taiwan, that have 
experienced rapid growth and a lagging farming sector. 

For the empirical implementation of the multi-output distance function, 
the translog functional form has advantages to allow for a variety of 
possible production relationships including non-constant returns to scale, 

____________________ 
parametric method that does not require price data. 
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non-homothetic production, and non-constant elasticities of outputs and 
inputs. However, use of the translog functional form raises a problem of 
zero-valued observations, because taking logarithms of zero values is not 
possible. If the dropped zero observations from the sample are missing 
purely by chance, zero observation problems may not cause bias in the 
estimation of the production frontier. The decision to produce single 
outputs or multiple outputs, however, is made by individual farms, so 
those who are not producing multiple outputs constitute a self-selected 
sample and not a random one. Some studies get around these problems by 
using time-series or panel data without zero observations or omit the 
observations with zero values from the sample, while others have 
intentionally avoided use of translog functional forms and alternatively 
use the level-based specification of quadratic functions. For example, 
suppose a generalized linear transformation function has been specified 
(Diewert, 1973; Felthoven and Paul, 2004). Zero observations are also 
included in estimation by using a value of one or an arbitrarily small 
number greater than zero. The results of this method, however, are not 
independent of the variable’s units of measurement. In addition, if the 
number of zero values is a significant proportion of the total number of 
sample observations, then the method may result in substantially biased 
parameter estimates. Accordingly, I develop an approach to deal with the 
sample selection bias caused by the problems of zero-valued observations 
in the translog distance function. This paper corrects for sample selection 
bias in the context of a translog functional form by utilizing an extended 
version of the Heckman selection model. 

 
II. ANALYTICAL FRAMEWORK 

 
An output-oriented distance function is employed to represent a multi-

output production frontier. This approach has been used in the substantial 
literature on multi-output production frontier analysis (e.g., Lovell et al., 
1994; Battese and Coelli, 1995; Paul et al, 2000; Brümmer et al., 2002). 

The output distance function ),,( tyxDo , suggested by Shephard 
(1970), is defined on the output set ),( txP  as: 
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)},()/(:0{inf),,( txPytyxDo ∈>= δδ
δ

,  

for all MRy +∈  and KRx +∈ ,  (1) 
 

where ),( txP  represents the feasible set of outputs that can be produced 
with the input vector x , given external production determinant t .  
Time, t , facilitates the calculation of technical change. 

The output distance function indicates the reciprocal of the maximum 
proportional expansion of the output vector y , given x  and t . The 
function also represents production technology, especially in the case of 
multiple-outputs. Since the output distance function ),,( tyxDo  is 
defined in terms of the output set ),( txP , satisfying certain properties, 
the corresponding output distance function satisfies the following 
properties: ),,( tyxDo  is non-decreasing, convex, and linearly 
homogeneous in outputs and non-increasing and quasi-concave in inputs 
(Färe and Primont, 1995). 

The distance function represents distance from the frontier.  The 
distance takes on a value less than one if y  is within the function; this 
also indicates the deviation of the farm from technologically “best-
practice” production. The output-oriented measure of technical efficiency 
thus coincides with the output distance function (Kumbhakar and Lovell, 
2000, p.50). The relationship is formulated as, 

 
0),,(ln1)exp(),,( 00 =−⇔=− utyxDutyxD ,  (2) 

 
where u  is non-negative, ),,( tyxDo  is a multi-output production 
frontier and )exp( u−  is the value of the output distance function, which 
is less than or equal to one. The exponential u−  is therefore often 
represented as the technical efficiency score (i.e., the efficiency of 
transforming inputs into outputs). Here, u  is assumed to be dependent 
on time if technical efficiency changes over time. 

Differentiating the latter expression of (2) with respect to time t  and 
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share of output my  and cost share of input kx , respectively) measured 
in the context of a multi-output, multi-input setting lead to the 
decomposition formula of productivity growth for multiple outputs as2: 
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If technical efficiency is time invariant, then the third component on 
the right-hand side of equation (4) drops out, and the productivity change 
is composed of a scale effect and a technical change. If technical 

____________________ 
2 For the detail, see Brümmer et al., 2002, pp.630-631. 
3 Since price information is unavailable in the panel data used, the allocative inefficiency 

components cannot be calculated empirically. 
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efficiency is time invariant and constant returns to scale (i.e., 1=ε ) 
prevail, the first and the third components on the right-hand side of 
equation (4) both drop out, and productivity change consists solely of 
technical change (Kumbhakar and Lovell, 2000, p.285). 

To decompose TFP  growth in the context of the primal multi-output 
production technology as in equation (4), we need to measure the growth 
rates of inputs from the data (i.e., ( t

k
t
k xx lnln 1 −+ )). Furthermore, the 

elasticities of the distance function with respect to inputs and time are 
required to calculate the scale effect and the technical change (i.e., 

k
kx

D
ε=

∂
∂

ln
(.)ln 0  and 

t
D
∂

∂ (.)ln 0 ). Returns to scale (i.e., RTS: )(
1
∑
=

−=
K

k
xk

εε ) 

are calculated as the negative sum of distance elasticities with respect to 
the inputs. The change in technical efficiency is obtained as the difference 
in the individual technical efficiency estimates from year to year. These 
calculations are based on the coefficients resulting from the estimation of 
a specified parametric production model. 

 
III. DATA AND VARIABLES 

 
This study relies primarily upon farm-level data, compiled by the 

Korean Ministry of Agriculture and Forestry in a national farm survey, 
for the period 1998 through 2002. The Ministry survey classified and 
reported statistics for approximately 2,900 randomly selected farm 
households, spanning nine provinces. The data tracked farm households 
with the same farm identification number through the five years of 
observation (1998-2002) to make a balanced panel data set. The resulting 
panel data set contains statistics for 2,450 farms across eight provinces4. 

For each farm household, data are aggregated into two outputs and four 
inputs. The outputs are rice and non-rice crops (including vegetables, 
fruits, and other crops)5. The inputs are land, labor, capital, and other 
inputs. 

____________________ 
4 The data used in this article exclude Jeju province (an island off the south coast of the 

peninsula). Less than one percent of farms in Jeju province - 0.007% - produce rice. This study 
also excludes livestock farms which tend to be specialized operations in Korea. 

5 Since rice is planted in more than 50 percent of cropland and generates about 50 percent of 
total crop revenue in the panel data, it is important to focus special attention on rice. 
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Land and labor are measured by quantities. Land is planted area and 
includes three types of cropland: paddy, upland, and orchard. Paddy refers 
to land primarily used for flood-irrigated rice, and upland area is other 
annual cropland. Labor is hours spent on farm work and includes both 
family labor and hired labor. Capital and other inputs are measured in 
value terms. Capital includes the average estimated replacement cost of 
structures, machinery depreciation, repairs, and leased farm equipment.  
Other inputs include expenditures on fertilizers, pesticides, fuel, 
electricity, seeds, and miscellaneous operating expenses. National level 
output and input-specific deflators were used to rescale those outputs and 
inputs that are collected in value terms, with 1998 being the base year.  
In this way, outputs and inputs become implicit quantities. 

Descriptive statistics for the two outputs and four inputs are 
summarized in Table 1, including mean per farm household by year.  
The data confirm that farms in Korea are small, with an average 
landholding of 1.06 hectares per farm in the sample. The average farm has 
a part-time operator with about 1,000 total hours of labor used, including 
all family and hired labor. Labor use declined over the sample period, 
while usage of capital and cultivated land per farm increased steadily. 

 
[Table 1] Summary Statistics for Aggregate Outputs and Inputs 
 

 Rice 
(1,000won) 

Non-rice crops
(1,000won) 

Land 
(ha) 

Labor
(hour)

Capital 
(1,000won)

Other inputs 
(1,000won) 

7,558 8,964 1.06 1,038 3,616 4,104 
Mean 

(9,085) (14,051) (1.03) (813) (3,885) (4,860) 
 Mean value per farm household 

1998 7,034 8,194 1.04 1,050 3,178 3,822 
1999 7,490 9,194 1.06 1,068 3,413 4,240 
2000 7,469 9,467 1.06 1,045 3,626 4,253 
2001 8,264 9,366 1.07 1,037 3,830 4,226 
2002 7,533 8,600 1.09 991 4,034 3,981 

Note: Standard deviations are in parenthesis. 
Non-rice crops denote all crops except rice such as vegetables, fruits, and other crops. 
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IV. EMPIRICAL IMPLEMETATION 
 

Translog Multi-output Stochastic Distance Function 
For empirical implementation, a functional form for the multi-output 

stochastic distance function first has to be chosen. This study employs the 
translog functional form that has been adopted widely in frontier studies 
(Lovell et al., 1994; Grosskopf et al., 1997; Paul et al., 2000; Brümmer et 
al., 2002). The translog function allows for a variety of possible 
production relationships including non-constant returns to scale, non-
homothetic production, and non-constant elasticities of outputs and inputs. 

A translog multi-output stochastic distance function with two outputs, 
four inputs, and time t  is specified as: 
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where farms are indexed by subscript, i  and time is indexed by subscript, 
t . oitD  denotes the output distance function measure, mity  is a vector of 
outputs ( 1=m  for non-rice crops; 2=m  for rice), kitx  is a vector of 
inputs ( 1=k  for land, 2=k  for labor, 3=k  for capital, 4=k  for 
other inputs). Time t  allows for possible shifts of the frontier over time 
and may reflect technical change or other systematic change over time. 

Direct estimation of equation (5) by standard least squares or maximum 
likelihood techniques is not possible, since the dependent variable, oitDln , 
is unobservable. The conversion of equation (5) into an estimable 
regression model can be accomplished by exploiting the fact that the 
output distance function is linear homogeneous in outputs. One way of 
imposing this restriction is to normalize the function by one of the outputs 
(e.g., Lovell et al., 1994; Paul et al., 2000; Brümmer et al., 2002). Rice, 
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represented as ity2 , is chosen for the normalization, which leads to the 

following expression: ),,(1ln),,(ln
22

txyD
y
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y
y

D ititoit
it

it
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oit = .6 Using this 

homogeneity restriction, replacing ),,(ln txyD ititoit  with the technical 
inefficiency error, itu− , and adding a random error term, itv , the 
estimation of output distance function (5) can be written as: 
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itititititit uvtyyxTLy −+= ),,,,,/,(ln 212 δγβα ,  (6) 
 

where itv  is a random error term independently and identically distributed 
as ),0( 2

vN σ (intended to capture events beyond the control of farmers), 
and itu  (intended to capture technical inefficiency in outputs) are 
assumed to vary over both farms and time periods. Battese and Coelli 
(1992) proposed the following specification of itu . 

 
iit utu )]}5({exp[ −−= η , (7) 

 
where the itu  are assumed to be independently distributed non-negative 
truncations of the ),0( 2

uN σ  distribution suggested by Stevenson (1980).  
Thus t

iu  decreases, remains constant or increases over time if η>0, η=0, 
or η<0.  If producers improve their level of technical efficiency, then η 
____________________ 

6 Estimation of the ratio form of the output distance function, however, raises a problem since 
the model examines how an output variable expands, holding output composition constant. This 
specification imposes perfect complementarities of outputs when representing expansion. If cross 
terms for ratios are incorporated in the model, this problem can be solved to some extent. Another 
problem with the ratio form of normalization relates to endogeneity; the dependent variable 
appears on the right side as the denominator of ratios in the model. Even though the existing 
literature recognizes these endogeneity problems, they are still not ultimately resolved. For 
example, Brümmer et al. (2002) argue that these problems in the stochastic distance function are 
not likely to be more serious than in any production function type of study. 
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is positive. The model in (7) allows technical efficiency to change over 
time by adding just one more parameter, η, to be estimated, while it 
restricts technical efficiency to be monotonically increasing or decreasing 
over time. 

The maximum likelihood estimation of model (6) with the specification 
in (7) provides estimators for δγβα ,,,  and variance parameters, 2

uσ  
and 2

vσ 7. Within the specification in (6), the production parameters 
required to measure the components of productivity growth and the 
distance elasticities with respect to two outputs, four inputs, time, and 
returns to scale can be obtained using the following equations: 
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Two-Stage Estimation procedures 

In the present sample, all farms do not produce both rice and non-rice 
crops in all years)8. When this paper estimates equation (6), use of the 
translog functional form thus raises a problem of zero-valued 
observations, because taking logarithms of zero values is not possible. If 
the dropped zero observations are missing purely by chance, zero 
observation problems may not cause bias in the estimation of the 

____________________ 
7 There are three methods to represent a technical efficiency in the context of panel data, that is 

the fixed effects model, the random effects model, and maximum likelihood method. For the detail, 
see Kumbhakar and Lovell, 2000. 

8 When input data are aggregated to the four variables, there are no zero-values in inputs. Thus 
the zero-observation problems in inputs are not considered in this study. 
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production frontier. The decision to produce single outputs or multiple 
outputs, however, is made by individual farms, so those who are not 
producing multiple outputs constitute a self-selected sample, not a 
random one. In order to deal with the sample selection bias caused by 
confining the observations to only those farms that produce positive 
outputs, this study exploits sample selection method incorporating two 
selection rules into the system. For the i th farm in the entire sample size 
N , relevant equations are defined as: 

 
itititititit vutyyxTLy 3212 ),,,,,/,(ln ++= δγβα ;  (9a) 

ititit vZRice 11' += γ ;  (9b) 
ititit vZNrice 22' += γ ;  (9c) 

⎩
⎨
⎧

=
0
1

itriceD   
if
if

 
0
0

=
>

it

it

Rice
Rice

;  (9d) 

⎩
⎨
⎧

=
0
1

itnriceD   
if
if

 
0
0

=
>

it

it

Nrice
Nrice

;   (9e) 

 
where (9a) is the multi-output stochastic distance function of primary 
interest. itRice , is a latent variable with associated indicator function 

,
itriceD  indicating whether a farm chooses to produce rice, and itNrice is a 

latent variable with associated indicator function ,
itnriceD  indicating 

whether a farm chooses to produce non-rice crops. The relationships, 
between 

itriceD  and itRice  and 
itnriceD  and itNrice , are shown in (9d) 

and (9e). Equations (9b) and (9c) are the reduced forms for the latent 
variables capturing two sample selection rules: both latent variables 

itRice  and itNrice  are assumed to be random functions of observed 
exogenous variables itZ . 1γ  and 2γ  are vectors of unknown 
coefficients. Note that the sample selection is based on two indices and 
two criteria. Due to the log functional form, observations in (9a) are 
observed if and only of 0>itRice  and 0>itNrice . 

The equation (9a) is likely to be influenced by the same unobserved 
farm characteristics that affect the two sample selection rules (9b) and 
(9c), leading to a non-zero covariance among the mitv ’s. The random 
error terms mitv  ( m =1,2,3: 1 is rice equation, 2 is non-rice crop equation, 
and 3 is the multi-output distance function) thus are multivariate, 
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normally distributed with mean zero and covariance matrix Σ  as, 
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Of course, random factors influencing the two selection rules in a farm 

are also not independent due to unobserved circumstances that could 
affect both production decisions. That is, the disturbances in the two 
selection equations (9b) and (9c) have a bivariate normal distribution with 
mean vector zero and ρσ == 1221 ),( itit vvCov . It is assumed in bivariate 
probit models that 1 2 1,σ σ= =  in order to estimate 1γ  and 2γ  
(Hausman and Wise, 1978, p.411). 

Due to the correlations among the mitv ’s operating through the 
covariance matrix, least squares or maximum likelihood estimation of β  
over the subsample corresponding to 1=

itriceD  and 1=
itnriceD  will 

generally lead to inconsistent estimates (Maddala, 1983; Heckman, 1979).  
The conditional expectation for the truncated random error term in (9a) is 
obtained as follows (Tunali, 1986; Vella, 1998; Khanna, 2001)9: 
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= 23 2 ,itσ λ+

,  (10) 

 
where φ  is the probability density function of the standard normal 
distribution, Φ  is the cumulative distribution function of the standard 

____________________ 
9 Tunali (1986) provides a good reference for the double-selection models in various situations.  

Khanna (2001) analyzes the sequential decision to adopt two site-specific technologies and the 
impact of adoption on nitrogen productivity by employing a double selectivity model to correct 
sample selection bias. 



THE KOREAN ECONOMIC REVIEW Volume 23, Number 2, Winter 2007 446 

normal distribution, and bΦ  is the bivariate normal distribution. The 
twoλ ’s constitute the double-selection analogs of the inverse Mill’s ratio 
that arises in the context of single-selection. 

This study employs two-step procedures to eliminate the nonzero 
conditional expectation of itv3 . The two-step procedure is to first estimate 
the unknown parameters iγ  ( 2,1=i ) and ρ  over the entire N  
observations by bivariate probit model, suggested by Hausman and Wise 
(1978), and then construct the two terms in brackets in (10). In other 
words, the two selection models (9b) and (9c) with indicator functions 
(9d) and (9e) are estimated simultaneously using the bivariate probit 
procedure to find iγ ( 2,1=i ) and ρ . This approach recognizes that the 
same unobserved characteristics of a farm could influence the two 
decisions, and the bivariate probit model is therefore more efficient than 
univariate probit model analyzing each decision independently. 

In the second stage, one can then consistently estimate the parameters 
by least square or maximum likelihood over the observations producing 
multiple outputs by including estimates of the above two additional terms, 
denoted it1λ  and it2λ , as additional regressors in (9a). More precisely, 
the multi-output stochastic distance function over the subsample 
consisting of farms producing both rice and non-rice crops, with sample 
size 1n , is constructed as follows: 

For subsample of observations with both 1=
itriceD  and 1=

itnriceD : 
 

∧∧

++= itititititit tyyxTLy 223113212 ),,,,,/,(ln λδλδδγβα  
,ititu ξ++   1,.....,1 ni = ,     (11) 

 
where itξ (

∧∧
−−= itititv 2231133 λσλσ ) are random disturbance terms with 

zero mean.  The t -test on the null hypothesis of 013 =σ  or 023 =σ  
represent tests of sample selectivity biases, under the maintained 
distributional assumptions. That is, the t -tests (or Lagrange Multiplier 
Test) for the coefficients on it1λ  and it2λ  are based on the correlation 
between the error in the primary equation and the errors from the two 
selection equations10. 
____________________ 

10 The z  matrix for the probits includes explanatory variables not found in the distance 
function itself. However, the z  matrices in each of the two probits are identical. Therefore, 
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V. ESTIMATION RESULTS 
 
The results first consider the preliminary step by presenting the results 

of the multi-output distance function with selection bias corrections11.  
Then, estimation results of productivity growth and its components are 
discussed. 

 
Parameter Estimates and Distance Elasticities 

Estimates of coefficients of the multi-output distance functions without 
and with the correction of selection bias are similar, but the value of the 
log-likelihood in the model with the correction of selection bias is larger 
than that in the other. In the distance function with selection model, about 
70 percent of the parameters in the frontier distance function are 
statistically significant at the ten percent level or higher (see appendix 2).  
The Wald-Chi Square Test for significance of the regression rejects the 
null hypothesis that the coefficients of the explanatory variables are all 
zero at the one percent level. In Table 2, the two coefficients of ijλ  are 
statistically significant at the ten percent level, which confirms the 
importance of correcting sample selectivity bias. The variance parameter 

2
uσ  which measures the relative importance of inefficiency is statistically 

significant at the one percent level. The other variance parameter 2
vσ  

which indicates inherent randomness in production due to variations in 
weather and other conditions is statistically significant at the one percent 
level. The statistical significances of the two variance parameters confirm 
the importance of using the parametric stochastic approach to estimate the 
productivity growth of farms. 

 
 
 
 
 
 
 

____________________ 
identification of the λ  terms in (11) is achieved through non-linearity. 

11 The results of bivariate probit model are shown in the Appendix 1. 
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[Table 2] Selection and Variance Parameter Estimates  
 

Variable  Estimate 

1λ  13σ  -0.0734 
  (0.0241)* 

2λ  23σ  0.0497 
  (0.0227)** 

Variance parameters uσ  0.0390 
  (0.0020)* 

 vσ  0.0532 
  (0.0010)* 

Note: Standard erros are in parenthesis. 
*, **, and *** indicate significance at the 1%, 5% and 10% level.  
‘Nrice’ refers to non-rice crop. 

 
The coefficients of the distance function itself are not useful for 

interpretation. Table 3 thus presents an overview of the technogical 
properties of the estimated model based on the average distance 
elasticities with respects to outputs and inputs using the selection bias 
corrected model. The distance elasticies are the estimated frontier 
elasticity or the elasticity of best practice production with respect to the 
arguments in the function. The distance elasticies with respect to two 
outputs, four inputs, time, and returns to scale can be obtained using the 
equation (8a)-(8e). 

The high average distance elasticity of rice simply reflects high share 
of rice production. Because of homogeneity constraint in outputs, the 
values of these elasticities for the two crops must sum to be one. Note that 
the distance elasticities for a “well-behaved” input are negative.  The 
very high elasticity of land (around 70%) reflects the large contribution of 
land to production (high returns to land). The negative elasticity of time 
implies technical progress. The Korean farms had a high rate of technical 
progress (nearly 7 percent per year) during the study period. This 
estimated elasticity is similar to the finding in Kwon and Lee (2004). At 
the sample mean, relatively small increasing returns to scale are realized 
(around 1.07). 
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[Table 3] Average Distance Elasticities across Observations 
 

Variable Average distance elasticity *  Standard error  

Non-rice crops 0.3929 (0.00185) 

Rice 0.6071 (0.00185) 

Land -0.7034 (0.00161) 

Labor -0.1393 (0.00071) 

Capital -0.0362 (0.00026) 

Other inputs -0.1897 (0.00090) 

Time -0.0700 (0.00066) 

Returns to scale (RTS) 1.0685 (0.00026) 

Note: The values are the elasticity of the distance function with respect to the variables. 
 

Productivity growth and its components 
Using the estimated coefficients of the multi-output distance function 

with the correction of selection bias, production parameters needed to 
measure the components of productivity growth are calculated. Table 4 
presents productivity growth rates calculated by estimation of the multi-
output stochastic distance function with the correction of sample selection 
bias. A productivity index of positive or negative value indicates 
improvement or decline in productivity, respectively. 

Productivity growth in the frontier model is decomposed into the three 
sources of growth; technical efficiency change (TEC) is attributable to 
improvements in individuals “catching up” with the frontier, technical 
change (TC) is attributable to a shift in the frontier, and scale effect (SE) 
reflecting change in scale economies. 

Given estimation procedures generate a large subset of productivity 
growth rates for each of the 2,450 farms, it is necessary to summarize the 
results to facilitate presentation. To this end, several categories 
distinguish the average productivity growth rates by time period, farm 
size, farm operator’s age, education, and major crop. Value in each 
category presents the average productivity growth rate for those farms 
within that category. T-tests for testing the null hypothesis that the sample 
mean is identical zero are performed. For technical changes and technical 
efficiency changes in all categories, the null hypotheses are all rejected at 
the one percent significance level, implying that the sample means are 
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statistically different zero. However, the sample means for the scale effect 
in some categories are statistically not different zero.  

The average growth rate for all years is about 2.4 percent. The 
decomposition results provide some insights into net growth; technical 
change (TC) is larger than technical efficiency change (TEC) or the scale 
effect (SE). Note that values of technical efficiency change and scale 
effect in all categories are all smaller than those of technical efficiency.  
Since this study uses the panel data of identical farms over the five year, 
the variations of technical efficiency and scale effect over time seem to be 
small. 

At an annual level, productivity growth rates were highest between 
1998 and 1999 and lowest from 2001 to 2002. Substantial productivity 
decline, as seen in the decomposition, between 2001 and 2002. It was due 
to negative technical change and scale effect overwhelming an increase 
from improved technical efficiency. The magnitude of such productivity 
changes, thus resulted in a negative net growth. Interestingly, the fastest 
and slowest years of productivity growth correspond to the highest and 
lowest rates of technical change. Note that the term of technical change 
compounds aggregate productivity shocks such as those due to weather 
variations with true technological change. Actually, technical change in 
2001 to 2002 indicates a negative change, resulting from a poor harvest 
by bad weather in the period. Overall, productivity growth rates tend to 
show large variation over years. This tendency may be attributable to the 
monotonic assumption on the time-variant parameter of the one-side error 
term in the Frontier Model (Kwon and Lee, 2004). 

The average productivity growth rate tends to rise as farm size gets 
larger. The average rate of growth for farmland operated in the range of 0 
to 0.5ha is lowest since this class has the smallest rates of technical 
change and scale effect. Farms with farmland operated of more than 3.0ha 
have the highest growth rate, due to this class having the greatest scale 
effect. 

Productivity growth rates across farm operator’s age and education 
differ substantially. The average growth rates show that the productivity 
growth among younger farmers is greater than that of older operators. 
This is due to the substantial roles of technical change and scale effect. 
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Productivity growth for farmers with higher education is greater than that 
of farmers with lower education. This is due to a higher rate of technical 
change. 

Finally, productivity measures based on farm’s major crop indicate a 
higher rate of average productivity growth in non-rice dominant farms.  
This is due to this class having the greatest rates of technical change and 
scale effect. As discussed earlier, farm operators producing non-rice crops 
averagely have higher human capital, and this higher human capital may 
lead to technological innovation of non-rice dominant farms. Average 
productivity growth rate of non-rice dominant farms thus might be higher 
than that of rice dominant farms. 

Note that empirical results are always dictated by the data used. It is 
important to understand the data in interpreting the results (Kwon and Lee, 
2004). The data used tend to fluctuate considerably, beginning and ending 
with historic low and high productivity years. This implies that our 
productivity measures are based on a low productivity year, and the 
results must be interpreted in this context. A five-year period of panel 
data is relatively short to draw any convincing results on productivity 
growth.  It is unlikely that high productivity growth calculated in this 
study can be sustained and is rather related to the specific data period. 
 
[Table 4] Productivity Growth Rates and Decompositions 
 

  Decomposition of TFP growth rates 

 TFP growth 
rates 

Technical Efficiency 
Change(TEC) 

Technical 
Change(TC) 

Scale 
Effect(SE) 

Mean for all years 0.0239 0.00165 0.0221 0.00014 
 (38.56)* (252.81)* (37.39)* (0.93) 

Year mean     
1998-1999 0.0846 0.00153 0.0815 0.00158 

 (177.28)* (356.01)* (304.94)* (3.97)* 
1999-2000 0.0432 0.00160 0.0417 -0.00016 

 (102.14)* (193.86)* (153.19)* (-0.52) 
2000-2001 0.0039 0.00171 0.0024 -0.00019 

 (9.45)* (113.21)* (7.79)* (-0.69) 
2001-2002 -0.0374 0.00178 -0.0385 -0.00065 

 (-89.79)* (94.14)* (120.00)* (-2.93)* 
Means by farm size     

0-0.5 ha 0.0167 0.00170 0.0177 -0.00272 
 (13.95)* (134.18)* (15.31)* (-7.98)* 
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0.5-1.0 ha 0.0258 0.00162 0.0239 0.00032 
 (25.27)* (165.73)* (24.36)* (1.33) 

1.0-2.0 ha 0.0268 0.00165 0.0235 0.00161 
 (23.01)* (124.10)* (21.31)* (5.95)* 

2.0-3.0 ha 0.0276 0.00164 0.0233 0.00261 
 (11.62)* (59.59)* (10.41)* (5.70)* 

Above 3.0ha 0.0321 0.00172 0.0246 0.00573 
 (7.41)* (34.20)* (6.25)* (4.55)* 

Means by operator age     
Less 40 years 0.0256 0.00167 0.0227 0.00119 

 (8.47)* (46.63)* (8.02)* (1.30) 
40-55 years 0.0244 0.00166 0.0222 0.00051 

 (22.08)* (133.15)* (20.97)* (1.91)** 
55-65 years 0.0240 0.00164 0.0221 0.00028 

 (24.56)* (164.48)* (23.70)* (1.23) 
Above 65 years 0.0228 0.00166 0.0219 -0.00074 

 (18.05)* (133.91)* (18.22)* (-2.17)** 
Means by operator education     

0-5 years 0.0214 0.00174 0.0203 -0.00070 
 (9.04)* (55.11)* (9.01)* (-1.02) 

5-9 years 0.0235 0.00165 0.0215 0.00035 
 (26.87)* (196.59)* (25.91)* (1.62)*** 

9-12 years 0.0243 0.00165 0.0226 0.00004 
 (18.15)* (111.17)* (17.62)* (0.11) 

Above 12 years 0.0252 0.00165 0.0235 0.00005 
 (18.94)* (110.93)* (18.42)* (0.15) 

Means by major crop     
Rice dominant farms 0.0225 0.00167 0.0208 0.00004 

 (27.96)* (187.68)* (27.10)* (0.21) 
Non-rice dominant farms 0.0259 0.00163 0.0240 0.00029 

 (26.73)* (172.19)* (25.94)* (1.3) 
Note: t-values from t-test of sample mean are in parenthesis 

Farm size, measured by hectares of farmland operated, is separated into five 
categories: 0-0.5ha, 0.5-1.0ha, 1.0-2.0ha, 2.0-3.0ha, and above 3.0ha. Farm 
operator’s age is divided by years into the following groups: less than 40, 40-54, 
55-64, and above 65. Farm operator’s years of education is divided by years into 
the following groups: less than 5, 5-9, 9-12, and above 12. Major crop produced is 
separated into two groups by share of crop receipts: rice dominant farms (i.e., 
farms with share of rice receipts greater than 50% of total gross farm receipts) and 
non-rice dominant farms (i.e., farms with share of non-rice receipts greater than 
50% of total gross farm). 
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VI. SUMMARY AND CONCLUSION REMARKS 
 
Despite the caution required in interpreting the results, we can provide 

some summary and insights. The results indicate that frontier shifts 
played an important role in productivity growth in Korean agriculture. 
The fastest and slowest years of productivity growth correspond to the 
highest and lowest rates of technical change. Larger farms experienced 
the fastest productivity growth attributed to the greatest rate of scale 
effect, which suggests farm consolidation is one source of the average 
productivity growth. The results also indicate that there are higher rates of 
average productivity growth for younger farmers and farmers with higher 
education. Based on the empirical analysis, we can conclude that 
technical innovation was most important for changes in productivity in 
Korean agriculture between the years of 1998 and 2002. This resulted 
from larger farm sizes and greater investment in human capital. 
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Appendix 1. Bivariate Probit Estimates of Parameters in Two Output Choice 
Equations 

 

 Bivariate Probit model 
 Rice is observed Non-rice crops are observed 
Age 0.0350 (0.0123)* 0.0283 (0.0134)** 

(Age) 2  -0.00020 (0.00011)*** -0.00033 (0.00012)* 
Education 0.0180 (0.0228) -0.0507 (0.0251)** 

(Education) 2  -0.0030 (0.0013)** 0.0027 (0.0014)** 
Farmland 0.4853 (0.0319)* -0.6976 (0.0311)* 

(Farmland) 2  -0.0539 (0.0046)* 0.0516 (0.0045)* 
Rent 0.5960 (0.0326)* 0.3007 (0.0360)* 
Full-time -0.1828 (0.0308)* 0.3760 (0.0321)* 
Family size -0.0441 (0.0221)** 0.4343 (0.0246)* 
Kangwon 0.0920 (0.0541)*** 0.2636 (0.0611)* 
N. Chungchong 0.0796 (0.0546) 0.1913 (0.0612)* 
S. Chungchong 0.3102 (0.0564)* -0.2571 (0.0565)* 
N. Choolla 0.2947 (0.0561)* -0.3894 (0.0551)* 
S. Choolla 0.4798 (0.0586)* -0.0022 (0.0583) 
N. Kyoungsang -0.1402 (0.0537)* 0.3061 (0.0642)* 
S. Kyoungsang 0.3560 (0.0579)* -0.1650 (0.0590)* 
Year 99 -0.0642 (0.0446) 0.1647 (0.0470)* 
Year 00 -0.1360 (0.0440)* 0.0787 (0.0459)*** 
Year 01 -0.1238 (0.0443)* -0.0254 (0.0450) 
Year 02 -0.1760 (0.0440)* -0.0118 (0.0450) 
Constant -1.5091 (0.3459)* -0.3966 (0.3764) 
Rho -0.7262 (0.0223)* 
Log likelihood: -9,552 
Wald chi 2 (42): 2437.69* 
Note: Kyounggi and Year 98 are dropped as the reference province and year. 

‘Rent’ is 1 if farm rents farmland, otherwise, 0. 
‘Full-time’ is 1 if farm operator is full-time farmer, otherwise, 0. 
‘Family size’ is the number of family. 
Standard errors in parenthesis.  
*, **, and *** indicate significance at the 1%, 5% and 10% level. 
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Appendix 2.  Parameter Estimates of the Multi-Output Stochastic Distance 
Function with Correction of Sample Selection Bias 

 

Variable  Estimate Variable  Estimate 
(Nrice/Rice) α1 -0.7817 (Nrice/Rice)× (Land) γ11 -0.1563 
  (0.0549)*   (0.0083)* 
Land β1 0.0047 (Nrice/Rice)× (Labor) γ12 0.0580 
  (0.0972)   (0.0082)* 
Labor β2 0.3906 (Nrice/Rice)× (Capital) γ13 0.0099 
  (0.0980)*   (0.0050)** 
Capital β3 -0.0492 (Nrice/Rice)× (Other) γ14 0.0878 
  (0.0567)   (0.0067)* 
Other β4 0.5601 Time δ0 0.0416 
  (0.0758)*   (0.0284) 

(Nrice/Rice) 2  α11 -0.1780 (Time) 2  δ11 -0.0404 
  (0.0073)*   (0.0032)* 

(Land) 2  β11 -0.2134 (Nrice/Rice)× (Time) δy1 -0.0080 
  (0.0209)*   (0.0023)* 
(Land)× (Labor) β12 0.1009 (Land)× (Time) δx1 -0.0145 
  (0.0154)*   (0.0047)* 
(Land)× (Capital) β13 0.0171 (Labor)× (Time) δx2 0.0098 
  (0.0101)*   (0.0044)** 
(Land)× (Other) β14 0.0951 (Capital)× (Time) δx3 -0.0055 
  (0.0132)*   (0.0027)** 

(Labor) 2  β22 -0.0851 (Other)× (Time) δx4 0.0174 
  (0.0203)*   (0.0039)* 
(Labor)× (Capital β23 0.0219 λ 1i 13σ -0.0734 
  (0.0090)**   (0.0241)* 
(Labor)× (Other) β24 -0.0372 λ 2i 23σ 0.0497 
  (0.0124)*   (0.0227)** 

(Capital) 2  β33 -0.0057 Variance parameters σ u 0.0390 
  (0.0071)   (0.0020)* 
(Capital) × (Other β34 -0.0115  σ v  0.0532 
  (0.0077)   (0.0010)* 

(Other) 2  β44 -0.0651    
  (0.0138)*    
Log likelihood: -952.8 
Wald chi 2 (29): 22712.9* 

Note: *, **, and *** indicate significance at the 1%, 5% and 10% level. 
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