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MEASUREMENT OF PRODUCTIVITY CHANGE REVISITED :
TECHNICAL CHANGE VS PRODUCTIVITY GROWTH

JONG-KUN LEE *

Recent developments in the methodological measurement of productivity change
have contributed much to measuring the real productivity change. Productivity change
is generally measured by either the rate of change an index of outputs divided by an
index of inputs or the rate of shift in a production function. As Solow(1957) argued,
total factor productivitTFP) growth and technical change(TC) are the two sides of
a same coin. One puzzing question is that two empirical measures, diverging from the
theoretical identity between TC and TFP growth, show very different estimates, de-
pending upon maintained assumptions and model specifications. The main purpose
of the paper was to provide a systematic overview of technical change and productivi-
ty growth by reinterpreting the theoretical identity between TC and TFP growth and
to investigate a theoretical background for adjusting the traditional mesures. We
showed how traditional productivity mesures at a static equilibrium should be
changed as the concepts of duality and dynamics are introduced into the underlying
Junction, upon which parametric measurement of productivity is based.

1. INTRODUCTION

Since Slow(1957) argued that technical change does not represent a movement
along a production function, but a shift of production function, such a shift has been
labeled as productivity growth, technical change, or technological progress in the lit-
erature. Productivity change may be used as a global definition. In his survey paper,
Nadiri(1970) described a comprehensive notion of productivity change as follows;
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1) At the same time, Farrell(1957), using a stochastic production frontiers, presented productivity efficiency measure at a
firm level which can be divided into technical and allocative efficiencies. This is another line of research area which
has been currently developed in parallel with Solow’s. Here, we will not trace Farrell's approach here because it is be-
yond a scope of this paper concerning an aggregate or industrial productivity.
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“Productivity change is both the cause and the consequence of the evolution
of dynamic forces operative in an economy-technical progress, accumula-
tion of human and physical capital, enterprise, and institutional
arrangements. Its measurement and the interpretation of its behavior at the
microeconomic and macroeconomic levels require the untangling of many
complex factors.”
Based on the above definition, productivity change is generally measured by(i) the
rate of change an index of outputs divided by an index of inputs(ie., the unexplained
productivity residual calculated by index number approach) or (ii) the rate of shift
in a production function.

There have been efforts to measure productivity change by either indirecty calcu-
lating the index numbers or directly estimating the econometric model of standard
time trend.? The earliest approach to partial productivity measurement used a ratio
of an index of aggregate output divided by the observed quantity of a single input,
typically labor. A more comprehensive index number approach to total or multi fac-
tor productivity measurement provided a clear improvement over partial or single
measure. An alternative interpretation (i) involves the explicit specification of a
production function. We shall make a distinction between (i) and (ii) by interpreting
(i) as the “productivity growth” and (ii) as the “technical change” in the next section
II, but use these terminologies interchangeably in the section IIl. Generally, produc-
tivity change can be viewed as the composite outcome of technological and institu-
tional change. Since institutional change can not be identified and measured in prac-
tice, the concept of productivity change is narrowly confined to either technical
change or productivity growth,

Two excellent articles reviewed contemporary productivity issues over the last
decades. Nadiri(1970) dealt with the theoretical and measurement issues, focusing on
the aggregate productivity of a production function. A decade later, Cowing and Ste-
venson(1981) provided a clear overview of productivity measurement of industrial
productivity of a cost function. They pointed out the the cost function model repre-
sents a powerful and flexible econometric tool for measuring technical change or
productivity growth. Since Cowing and Stevenson(1981), another decade has passed.
To examine more recent developments, we need to review the evolvement of mea-
sures of productivity change. In spite of the theoretical identities of productivity
growh and technical change, there exists a divergence between primal productivity
growth defined in the production side and its dual productivity growth defined in
the cost side when constant returns to scale assumption is not maintained. Dynamic
specification of a flexible cost function requires additional adjustments to scale
economies effects due to the static duality. The main purpose of the paper is to re-
view aspects of the theory and measurement of total factor productivity growth and
clarify the differences between productivity growth and technical change by reinter-
preting their dynamic and dual relationships between a long-run production func-

2) See Literature review in detail by Diewert (1981) and Baltagi and Griffin(1988).
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tion and a short-run cost function.

2. MEASUREMENT OF PRODUCTIVITY CHANGE

As solow(1957) argued, total factor productivity(hereafter TFP) growth and techni-
cal change(hereafter TC) are the two sides of a same coin. One puzzling question is
that two empirical measures, diverging from the stheoretical indentity between TC
and TFP growth, show very different estimates, depending upon maintained assump-
tions and model specifications. We will implicitly associate TC with econometric es-
timation approach and TFP growth with index number approach in the literal nua
nce. From the two approaches of measurement of (i) and (ii), we can derive the cor-
responding operational definitions of TC and TFP growth.

2.1 Measurement of Technical Change:Time Trend Approach

When productivity change is associated with a shift in the production function,
technical change can be meausured, using a time trend representation of production
function.

Definition:Technical change is any kind of shift in the production function or pro-
duction possibilities set and is expressed as

_ dln@(X t)
TC="""%

where (X 1) is a production function of inputs X and time
2.1.1 Measurement.

Because standare time trend approach involves the explicit specification of a pro-
duction function, econometric implementation directly yields parametric estimates
of the production technology. Therefore, its parametric estimates depend on the pa-
rameters of the underlying production function. According to the order of time
trend, we can classify several evolutionary measures of technical change. 7C
through TC; in the following can be determined, respectively, by the specific func-
tional forms that we are assuming,

[ 1] First-order time trend

Technical change is identified with a simple time trend. First order in time trend

model yields a constant rate of technical change.

[ 1.1] Cobb-Douglas production technology.

One of the classical specifications of production function is the Cobb-
Douglas production function whose input arguments X are usually capital
input(X) and labor input(L).

QX N=FRK L =ANK'L=eKL™ (2a)

where A(#) a measure of disembodied technical change and is an exponen-
tial function of time. 4 is a shift parameter representing the constant rate of
disembodied neutral technical change. Then, technical change is directly
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identified by A
rc, = LD (2b)

[1.2] CES production technology
QX H=FRKLT =ANK+(1-8)L"1"" (a)

where A(f)=¢"same as defined in (2a). In (3a), 6, © and xrepresent the pa-
rameters of distribution, substitution- and degree of returns to scale,
respectively. Similary, we can derive TC, as
rC, = XD (3)
These two production functions exhibit Hicks-neutral technical change.
There are alternative representations of neutral technical change. When Q
(X,t) = KK L {) = {K, Af) L), the underlying production function rep-
resents Harrod —neutral (labor augmenting) technical change. When Q( X T)
=FRK L )= F(A(H)K L), the underlying production function represents
Solow-neutral (capital augmenting) technical change. In the case of disem-
bodied technical change, three alternative neutral hypotheses suggested by
Hicks, Harrod and Solow, result in the same value of constant shift parame-
ter, A
[2] Second-order time trend:Translog production technology.
Quadratic terms in time trend are introduced in a translog’ function whereas a
linear time trend is involved in [1). Unlike [ 1], a priori restrictions on the func-
tional form are not necessary in the translog function which belongs to a family
of flexible functional form. One advanced feature is that muitiple inputs can be
used as arguments of a production function, yielding no restrictions on the elas-
ticity of factor substitutions. Following Berndt and Wood’s(1975) KLEM model,
assume that there exists a twic differentiable production function with four in-
puts . K(capital), L(labor), Fenergy), M(intermediate materials) and Astate of
technology).

RQIX. )= RK L.EM.?. (4a)

Duality implies there exists a corresponding cost function C which is a function
of factor prices F output &),and 7.

C(PQt)=CB, B, B R,QD (4b)

Where P, represents a variable factor price for K, L, F, and M. According to
Ohta(1974), technical change can be measured by the following relationship be-
tween primal technical change(upward shift) of production function and its dual
technical change(downward shift) of cost function.

3) 1t takes a second-order approximation in logged arguments to an arbitrary function. Another flexible function form is a
Generalized, Leontief function in squared arguments, suggested by Diewert(1971).
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_ QX _ 1 oln C(PQD
TC—*fat =€ & (4¢c)

Where & represents the adjusting scale elasticity, din C/oln . For the same cost
function C(P @ t)in (4b), different forms of approximations, variants of
Translog as well as Generalized Leontief, can be applied upon empirical imple-
mentation. When C(P, @ #) has an ordinary translog cost functional form, it is
typically defined as

nC(Z)=a+a (n 2+ %(ln Z )Bn 2)

Where @ and /3 are parameter vector and matrix respectively, and Z represents
an exogenous variable vector. Then, In C(P, Q £) can be decomposed into two
specific functional forms | N1(P Q) and M B @ 1.

InC(BQt) = NI(PQ) + N2ARQ? (5a)

where NI(E @) is equal to a second-order Taylor expansion in the logged argu-
ments excluding ¢

NP Q) = @+ SalnP.+ 3 £ 3 4InPlnF
? i

+[adn@ + 18uin @ | + 2 BulnPing (5)
i
and N2(P, @ t) involves an argument of time ¢

NAPR Q1) = (att + %anz + BoctrInQ+ Xhte1n R). (5¢)

. . . . U
Then, we obtain a parametric equation for technical change.

__anC(P.Q 1) _ _oNAPQ1)
TG = ot - ot
= - (at + Bt + ﬂQtan ZﬁnlnR) (5d)

!
The following model specifications [ 3], [4], and [5] are variants *of second-order
translog functional form [2].

[3] Truncated third-order time trend : Stevenson(1980)

Stevenson (1980) proposed a truncated third-order Taylor expansion in time, the
logged input price, output, and state-of-nature variables. The non-time second-
order coefficients are implicitly assumed to be constant over time under ordi-
nary translog form as in (5a). If we approximate (4b) in this manner, the pro-

4) In addition, Baltagi and Griffin{1988) proposed a general index of technical change (A(/), both nonneutral and scale
augmenting, by replacing ¢ and £ terms with A({) in the standard time trend model.
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posed model can be written as

InC(PQ #) = NI(PQ) + N2(PQ ) + N3P Q1) (6a)
where N3( P, @ 1) captures a truncated third-order Taylor expansion.
N3(P@t)= NI(PRQ) -t (6b)

We can reconstruct a new parameter set by rearranging N2(P. @ f) and N3(P @
1. For instance, 2. (e, + 8)fn Pin(6a) is equal to 2. (7./InP) in (6c). (6a) can
be rewritten as

InC = NI(R Q) + 7 + 3yt + Sy fInP,
!

+ %’ZE%,JMPMP,
(]

+ yoflngQ + %b’qm(ln@)? + 27 din PnQ. (6¢)
: !
Technical change rate from equation(6.c) is written as
TC, = _8lnC(%Q;L)

= _<71 + yul + YQJDQ + 27’.[11'1 P.)
1

—(%ZZ%JJnPJnP] + %yw[(an)2 + ZyIQ‘ﬂnP.an>. (6d)
1] ]

As a result of truncated third-order expansion, the second parenthesis in (6d) is
added to the normal equation(5d).

[4] Stochastic time trend : Slade(1989)
Considering the state of technology / an unobserved or latent variable, Slade
(1989) modeled it as a stochastic trend upon estimating the rate of direction of
technical change. She specified the translog cost function as

InC(P, Q. t) = F(t, Q) + ZaJnR

)
+ 32 3 BInPln P+ ZR4InP (72)
[ !

Where F(4 @) is the Hicks-neutral portion of the productivity term. Thus, 7C;
is defined as
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_ _dmC(PR Q1 _ (JF Q)
TCs = Gt = ( af + ?Bnlnpl) (7b)
where = £(1, Q) = 4% + o (7c)

The first term in (7¢) is the cyclical component, and the second term represents
the stochastic trend. Unlike other approaches’, TC: s replaced with the observed
Tornqgvist TFP index in the left hand side of (7b) while an additive disturbance
terw &\ is added to the right side of (7b). Let F(#, Q) denote productivity terms
which are obtained from equation (5a). F(#, @) can be expressed as

FtQ) = (0 + ad + %Bntz) + fodInQ
+ [aqan + %BQQ(IHQ)Z + 24.dn Fln Q}
1

Thus, we can derive a partial derivative of ;'«(t, ), say At ), similar to (7c)

7@ = LD - g0+ (@ + fu) (1)
It follows that Slade’s (1989) equation(7.c) can be viewed as a variant of At Q)
with time-varying parameters a.and f. in the ordinary translog model. Thus, N
—1 share equations from(7a) and one technical change equation from(7b) (with
(7c) substituted into (7b)) constitute N measurement equations with multivariate
normal distribution (e~ niid(0, Q)). Slade (1989) considered the two time-vary-
ing parameters which are derived from(7.c)

W= O+ Ve + ) (7e)
Vtth—1+7/21 (7f)

where 7.~ niid(0, 0;), 1 = 1,2 To estimate the time-varying parameters for tech-
nical change coefficients, w.and v, the two transition equations are added to the
N measurement equations. Slade (1989) showed two special cases. Combining(7.
e) and (7f) yields

W= W Vet 77t1=((0r—2+ Vet pi) + 0o+ ¢
t—1

= @y, + X, + sum of error terms
=0

(i) When 0% = (, a stochastic time trend reduces to a deterministic trend. Since v,

5) Other TC’s except TGis calculated parametrically from the obtained parameter estimates.
6) These correspond to a.and S,
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Sve = =vew= e+ XY = @+ vot. Under this circumstance, (7c) can
be rewritten as

f(t’ Q) = ¢% + (w0 + Uot) (7¢)

Note that (7.¢’) is very similar to (7d).

(ii) When ¢ = 0in (7.c'Xcorrespondingly S = 0in (7d) and 0% = Q, we get the
identical results from either (7d) or (7<) : wy = @.and v, = B.as long as Bo. = 0.
It is evident that a deterministic equation (54) is a special case of stochastic equa-
tion (7b).

[5]1Exponential time trend : Gollop and Roberts (1981), Berndt and Wood (1982)"
This approach combines [ 1] and [ 2] by assuming that factor / augments at a con-
stant rate of A and a factor expressed in effective unit enters the translog cost
function.

C'()=CR ()R (), B (1R (1).Q (8a)
P{(t) = Pexp,i= K L, E M. (8b)

Gollop and Roberts (1981) considered the second-order exponential time trend,
but applied the first-order factor augmentation because of an econometric identi-
fication problem. Berndt and Woold(1982) expressed the multi-factor productivi-
ty growth as a weighted average of cost shares and augmentation rates.

_ 0inC'(1)

TCG = 81‘

= —3S4, 1S = 1 (8¢)
!

1

The technical change equation of multiple factor augmentation can be regarded
as an extension to single factor augmenting technical change can be expressed as
a single constant parameter, say A as an equivalent rate of factor augmentation.

TC = 3SA = 43S, = (84)

1 1

2.2 Measurement of Productivity Growth . Index Number Approach.

The pioneering work of Solow(1957) demonstrated the Divisia index of productiv-
ity growth could be identified with the rate of Hicks-neutral technical change under
some restrictive assumptions.K
Definition : TFP growth(TFP) is a difference in the percentage change in output&)
less percentage change inputs(X) weighted by revenue or cost shares (S) whose

7) See Lee(19922), Berndt, Kolstad and Lee(1993), Lee and Kolstad(1994) for recent empirical studies.
8) In particular, these assumptions require (i) disembodied neutral technical change, (ii) constant returns to scale, (iii) static
(long-run) equilibrium, and (iv) perfect competition in both output an factor input markets.
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sum is unity.

Al O o X

TP=an = Q&% ©
where A(f) is a general index of technical change. We outline Solow’s derivation of
Divisia index. Totally and logarithmically differentiating the production function in

Solow (1957,P312), Q = F(K L ) = A(?) A(K L), with respect to time yields
dinQ _ AnK(#)  dln K(¢) | dn@(#) , dinL(¢) n [Gan(X, t)]

+

dt ~ AnK(¢) dt dnL(¢) dt ot
_ LK ofL | [dIn A(¢)
=Axo T Aot [ it } (10

Note that both the last terms in brackets of the above right hand side are equivalent
to each other.
[aan] _ [d lnA}
ot | L dt

Thus, the left hand side of (11) describes 7C in (1) whereas the right hand side of
(11) stands for 7FPgrowth in (9).

2.2.1 Measurement.

An advantage of this method of measurement is that it does not require any assump-
tions about the functional form of the production function. Productivity growth is
measured by the indirect calculation of productivity residual using equation(9). This
includes Divisia(1926) index, Solow’s general index of 7C ( A(¢)), Torngvist index (a
discrete approximation to the Divisia index), and Diewert’s(1976) Exact index, all of
which can be characterized by the productivity residual,

2.3. Productivity Growth vs. Technical Change.

From 21 and 22, we can identify a theoretical relationship between productivity
growth and technical change in terms of cost function. If we assume KLFEM model
under CRT'S,

C = aPKv PL! PEv PMv t) (4-b’)

Totally and logarithmically differentiating this cost function with respect to time
yields

(12)

dinC :< dlnC dlnR) n oInC |
d¢ =kLev0ln P dt ot

Because dinC/dln P, = S, by shephard’s lemma, we can derive two definitons of pro-
ductivity change.
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_[dclintc -2 S d?tp’} = —[a‘;f—] (13

The left hand side in (13) describes a cost diminution rate similar to a productivity
growth residual defined in equation(9) while the right hand side indicates a rate of
technical change defined in (4¢c). Equation(13) will be considered a basis for under-
standing adjustment procedures in the next section.

3. ADJUSTMENTS OF PRODUCTIVITY MEASUREMENT

As the application of duality theory brought about the development of cost func-
tion dual to the underlying production function in the 1970s, interests of measure-
ment moved from aggregate productivity toward industrial productivity. While the
former was measured using the aggregate production function, the latter was general-
ly measured utilizing the sectoral cost function where competitive equilibrium is as-
sumed to be sustainable. Since mid-197Cs, technical change has been viewed as a
downward shift of cost function instead of an upward shift of production function,
and measured by way of a cost diminution rate. Duality concept dichotomizes the
primal productivity growth and dual productivity growth. When duality is linked to
issues of static and dynamic specifications of functional forms, observed productivi-
ty measurement should be adjusted to identify the genuine productivity measure-
ment by correcting the bias that is generated from the dynamic speciﬁcationg. Three
versions of adjusting elasticities were proposed by Ohta(1974), Caves, Christensen,
and Swanson(1981), and Morrision(1986). Each dealt with the case of nonconstant re-
turns to scale(hereafter NCRTS), quasifixity and adjustment costs. Above all, intro-
duction of dynamic equilibrium concept had an influence on the previous ways of
measuring technical change.

3.1. Economies of Scale.

There are two ways to consider the economies of scale effect under a static specifi-
cation of the cost function. According to Ohta(1974), the dual rate of technical prog-
ress is equal to the primal rate only in the case of constant returns to scale. When
Berndt and Khaled(1979) developed a parametric approach to TFP measurement,
which did not rely on CRTS assumption, they interpreted Ohta(1974) as follows. The
primal rate of total factor productivity can be expressed using its dual relationships.

=1
Equ = €CQ€L‘L

(4c)
where

9) This bias occurred owing to the breakdown of basic assumptions which Solow(1957) considered.
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olng)

€q is the primal rate of total factor productivity (= “ar with quantities fixed),

¢ ' is the dualrate of returns to scale, (ecq = a*lgtg ith input prices fixed),

€Q
& is the dual rate of total cost diminution, (= — 818ntC with input prices and output

quantity fixed).
Equation(4¢’) implies that primal TFP growth is identical to the TFP growth via

scale elasticity(ecy). Furthermore, since e;; =1 under CRTS, CRTS technology

results in identity between primal and dual TFP growth.

On the other hand, Caves, Christensen, and Swanson(1981) developed a slightly
different definition of productivity growth in the case of a general structure of pro-
duction with multiple inputs and multiple outputs, employing the generalized
translog multi-product-cost function. Assume Fis the transformation function for a
general structure of production function,

Fin@Q, -, InQ., In X, InX, ) =1 (14)

Where Q(X)) represents an output i (input 7). They derived the three definitions
from the total differential of (14), similar to Ohta(1974).

EmlE;ldan. + éEJdInXJ + FEdt =0 (15a)
_ din@, _ dln@. _ dlné . _
PGY = “dar S a T 4t with dlnX =0 VY, (15b)
_ _dlnX, _ dinX. _ dlnX . _
PGX = 4= it = qf Vith dlnQ, =0V, (15¢)
_ din@, . _
RTS = dnX with df = 0, (154)

Where FGY(FGX) represents the common rate at which all outputs(inputs) can
grow over time with inputs(outputs) held fixed, and RTS, the degree of returns to
scale, is the proportional increase in all outputs resulting from a proportional in-
crease in all inputs with time fixed. (15b), (15¢) and (15d) imply FGY = —F/ 2. Fy,
FGX = F/2F; and RTS = =2 F/> .. Caves et al. (1981) derived a total cost
function dual to (14)

InC = C(n@, -+, InQ,, InA, -, InPR, ! (14)

where C is a total cost (2 PX) and P, represents price of input X, Totally
differentiating (14)) yields
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_ «0olnC dnC dlnC
0= ZﬁindanﬂL ZalanI“R+ 5 4t (16a)

J J
From(16a), we can derive the corresponding definitions to (15b), (15¢), and (15d).
Because we concern the total costs, a superscript T below represents the total cost

function.
[1] BGY(when dInP = 0)

F _ dlné) _ olnC/ot

FY' = =5 = 4 = 7 99nColng (160)

[2] BGX(when dIn@Q, = 0)
Within the structure of cost function, a dual version for A:X in {15¢) can be de-
fined as"”

A Fo__dnC
PGX' = S, = 5 (16¢)
[3] RTS(whendt=0)
By the definition of RTS, it is obtained by
_ _dInQ _ (ZanC\
RIS = dinP ~ ( dng ) (16d)

When it comes to the total cost function of a single product (m = I),1In Q will be
substituted for 2 In €. Once again, a dual relationship between two alternative
definitions of productivity growth is obtained.

PGY' = RTS' - PGX' (17)

FGY'"is equal to FGX' when RTS' =1, just as & is equal to 1 under CRTS.
Thus, two approaches lead to the same results. An advantage of these definitions,
developed by Caves et al. (1981), is that it provides a flexible framework when it is
applied to the dynamic specification of cost function.

3.2 Quasi-fixity.

As the existence of quasi-fixed factors in the cost function has been widely recog-
nized, the traditional method for TFP measurement, which is valid only at the long-
run static equilibrium, was improved by refining the functional forms. We can con-
sider quasi-fixity effect in terms of either total or variable cost function in the short-
run.

The first approach is based on the implicit assumption that there exists a short-
run total cost functionwithin a temporary equilibrium context. When the firm min-
imizes the variable costs (1’C) over the subset of total factors, conditional on the

10) Here, 2X(onC/dn P} = land —dInX,/d! = —dInX/d! = din P4/ = dIn/d!.
11) Slade(1986) considered four different cost functions;the long-run total cost function. the restricted or variable cost
function, the disequilibrium total cost function, and the shadow total cost function.



JONG-KUN LEE : MEASUREMENT OF PRODUCTIVITY CHANGE 67

given quantity of quasi-fixed factors of X, j€ FX", short-run total cost function(ST
() at a temporary equilibrium can be expressed as

STC(P, 1, Q) = VAP, X, Q, ) + ZpX(P, 15,Q,8) (18

EFX

Where VC = VOB, X, @, ) is a restricted variable cost function, F represents an
equilibrium price of variable factor in the short-run, and 1 = —dV(/0X, represents
a shadow price. Berndt and Fuss(1981) first introduced the concept of a shadow cost
function to explain the existance of excess capacity associated with capacity under-
utilization. Later, Berndt and Fuss (1986) defined temporary equilibrium as a state in
which the shadow value of any input and/or output deviates from its equilibrium
market price. Thus, the current quasi-fixed stock X is not necessarily a long-run
equilibrium stock X,

When the shadow prices 1, obtained from the current temporal equilibrium, are
equal to the long-run equilibrium prices P, a subequilibrium coincides with the
long-run equilibrium where a minimum tangential point between long-run cost
curve and short-run cost curve is obtained. Then, the long-run cost function(L.7C)
is written as

LTC(P, P, Q, ) =VC(P, X',Q, 0+ ZP, X (P, B Q1 (19

erX

On the other hand, the second approach focused on the short-run variable cost
function. Unlike either dn C/dt"or dSTC/dt" the AnV C/dt from(18) concerns only
the shift in the variable cost function regardless of a shift in the total cost function.
Under this circumstance, we have two sources of bias :scale effect and quasi-fixity
effect. Short-run total costs(STC) can be decomposed into the sum of variable costs
(V) plus sum of quasi-fixed costs(FC), ie, STC = VC + FC. Caves, Christensen,
and Swanson(1981) proposed a revised formula for (16b)-(16d) to isolate a genuine
technical change in the short-run variable cost function by emphasizing that there
exists a relationship between variable costs and variable cost function,ie, VC = VC
(P, X, @ . Analogue to equations(16), the following equations(20), derived by
Caves et al.(1981), hold for short-run variable cost function of a single output.

. _0lnQ _ _{dInVC\,(dlnVC

Y =" = < ot >/< InQ ) (202)
_ (dnVC\ [, s adnVC

Rox' = (M )/(1 ,;pxalan)’ (20b)

12)FX implies index for quasi-fixed factors such as capital stock, which are assumed to be fixed in the short-run. On the
other hand, V' denotes index for variable factors such as labor and intermediate materials.

13) This represenis the technical change in the full static and long-run equilibrium total cost function.

14) This implies the overall technical change of the short-run total cost function.



68 THE KOREAN ECONOMIC REVIEW Volume 10, Number 1+ 2, Winter 19%4

v = (1=2(0InV (/oln X))
RTS® = DIV C/olnQ) (200)
PGY' = RTS' « PGX", (20d)

where superscript ' denotes a variable cost function.
Because RTS' in (20¢) becomes RTS'in (16c) in the long-run, the relationship
between long-run (&' o) and short-run adjusting scale elasticity (..y)is obtained.”

e, = (1—2‘9}“%) € v Q@D

e FY 011’1)(,

where €, = 9InC/dlnQ = dInC/dInQ ande |, = dlnV(/3InQ. It is worth

while to note two special cases.
(i) if and only if market rental prices of the quasi-fixed factor are equal to their
shadow prices, does equation (21) reduce to

3aC _ VC alnVC

Q@ - C Q- 2
(i) FGY" = AGX when RTS' = 1(ie. under short-run CRTS assumption).
Voo = 0VC _ [ oV C
RTSY=1¢= Evig = aan = ( e 6lnX, (23)

There may be some differences between &, used in Berndt and Khaled (1979) and
KRTSin Caves et al. (1981) in the temporary equilibrium. The former, however, is still
consistent with the latter. Short-run CRTS requires that (e.o 2 €. v.) be equal
to 1 while &cqis equal to 1by the long-run CRTS restriction. ‘It follows that

RTS = 172 e o

Eveg
RT'S* can be thought of as a relative ratio which may be greater or less than 1. When
short-run CRTS is assumed, KT'S* will be equal to 1.

Now, we can reconcile the two seemingly different expressions . Ohta(1974) and
Caves et al. (1981).

Eu = —E i (252)

— . 5\117 o
€= T (1 =S61n VCdln X (250)

15) This cost elasticity relationship is described in Schankerman and Nadiri(1986). See also Callan’s(1987) empirical study
of fossil-fueled electric utility industry.
16) Short-run CRTS does not necessarily require that &y should be equal to 1.
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Equation(25a) describes the dual relationship of TFP between the production and
the costs by considering the scale effect while equation(25b) explains how the long-
run elasticity of total cost with respect to time{ec) is retrieved from the elasticity of
short-run variable cost function (evc) by considering the quasi-fixed effect due to
temporary equilibrium. By combining (25a) and (25b), the equation (4¢’), used in
Berndt and Khaled (1979), can be rewritten for short-run variable cost functions as

E)[ = RY‘S\ 8(',[- (25-C)
3.3 Adjustment Costs.

In the special issue dealing with temporary equilibrium', Berndt and Fuss(1986) de-
veloped a modified productivity growth accounting equation. Hulten(1986) argued
that the growth rate of real short-run average cost can be decomposed into
multifactor productivity (MFP) growth rate in the ex post sense of Jorgenson and
Griliches(1967) and capacity utilization effect in Berndt and Fuss(1986). Further-
more, Morrison(1986) extended the temporary equilibrium model to an explicit dy-
namic adjustment framework and provided a more general approach to productivity
growth by allowing NCRTS, nonstatic expectations, and internal ad justments costs.

We will develop the case of MCKI'S and combined adjustment costs. Combined
adjustment costs framework "comprises internal and external adjustment costs. Here,
internal adjustment cost affect production possiblilities in the short-run, whereas ex-
ternal adjustment costs affects the external costs of acquiring a quasi-fixed factor
without affecting production possibilities. Consider the total costs which comprise
variable costs with internal adjustment costs, external adjustment costs, external
adjustment costs #X)and quasi-fixed costs 20 P.X

AR, P X, X, Q=GP X, X, Q)IHX)+ ZFXP,X, (26)

EFX

3.3.1 Caves, Christensen, and Swanson(1981) Approach.

If we focus on only the ‘short-run variable cost function with internal adjustments’
(G), we can derive the augmented RTS by extending the framework of Caves et al.
(1981)."A generalized formula in the presence of adjustment costs can be derived by
modifying the primal static production function in (14) as follows:

FinQ.,nX,InX,InX,H = 1 (27a)
By definition, RT'S is written as

17) See the special edition of Journal of Econometrics (Vol. 33) published in 1986,
18) See Lee (199%) for details.
19) They did not consider the effect of the adjustment costs in the original framework.
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R?‘SE ﬂ,EF\ — ,_[Z‘»\:\F\‘ + zfl\(F\,, + F\,)]

2 Fan SE.
_ Yo R+ I (R + R)/ZR,
- EFQVH/Z \ F\ (27b)

where 1 represent the indices of factors, X, X,and X
Then, a dual cost function to (27a) is written as

In G=GlnQ,InP,InX,InX, H (272)

where G implies short-run variable costs and ({In@,, In£, InX, In X, 7) represents a
restricted variable cost function. Totally differentiating (27a’) yields

olnG olnG olnG
Zal dean", + Zal Pdl P + E(T)zdl X

olnG
* X

Similar to (16b), (16¢), and (16d), we can define the short-run idea of productivity
growth or technical change of the “restricted variable cost function with internal
adjustment costs. In the following, a superscript G denotes this extended form of
cost function which is distinguished from either Cor VC.

(1] BGY"dInP=dInX = d X = 0)

Equation (28a) yields

oinG

o -dt. (28a)

~dInX +

(0lnG/ah)

Ry = 3, 0InG/on g,

(28b)
(2] AGXdInQ = 0)

If we extend the definition of HsXas the common rate at which all inputs and prices
can grow over time with outputs held fixed, we get FGX" = dInP/df = —dInX/dt
= —dInX/d¢V 7and /. Then,

dnG dlnP, dnG | dlnX, AnG dinX | dnG
0= 29np " dt T Zanx " dr T Zanx " daf T o
olnG olnG dlnG dlnG
‘(2 P Timx ~ Zom) FOX+ Y
Since 2} dn G/AnP = |,
- _ —dlnG/at ‘
R = | S GInGToIn X = S0 Galn X, (Bc)
(3] RTS4dt = 0)
Since RTSis the ratio of AGY to FGX we can derive TS as follows:
RTS = PGY" _ 1-20nG/In X — Zaln(r/oln)x (284)

HIA( N Zm8ln(f/aanm

This approach, however, is limited in its applicability to the external adjustment
costs (/X)) because it concerns only the short-run variable cost function G( P, X,
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X, @ ) which corresponds to short-run variable costs (31PX). External adjustment
costs and quasi-fixed costs are implicitly assumed to be fixed in the short-run or
non-relevant to the functional relationship between variable costs and variable cost
function. When total costs (X P.X, + 2 PX) are considered, it is possible to analyze
a more general case. Morrison (1986) provided a more flexible framework "by ex-
tending Berndt and Fuss(1986).

3.3.2 Morrison(1986) Approach.

To deal with the most general case asin 926), we will extend the framework devel-
oped by Morrison(1986), based on the relationship between short-run and long-run
total costs. When we focus on the total costs, we can implicitly assume the short-run
total cost function for a single product.

C=0P,P.X X, Q0 (26)
where C represents the total costs in the short-run. Totally and logarithmically
differentiating (26) yields

anC dinC alnC

dnC= 52 dlnR+ZalnPle+2 X,
oInC olnC dlnC
MR TPy jngdln® + —5dt

(29a)

Since scale effects are related to the stock variables, X,and X, we can derive a long-
run scale elasticity, 7 *, by assuming that din P, = dln P, = d¢ = 0in(29a).

_ dinC _ dInC L3 dInC din X, + 3 dInC dInX,
din@Q Jin@Q JlnX; dln@ Jin X dIn@

9K, 95 X X g X .e%
CloQ X, X C oX X ’d@
_Q 0CdX, | < dX,

Cloe* Zavde + axtiy) (29%)

Morrison(1986) interpreted the first term in (29b) as the short-run scale elasticity of
total costs.

- anC _ @ 0@

fQ=9mQ ~ CTaC

Just as Berndt, Fuss, and Waverman(1979) defined the long-run elasticity(7), it can
be expressed as the short-run elasticity(¢qo) and the additional effect of quasi-fixed

(29¢)

20) She did not consider the case of external adjustment costs, but that of internal adjustment costs.
21} Note that 7" reflect the long-run returns to scale.
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factors, including adjustment costs. If we define

_dinX _ dinX'
T dng T ding (30
then equation (29b) can be rewritten as

7= é(l)+ 2 len, + &)
) FX

or eq=pl1—3 Men, + )] (3D
Erv
- _ 0dInC _ olnC _ _ 0InC
where Ey = ain“@, Sy = al'n‘)(, o = 511’1}{
ecx, can be further decomposed into a convex combination of elasticities associated
with internal and external adjustment costs under the framework of the combined
adjustment costs in (26).

_dnC _ X, _
Eoxy = alnX - C ((1\‘ + IZ\,)
_ W X006 Xoh\_G_ L h_
- c(G Gaox T 0)&) = cfu et (3

where e, = dnG/An X, and e, = dln/y/dln X, Substitution of (32) into (31) yields a
general expression for short-run scale elasticity of total costs

G

é“) = 77|:1_ Z 7777)(5(\) + Cah\\ + géh\l)ji. (33)

P
We can also derive a long-run cost elasticity with respect to time, analogue to a long-
run scale elasticity which can be decomposed into the short-run elasticity and the
additional effects of quasi-fixed factors.

dinC _ L[qc 5C dﬂ\‘}
ar = Cclarvt Zox g (34)

where dIn(/d/ represents the change in total costs from technical progress toward
long-run equilibrium level. Expanding (34) gives

dinC _ 1[3C . 9CdQ , < dCdP iCdP aCdX'J
ar = C[ o Togar Y Zopar Y Zopdr T Zox di

1 dC d X
(e Zox dr
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Q ~X£ LE (P+ >+ GX X,
‘E°+6%+§CP ZCET c X
EFX )(,

where X is the first total derivative with respect to time, % ; Xis the second total

derivative with respect to time,— - dX b5 Gx, G, and hik, represent the first partial de-

k] dt Y
rivative of G and / with respect to their arguments in subscript;ec. is technical

change of short-run total cost function, Q;TC

Alternatively, equation(35) can be also obtained from(29a). Just as Ohta(1974) link-
ed the total costs to the total cost function, Morrison(1986) matched the variable plus
quasi-fixed costs with the total cost function. Similarly, if we defined the long-run

C/C from the total cost dquation“C = 2 PX, + 2 PX,

(=Y

XPPP PXX]Z[XPP PX X, (36)

e e exIEIT BT O

Because two equation (35) and (36) are assumed to be identical to each other, a new
relationship is obtained by rearanging the both sides.

~6<(:é((r2)) “ME\PéX))i kgx

"JXJ&_ /“XX
XJ 1§X

(37

Where /= — GX,IS a shadow value for Xand 1, = —(Gg + /) is a shadow value
for net investment, X"

Equation(37), an extension of equation (13), shows again the relationship between
technical change (—¢&¢) in the left hand side and productivity growth in the right
hand side. Either productivity measurement will deviate from the genuine measure
because scale effect(), quasi-fixity(X), and adjustment costs (X) in the underlying
cost function (26) will bias it. Since an interpretation of technical change is in paral-
lel with that of productivity growth, we will use either terminology interchangeably
in the following, For convenience’s sake, &« is denoted as the observed or unadjusted
TFP growth or technical change. To adjust the observed TFP growth, substituting &cq

22) In the long-run equilibrium, H X)in the total cost will vanish since X, = Oat a steady state.
23) When adjustment costs are involved, first-order Fuler condition, — Gy, = P+ KGx,+ ks for intertemporal minimiza-

tion of total costs requires that /4, + 7 /& = P
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in (33) into (37) and dividing both sides by &, yields the corrected TFP growth, say &

Ce

1

Ep = —(é(u)ﬂgu: T T T Ty
¢ s e G
77[1 Z'CHI] (C<\\+ CE(.\J‘*' CEn\.)]
PX X 2o X X po X, X
(2 cCxtT RO RN x) (38)

Several implication emerge from the equation (38) which provides the correct pro-
ductivity measurement.

Adjusted TFP Growth Weighted by Shoadow Values. The left hand side of (38) rep-
resent the primal rate of technical change, &,. reconfirming the dual relationship (4.
¢), and the right hand side of (38) shows the adjusted productivity residual which is
usually seen in the index number approach. Note that the sum of weighted shares by
shadow prices (ux,and () is equal to 1 because adjustment by e, will purge the ef-
fect of temporary equilibrium since ecq converts the term C (sum of total equilibri-
um costs) in the denominator in the second part of (38) into the term C (sum of total
shadow costs), the adjusted share of costs weighted by shadow costsf will sum to
unity.

Generalized Adjusting Elasticity. Previous equations for &.qor RTS, which are de-
rived under the assumption of NCRTS and quasi-fixity, are special cases of (33).
Morrison (1986) showed that if cost function is homothetic, 7 = 7. Equation (33) re-
duces to

tw=1- (e + e+ ’Cle)} (392)

When a long-run CRTS*(5 = 1) is further imposed on (39a),

- G I

Ey = ’:1— Z (5( Nis C&M + é&,i,)]. (39b)
=X

Combined adjustment costs framework comprises both internal (when &, = 0) and

external (when ¢ = 0) adjustment costs cases. When & «(= cus, = enx) = Q & will

represent the case of restricted variable cost function. Then, equation (39b) is more

simplified to

€= [1— py a\,}. (39¢)

AN

Equation (39.) turns out to be consistent with that of Caves et al. (1981) who paid the
restricted attention to the short-run variable cost function G. Let &y denote dnG/dn

24) A stronger short-run CRTS assumption can be also imposed on (39a)
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@. First, we get the relationship between e and & The left hand side of (39¢) is
written as

~ _dlnC _ G ve
T onQ w

The right hand side of (39c) can be expressed as

__syGadlnG | PX <0G
’2(ca1X o= 1-2g

C-2PX G
T 2

TR

5= el-2hy)

Thus, we can derive exas

o= (1-2308)
Equation (39d) defined by Caves et al. (1981), can be directly obtained from (39¢)
which is a special case of Morrison's (1986) framework. If eci; = &cx; = Qin the long-
run where X, = Oand market rental prices for the quasi-fixed factors, P, are equal to
the corresponding shadow values, /« for all /, then we get Ohta’s (1974) version of
long-run scale elasticity.

fu=p = 9nC

@= oln@’

Therefore, it can be confirmed that the three generations of adjusting elasticities, (39.
¢), (39d), and (39¢), are consistent each other, and previous versions of (39d) [Caves
et al. (1981)] and (39¢)[Ohta (1974)] are special cases of generalized ad justing elastici-
ty, (33) [extended version of Morrison (1986)).
Capacity Utilization Ratios. Berndt and Fuss (1986) associated Tobin’s ¢ with capac-
ity utilization (hereafter CU). Under CRTS (7 = 7, = 1), equation (33) reduces to
equation (39b).

(39¢)

=1 D (e + %sm + %em)

i FX

C=2erd P+ G ) X~ 2l Gy +lQX\,
C

= Q’:Ejf‘x(Pf" ﬂx;)XJ + E,eyxllxlx — _G + Z,UX,XVJ + ZﬂX;X
C C

25) This implies that Ecx, = (X/ NP~ 1) = 0.
26) Tobin's gis defined as the market value of the fitm divided by the replacement cost of its physical capital stock{q = 4
/R,
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_ sum of total shadow costs at temporary equilibrium

sum of total costs at lonqg-run equilibrium

_C_9_

=CTog° CU. (40)
Furthermore, Morrison (1986) interpreted CU as mudti-input Tobin's g and argued
that CU adjustment is a clear measure in the case of multiple quasi-fixed factors. If a
temporary equilibrium (or subequilibrium) coincides with the long-run equilibrium
(1, = Pand 1, =0), &y = CU = 1l in (40). Since Cis equal to C', (38) is rewritten
as

Ep = "(E(‘u)‘léu

G- (2 nmd Y 2y
=G-(2P L gt nd )
-4 (zPX% ., 2 X5
-6-2s% &

When £.is adjusted by &Qas in (38), this verifies the primitive relationship defined
in (9). Under NCRTS(7 #1), & captures both scale and CU effects so that €, = 7
CU. Table 1 provides relationships of functional forms with regard to the adjusting
elasticity €, Just as combined funcrtional form provides the general structure of the
total cost function, &, under combined adjustment costs also describes the most gen-
eral case. Berndt and Fuss(1989) also considered various measures 7 of capacity
utilization rates in the multiproduct context (§) = 2,&. for , = 1, -+, M). In the case
of multiple inputs and outputs, shadow valuation measure of (T’ like(40) seems to
provide a clearer interpretation of capacity utilization than any other alternative.

To sum up the three main approaches developed by Ohta (1974), Caves et al.
(1981), Morrison (1986), the last two approaches differ in one respect. Caves et al.
(1981) tried to capture a shift in the short-run variable cost function from the con-
cept of short-run total costs, while Morrison (1986) tried to adjust the oberved TFP

27) They suggested alternative (1" measures: (1. = AQ)." for output specific ({ rates;(T". = X X for quasi-fixed
input-specific (U rates : (L. = SRMC/LRMC. for short-run and longrun marginal costs : (L, = sa/F for
Tobins q ; CL' = Shadow Total Costs/Total Costs ; (1", = X/ X" for variable input-specificCL rates. Lee and
Siegel(1992) and Lee(19%4) also presented empirical comparisons for various ({ measures in US disaggregate
manuacturing sectors.
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growth from the short-srun total costs (SRTC) by the adjusting scale elasticity
(€ Obtained from the relationship between short-run and long-run total costs.

4. CONCLUDING REMARKS

Over the last decades, much contribution has been made to the standard time
trend approach by relaxing the restrictive assumptions on the production technolo-
gy such as disembodied, neutral TC, and constand returns to scale, and by introduc-
ing several concepts of duality, dynamics, factor augmentation and capital vintage
into the traditional production function.

Recent developments in empirical studies can be characterized by two distinct
measurement issues. One concerns adjusting traditional measures of productivity in
terms of scale economies and temporary equilibrium. The other concerns measuring
embodied vs. disembodied technical change. The first issue was further developed in
this paper, using ther third generation dynamic factor demand model. The second
issue can be developed and applied to embodied factor demand model. In this paper
we focused on the duality and dynamic property of technical change, drawn from a
short-run cost function, by adjusting the traditional measures of TFP growth, de-
rived from a long-run cost function, by adjusting the traditional measures of TFP
growth, derived from a long-run production function.

The main purpose of this paper was to provide a systematic overview of technical
change and productivity growth by reinterpreting the theoretical identity between
TC and TFP growth and to investigate a theoretical background for adjusting the
traditional measures. Focusing on the time-trend model for a cost function which is
dual to a production function, we reviewed and compared three main approaches
developed by Ohta(1974), Caves et al. (1981), Morrison (1986), and to isolate the genu-
ine TC from observed TFP growth. Furthermore, we reviewed and compared three
main approaches develped by Ohta (1974), Caves et al. (1981), Morrison (1986), and to
isolate the genuine TC from observed TFP growth. Furthermore, we extended Mor-
rison’s (1986) framework by including the external adjustment costs as well as the in-
ternal ad justment costs and showed how traditional productivity measures at a static
equilibrium should be changed as the concepts of duality and dynamics are intro-
duced into the underlying function, upon which parametric measurement of produc-
tivity is based.

28) This adjusts the scale effect in the narrow sense, quasi-fixity effect, net change effect of quasi-fixed factor stocks. Since
€ oo = 7 + (U, this measure represents the capacity tilization ratios under CRTS. when 7 = 1, e = CU.
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Table 1. Relationship Between Functional Form and Adjusting Elasticity

Functional Forms Eq
RlSaic &Ry T
Partial Static GAR, X, @1+ ZPX, -2 en)]
Dymmic  GIRXXQN+IPX =20, + Gew))
Internal Adj.
ExemalAdi  GYRX Q.0+ X+ ZPX I-Z e+ fon)]

Combined Adj. éS(Ph XX QT+ KX+ P 77[1—21777*‘(&-” + '%60&1 + fléem)]

. . G .
Mixed Adj  GB, X, X5 Q) + i X) + Y X 77[1—2%(5(“ + e pen)]

Note ;
In case of mixed adjustment cost technology, a vector of quasi-fixed factor can be
spilited into X" and X, where XX is associated with a quasi-fixed factor with in-
ternal (external) adjustment costs.
€cq . adjusting elasticity of total costs
C ' atotal cost function as described in the column of functional forms
G afull static long-run cost function
G arestricted cost function
G® - arestricted cost function with internal ad justment costs
h . an external adjustment cost function
n = %}2—8, long-run scale elasticity
_dinX, _ dins
7T 0@’ T Gnj
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