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UNCERTAINTY SURROUNDING THE U.S. NAIRU 
ESTIMATES OF ESTRELLA AND MISHKIN (1999)* 
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Estrella and Mishkin(1999) propose a promising method to estimate the 
NAIRU for the U.S. However, their uncertainty measure of the NAIRU 
estimates is problematic, as the underlying assumption of normality is 
violated. We apply the block bootstrap techniques to offer a better measure 
of precision. One implication is that their method underestimates the true 
uncertainty surrounding the NAIRU estimates. 
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1  
I. INTRODUCTION 

 
Recently, Estrella and Mishkin(henceforth EM, 1999) proposed a new 

method to estimate the U.S. NAIRU(Non Accelerating Inflation Rate of 
Unemployment). Referring to this as the ‘short-run NAIRU’, they 
highlighted its usefulness as an empirical basis for predicting future 
changes in inflation and as a feedback variable in Taylor-type monetary 
policy rules. Equally important, they argue that the short-run NAIRU can 
be estimated with more than twice the precision than that of long-run 
measures, like the natural rate of unemployment, used in many previous 
____________________ 
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studies. This result should appeal to many, given increasing concern 
regarding the uncertainty surrounding the NAIRU estimates(Staiger et al., 
1997; Laubach, 2001). For the construction of their measure of precision, 
EM first obtained the Newey-West(1987) heteroskedastic and 
autocorrelation consistent(HAC) standard errors to take account of the 
resulting serial correlation, and then applied the delta method to the short-
run NAIRU measure that includes the ratios of the parameter estimates.  

We find, however, several reasons to contradict their uncertainty 
measure of the NAIRU estimates. First, such ratios of random variables 
are well known to have fat-tailed distributions in finite samples, while the 
delta method approximates them by a normal distribution. Staiger et 
al.(1997) find in a Monte Carlo study that this is a main cause for the 
delta method to underestimate the true uncertainty around the NAIRU 
estimates. Second, the short-run NAIRU is derived from a multi-horizon 
prediction regression. Fat tails are not unusual in this type of model as 
large residuals are frequent.1 Third, the errors in the Phillips curve are 
plausibly fat tailed due to truncation errors in the estimation of 
inflation(Mizon et al., 1990; Ball and Mankiw, 1995). Fourth, the 
presence of fat tails also questions the use of Newey-West HAC standard 
errors, as their finite-sample properties are dependent on asymptotic 
normality. Further, there is evidence that such a correction of serial 
correlation is often insufficient for the multi-horizon prediction regression, 
and the estimated coefficients tend to have a tail that is too short(Hodrick, 
1992; Horowitz, 2001). 

This paper aims to offer a better measure of precision for NAIRU 
estimates. We do so by applying through two block bootstrap methods, 
the moving blocks bootstrap of Künsch(1989) and the stationary bootstrap 
of Politis and Romano(1994). The bootstrap technique approximates the 
exact sampling distribution of the NAIRU estimates without recourse to a 
specific distribution such as asymptotic normality. The Monte Carlo 
evidence by Li and Maddala(1999) confirms that this gives better 
estimates than the delta method in obtaining confidence intervals for 
ratios of parameter estimates. Unlike the standard bootstrap in the iid case, 

____________________ 
1 Typical examples are tests of market efficiency, such as in exchange rate predictions, the 

analysis of dividend yields and expected stock returns, and the term structure of interest rates.  
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however, the resampling is performed on blocks of residuals rather than 
individual ones. The block sampling technique captures the feature of fat 
tails more consistently than the standard bootstrap does as Künsch(1989), 
Lahiri(1995) and Horowitz(2001) highlight. It also deals with the 
temporal dependency structure, in which the standard bootstrap typically 
fails. In fact, Lahiri(1992) and Härdle et al.(2002) prove that block 
sampling provides better finite-sample accuracy compared to the 
asymptotic normal approximation in the presence of dependency.  

The rest of this paper is organized as follows. Section 2 details the EM 
procedure and presents its empirical application to the U.S. Section 3 
discusses the uncertainty measure of this NAIRU estimates and constructs 
new confidence intervals using the moving blocks bootstrap and 
stationary bootstrap techniques. Section 4 offers a Monte Carlo 
experiment to illustrate the finite-sample performance of these moving 
blocks bootstrap and delta methods for the application at hand. Section 5 
concludes the paper. 

 
II. THE NAIRU MEASURE OF EM AND ITS 

UNCERTAINTY 
 
EM define the short-run NAIRU as the unemployment rate which 

would correspond to a forecast of no inflation change over the policy 
horizon. Suppose that the policy horizon for inflation is from c  to kc +  
months ahead. They construct the following equation, which forecasts the 
difference between current annual inflation and inflation over the policy 
horizon: 
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t pplnπ  is the k-period inflation in the 

price level tp , reported at an annual rate; )/( 100 12−= ttt pplnπ  is the 
annual rate of inflation; 1−−=Δ ttt πππ ; )/( 1200 1−= ttt pplnπ  is 
monthly inflation at an annual rate; tu  is the unemployment rate; and tε  
is a disturbance term. Eq. (1) can always be rewritten as: 



THE KOREAN ECONOMIC REVIEW Volume 23, Number 1, Summer 2007 52

=− t
kc

t ππ ),(
t

N
tt uu εβ +− )(0 ,  (2) 

 
with the short-run NAIRU  

 

∑ ∑
= =

−− Δ++−=
p

i

q

j
jtiti

N
t uu

1 0
01 /][ βπγβα .   (3) 

 
The resulting NAIRU gap, ( N

tt uu − ), subsumes all the predictive 
power of the equation and hence, it can be a good predictor of inflation 
over the policy horizon. When N

tt uu = , inflation is forecast to neither 
accelerate nor decelerate over the policy horizon. 

EM apply the OLS technique to Eq. (1) with a 12-month-ahead, 12-
month horizon ( 12== kc ) and a lag length of 12== qp  for the 
estimation of the U.S. NAIRU. The standard errors are estimated using 
the Newey-West technique with a 24-lag window, as the errors in 
regressions will exhibit serial correlation. To offer a measure of precision 
they employ the delta method, which involves making a first-order Taylor 
series approximation to the NAIRU measure in Eq. (3) and then using the 
formula to calculate the asymptotic variance of this linearized function. 
Suppose that )',,,,,,( 00 qp γγββαθ =  is a vector of regression 
coefficients, θ̂  is its estimate, and )ˆ(θg  is the function of interest 
corresponding to Eq. (3). The delta method approximates the distribution 
of )ˆ(θg  by a normal distribution with mean )ˆ(θg  and variance 

)/(ˆ)'/( θθ ∂∂∂∂ gVg , where V̂  is the estimated Newey-West HAC 
variance-covariance matrix of θ̂  and )/( θ∂∂g  is the first derivative of 
g , evaluated at θ̂ . 

EM initially estimated the U.S. NAIRU for the period 1954:M1 to 
1997:M11, but the dataset is updated to include 2000:M12. We further 
construct the corresponding NAIRU measures from quarterly data 
(1954:Q1-2000:Q4) for two reasons. First, to guard against the concern 
that the imprecision in the NAIRU estimates may be unduly large as a 
consequence of using noisy monthly data. The estimates are expected to 
be more precise when temporally aggregated data are used. Second, for 
the sake of compatibility with previous studies in the field, as they were 
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typically undertaken using quarterly data.2 Figure 1 shows both estimates 
of short-run NAIRU and the actual unemployment rate. Also depicted are 
95 percent(two standard error) confidence intervals generated using the 
delta method. Note that the standard error of N

tû  is a time-varying 
function of the values of the variables in Eq. (3). 

 
[Figure 1] Estimates of the NAIRU and 95% delta method confidence intervals 
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━━ Estimated NAIRU —— Unemployment ------ 95 percent confidence bands 

 
____________________ 

2 For the quarterly model, )/()k/400( c
),(

+++= tkct
kc

t pplnπ  with 4== kc , /( 100 tt pln=π  

)4−tp , and a lag length of 4== qp . The series on prices and the unemployment rate are averaged 
to quarterly values. An 8-lag window is used for the Newey-West corrections of standard errors. 
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Both monthly and quarterly figures demonstrate the high variability of 
the short-run NAIRU. This is in contrast with long-run measures designed 
to estimate a natural rate. For example, Staiger et al.(1997) estimate a 
constant NAIRU of 6.2 percent using monthly and quarterly data samples 
for 1955 to 1994. Laubach(2001) applies a time-varying NAIRU model in 
which all the estimates remain in the 5 to 7 percent range using quarterly 
data over period of 1970:Q1 to 1998:Q4. Nevertheless, short-run NAIRU 
measures are estimated more precisely. The standard errors range from 
0.11(0.10) to 0.45(0.46) with a mean of 0.2(0.18) over the sample period 
of monthly (quarterly) data. Whereas Staiger et al. report standard errors 
of 0.52 and 0.46 using the delta method for monthly and quarterly data, 
respectively. Staiger et al. also considered the Fieller(1954) method 
which resulted in a much larger standard error. In Laubach, the average 
standard errors are in the range of 0.54 and 1.7, depending on the 
specifications for the NAIRU.  

 
III. NEW CONFIDENCE INTERVALS FOR THE NAIRU 

ESTIMATES 
 
The upper panel in Figure 2 shows the raw residual series for monthly 

and quarterly data. Both series exhibit large values frequent, pointing to 
the presence of fat tails as discussed in the introduction. The lower panel 
shows the empirical density functions of the residuals estimated 
nonparametrically using an Epanechnikov kernel. The bandwidth of the 
kernel is set at one quarter of the interquartile range(that is, between the 
75 percentile and the 25 percentile) of the residual series. Fat tails are 
indeed visible in the series by comparison to the normal distribution that 
has the same size of mean and variance.3 We report the results of several 
tests in Table 1 to see the statistical significance of this departure from 
normality. 

 
 
 

____________________ 
3 In addition, there appears to be a smaller extent of finite-sample bias in the monthly model. 

But, the t-test statistic is close to zero, comfortably accepting the null hypothesis that the mean of 
the residual series is zero. 
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[Figure 2] The estimated residual series and their empirical density functions 
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[Table 1] The results of normality tests for the residual series 
 

 Skewness Kurtosis JB KS 
Monthly data 0.06 (0.54) 1.22 (0.00) 35.29 (0.00) 0.056* 
Quarterly data 0.05 (0.77) 1.80 (0.00) 25.43 (0.00) 0.084* 

Notes: Entries are the test statistics and their marginal significance levels(p-values) are 
reported in parentheses, if applicable. The first and second columns test for skewness 
and kurtosis, respectively, both of which are distributed as 2χ (1). The third column 
(JB) reports the results of the Jarque-Bera test for normality, which is distributed as 

2χ (2). Reported in the final column(KS) are the Kolmogorov-Smirnov test statistics 
for normality. The critical values are tabulated in Lilliefors(1967). They are 0.037 
and 0.043 at the 5% and 1% significance levels, respectively, for the monthly model 
(number of effective observations =564) while the corresponding critical values are 
0.065 and 0.075 for the quarterly model(number of effective observations=188). An 
asterisk (*) indicates significance at the 1% level.  

 
While there is no evidence of skewness, the test of kurtosis strongly 

rejects the null hypothesis, suggesting that the residual series have fatter 
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tails than a normal distribution. The strong presence of fail tails is 
confirmed by the Jarque-Bera statistic, which tests for normality based on 
the skewness and kurtosis measures combined. Its marginal significance 
level is virtually zero, rejecting the null hypothesis of normality. The table 
also reports the results of the nonparametric Kolmogorov-Smirnov test, 
which is often more powerful than chi-squared tests like the Jarque-Bera 
for any sample size. This test is performed by comparing the cumulated 
frequencies of the observed distribution to those expected under the null 
hypothesis of normality. The mean and variance of the residual series are 
used for construction of the expected normal distribution. The test 
statistics rejects the null hypothesis comfortably at all significance levels, 
concluding that departures from normality are statistically significant in 
both models.  

We now turn to the moving blocks bootstrap(MB) and stationary 
bootstrap(SB) techniques. The MB divides the data of n observations into 
overlapping blocks of b consecutive observations, and resamples 

bnk /=  blocks randomly with replacement from the set of 1+− bn  
blocks.4 By resampling the blocks of length b, the correlation present in 
observations less than b, units apart is retained. All observations of the k-
sampled blocks are then pasted together in succession to form a bootstrap 
sample of the same length as the original data. The basic steps for the SB 
are the same as those of the MB with one exception. The SB resamples 
overlapping blocks of random length, where the length of each block has 
a geometric distribution with the probability parameter p. The average 
length of a block is 1/p and this corresponds to the fixed block length of b 
in the MB.5  

The choice of the block length can be quite important, and has received 
some attention in recent literature(see the reviews by Berkowitz and 
Kilian(2000) and Horowitz(2001)). However, the rules are mostly 
suggestive in finite samples, and, in this light, Härdle et al.(2002) 
comment that satisfactory data-based methods for selecting block lengths 
____________________ 

4 When the sample size n is not simply a multiple of the block size b, one can choose k as the 
smallest integer for which bk ≥ n, generate a bootstrap series as above, and discard the last bk−n 
bootstrap observations. 

5 A consequence is that the bootstrap series generated by the SB is stationary, whereas they are 
not with the MB even if the original series is stationary. Lahiri(1999) shows, on the other hand, 
that the errors made by the SB are larger than those of the MB having non-stochastic lengths. 
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are not yet available. Rather than appeal to an asymptotically correct 
block length we follow Li and Maddala(1996) who infer that Künsch’s 
1989 suggestion to use “subjective judgement based on sample 
correlations” is an acceptable way to proceed. That is, the block lengths b 
and 1/p are set at 24 for monthly data and at 8 for quarterly data to take 
account of serial correlation in the errors. This block length for monthly 
data, of course, matches the 24-lag window used by EM for the Newey-
West HAC standard errors.  

 
[Figure 3] The 95% confidence intervals from the delta, MB and SB methods 
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We repeated the MB and SB procedures outlined above 500 times. The 

95 percent confidence interval for N
tû  are then constructed, which is the 
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interval between the 2.5 and 97.5 percentiles of the bootstrap distribution 
of the estimated short-run NAIRU. Figure 3 shows the results. For a 
better visual comparison, depicted are the upper and lower bounds minus 
the estimated short-run NAIRU in Figure 1. The 95 percent confidence 
intervals from the delta method are also reproduced. The key finding is 
that the two block bootstrap methods have wider confidence intervals 
than the delta method. Using quarterly data, for example, the average 
spreads of the MB and SB intervals are 1.22 and 1.29 percentage points, 
respectively, while the average spread of the delta method interval is 0.76 
percentage points. The differences get somewhat bigger with monthly 
data, which may not be surprising in light of a stronger presence of fat 
tails. On average, the MB and SB intervals are over two times wider at 
1.75 and 1.86 percentage points, respectively, compared to the spread of 
the delta method interval at 0.8 percentage points. An implication is that 
asymptotic normal approximation of the delta method in the presence of 
fat tails may lead to an unwarranted reduction in the uncertainty around 
the NAIRU estimates, which will be investigated further in the following 
section. Apparently, the two block bootstrap methods generate very 
similar confidence intervals. 

 
IV. A MONTE CARLO ILLUSTRATION 

 
This section presents the results of Monte Carlo experiments that 

illustrate the finite-sample performance of the MB, SB and delta methods. 
We follow the Monte Carlo procedure of Staiger et al.(1997), which 
evaluate the quality of asymptotic-based methods in measuring the 
uncertainty surrounding the estimates of NAIRU. The design is 
empirically based and is intended to capture key features of the empirical 
models considered here. There arises, however, an extra complication due 
to the fact that the short-run NAIRU in Eq. (3) is a time-varying function. 
To get around this, all the explanatory variables in Eq. (1) are dropped 
with the exception of the term tu , rendering the NAIRU measure a 
constant, 0/ βα−=N

tu . The biannual 1954:Y1-2000:Y2 sample is then 
used to mitigate the effects of serial correlation that may occur as a 
consequence of removing the lagged terms. This simplified setup is not 
innocuous, but can have a capacity to address the issues such as 
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departures from normality. The estimation results for the biannual 
1954:Y1-2000:Y2 sample are: 

 
ttt vuu 11888.0678.0 ++= −   (4a) 

 
tttt vu 2

)2,2( ++=− βαππ   (4b) 
 

where )ˆ ,ˆ( βα =(2.542, 4190.− ) and =N
tû 6.07.6 

Two methods were used to generate the pseudorandom errors. In the 
first, the bivariate errors from the 1954-2000 regression were randomly 
sampled with replacement, and used to generate the artificial draws. In the 
second, { tv } was drawn from an iid bivariate normal with the covariance 
matrix set to the sample covariance matrix of the residuals. The values of 
( βα , ) for which the performance of the procedures is investigated, are 
(2.542, 419.0− ), (2.169, 606.0− ), (4.074, 707.0− ), (1.009, 131.0− ), 
and (4.281, 495.0− ). The first set contains the point estimates for the 
biannual 1954-2000 sample, which corresponds to an estimate of the 
NAIRU of 6.07. The next four are values which lie on the boundary of the 

 
[Table 2] Monte Carlo coverage rates of the delta, MB and SB confidence 

intervals 
 

 Delta intervals MB intervals SB intervals 
NAIRU estimates 90% 95% 90% 95% 90% 95% 

 Errors drawn from the empirical distribution 
3.58 0.96 0.99 0.89 0.96 0.91 0.96 
5.76 0.97 0.99 0.90 0.95 0.89 0.94 
6.07 0.98 0.99 0.90 0.95 0.89 0.94 
7.70 0.97 0.99 0.90 0.94 0.89 0.95 
8.65 0.98 0.99 0.89 0.94 0.88 0.94 

 Errors drawn from a normal distribution 
3.58 0.93 0.97 0.89 0.95 0.90 0.96 
5.76 0.94 0.97 0.90 0.95 0.89 0.95 
6.07 0.96 0.99 0.90 0.95 0.90 0.95 
7.70 0.95 0.96 0.90 0.95 0.90 0.94 
8.65 0.94 0.98 0.90 0.95 0.89 0.95 

____________________ 
6 )/( 100 24

)2 ,2(
++= ttt pplnπ  and )/( 100 2−= ttt pplnπ . 
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usual 80 percent confidence ellipse for ( βα , ) estimated from that 
regression.7 The corresponding NAIRU measures are 3.58, 5.76, 7.70, 
and 8.65, respectively. The total number of Monte Carlo samples is 5,000. 
The delta method employs the Newey-West HAC standard errors with a 
4-lag window. For the MB and SB methods the block lengths are set at 4, 
and the number of bootstrap samples is 500 as before. 

The results of the experiments are shown in Table 2, which gives the 
empirical coverage probability of the nominal 90 and 95 percent 
confidence intervals. The MB and SB intervals are shown to have better 
finite-sample coverage rates than the delta method interval. In fact, the 
Monte Carlo coverage rates of the MS and SB intervals are generally 
close to their normal confidence levels. By contrast, the delta method 
intervals overcover consistently. The overcoverage is more evident when 
the errors are from the empirical distribution. The coverage rates are all 
99 percent for the 95 percent confidence intervals while those of the 90 
percent intervals range from 96 to 98 percent, depending on α and β . 
Evidently, the presence of fat tails in the errors creates further 
complications to the delta method that relies on asymptotic normality. 
The Monte Carlo simulations confirm that the delta method is biased 
towards producing tighter confidence intervals. This consolidates our 
earlier finding that the method used by EM results in intervals that 
underestimate the true extent of the imprecision attached to the NAIRU 
estimates.  

 
V. CONCLUDING REMARKS 

 
The new NAIRU measure by Estrella and Mishkin(1999) can be a 

valuable tool for predicting future changes in inflation, and thus for 
guiding policy decisions. However, their uncertainty measure of the 
NAIRU estimates is misleading, as the resulting presence of fat tails 
violates the assumptions of normality underlying the delta method. 
Empirical results show that their procedure underestimates the true 
uncertainty around the NAIRU estimates. Here, we offer a better measure 
of precision by applying the moving blocks bootstrap and the stationary 

____________________ 
7 See Judge et al. (1988, Chapter 6) for the construction of joint confidence intervals. 
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bootstrap. These techniques are distribution free and capture the feature of 
fat tails consistently. Monte Carlo simulations confirm that they produce 
more accurate estimates than the delta method in obtaining confidence 
intervals for the application at hand. 
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