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GLOBAL DYNAMICS IN A SIMPLE MACRO MODEL
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I. INTRODUCTION

The usual dynamic analysis of macroeconomic models is based on analyzing
the ““local’’ stability of systems of differential equations describing the models.
Such analysis can only answer questions about whether or not the system con-
verges to equilibrium after “‘sufficiently small’’ shocks or “‘sufficiently small”’
policy changes. ‘‘Local Stability’’ cannot even ensure that if one moves to a posi-
tion ““close”” to the equilibrium, then the trajectory will stay close to the equilbirium.
The analysis of large shocks and discrete (nonifinitesimal) changes and of the
behavior of trajectories near the equilibrium are clearly of considerable impor-
tance for macroeconomic policy making. The anglysis of these issues necessarily
rely on tools of global stability analysis. In spite of the importance of these issues,
the inherent intractability of the techniques of global stability analysis has resulted
in such analysis being largely ignored, even in the simplest macroeconomic models.
In this paper we take a step towards filling this gap.

Unlike a couple of decades ago when the IS-LM curve model ruled supreme,
there is currently no single model which is universally accepted. Hence, in selec-
ting a model we have tried to pick one which would accomodate a broad spectrum
of opinions. Indeed, we have taken special care not to prejudge either of the two
questions which have in recent years been the focus of a continuing and lively
debate: Firstly, which of two types of policies-fiscal and monetary-has the greater
impact on aggregate demand. Secondly, is it possible by judiciously controlling
aggregate demand to influence the unemployment rate in the ‘‘long run’’, in par-
ticular is a trade-off between inflation and unemployment possible in the long run?
The simple model we describe based, roughly, on a monetarist model in
Vanderkamp [11]'is general enough to be consistent with the Keynesian and
Monetarist, the activistic and passivistic positions on these issues. More often than
not, the positions in these debates are based on ‘‘global’’ comparative statics. For
instance, Friedman’s celebrated x precent rule (based on convergence to the natural
rate of unemployment no matter what the value of x is) clearly depends on global

*Department of Economics, Southern Methodist University, Dallas, Texas 75275, USA
'See Footnote 2 for the differences.



6 THE KOREAN ECONOMIC REVIEW Volume 8, Number 1, Summer 1992

stability of the system. Similarly, the Keynesian argument for a longrun trade-off
between inflation and unemployment does not specify that such a trade-off is in-
finitesimal or that such a trade-off is achievable only through several ‘‘small”
changes and hence is based on a presumption of global stability. Our analysis is
not intended to resolve any of the above controversies but rather by proving global
stability to provide a background for and a meaningfulness to the debates (in the
same sense that ‘‘local’’ stability analysis provides a background for and makes
““marginal’’ (calculus based) comparative static analysis meaningful).

Thus, in the paper we provide a proof of global asymptotic stability of a con-
ventional macro model by means of Lyapounov’s second method. While a *‘Lya-
pounov Function’’ is provided for the model, it has the difficulty that its time
derivative may be zero outside the steady state, though it is everywhere nonpositive.
However, we argue, even in this case one can use a refined version of the Lya-
pounov method to prove the global stability. To our knowedge, since even the
standard method of Lyapounov function is rarely used in the context of
macroeconomic models, macroeconomists might find both the method and the
content of this paper to be of interest.

II. THE MODEL

Our model will be described by four basic equations?:

z=p+y (D
p= h(u) + kp*, u(0)>0, h’ <0, h(0) = o, )
0<k<1
U= g¥-y), g' >0, g(0) = 0 3
p*= f(p-p*), f' >0, f(0) = 0 4)

Equations (1) is an identity describing the relationship between the rate of growth
of nominal income (z), the rate of inflation (p) and the rate of growth of real in-
come (y). We will assume that the variable z can be controlled by the government
through the appropriate use of fiscal and/or monetary policy.

Equation (2) is the standard equation for the Phillips curve, where u is the rate
of unemployment, and p* the expected rate of inflation. h’' < 0 and h(0)= o« en-
sure that the short-run (i.e., p* = constant) Phillips curve has a negative slope and
friction prevents the unemployment rate from being equal to zero at any finite
inflation rate. The constant k is a measure of ‘‘money illusion.”’ In particular,

*Vanderkamp’s ([11]) model can be obtained by (a) omitting equation (4), (b) assuming g in equa-
tion (3) to be linear, (¢) h(u)=u"' and k=1 in equation (2), and (d) assuming that z is the rate of
growth of money supply.
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k=1 represents the case of ‘“no money illusion’’ and yields a vertical long-run
(p=p*) Phillips curve with natural rate of unemployment h-1(0), while k < 1 gives
us a negatively sloped long-run Phillips curve with a slope h'(u)/(1-k). u(0)>0
reflects the assumption that the unemployment rate is positive at the initial point,
t=0.

Equation (3), a variant of ‘“‘Okun’s Law,’’3 describes the relation between the
real rate of growth of the economy (y) and changes in the unemployment rate ().
y is a constant representing the rate of growth needed to keep the unemployment
rate constant (g(0) =0). It is taken to be determined by long-run demographic fac-
tors and corresponds to Harrod’s ‘‘natural rate of growth.’”’ If the actural rate
(y) exceeds (resp. is less than) the rate y, then unemployment declines (resp. in-
creases). (This follows from g(0)=0, g>0.)

Equation (4) describes an adaptive expectation formation mechanism. It reflects
the highly plausible behavioural assumption that the expected rate of inflation (p*)
adjusts upwards (resp. downwards) if and only if the actual rate exceeds (resp.
is less than) the expected rate. The linear adaptive process p* =a-(p-p*), a > 0,
postulated by Cagan ([13]) (and justified by the work of Burmeister and Turnov-
sky ([2]) as a continuous approximation of a discrete error learning mechanism,
and by Friedman ([7]) in relation to information constraints on ‘‘rational expec-
tations’’) is a special case of equation (4).

The equations (1), (2), (3), and (4) fully described the model discussed in this

paper.
I1I. THE PROBLEM

The model described in the previous section is consistent with the traditional
Keynesian and Monetarist positions. If we assume that z, the rate of growth of
nominal income, is controlled primarily by using fiscal policy and if the constant
k (in equation (2)) is less than one, we get an ‘‘interventionist’’ Keynesian model
with fiscal policy as an instrument for trade-off between inflation and unemploy-
ment in the short and long runs. On the other hand, with k =1 together with the
assumption that the growth of nominal income (z) is primarily influenced by the
rate of growth of money supply, equation (1) would become a version of the quan-
tity theory and we would get a Friedmanian model of the Phillips curve with no
trade-off possible between u and p in the long run (see Vanderkamp ([11])). The
relevance of either position (Keynesian or Monetarist) given an appropriate choice
of z depends crucially on the stability of the model, in particular, on whether follow-
ing some random shock or a discrete (possibly ‘‘large’’) policy change, the model
would converge to the long run equilibrium. In other words, is the system of equa-

3For further details, see for example, Dornbusch and Fischer ([6]).
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tions (1) to (4) globally stable for any arbitrarily fixed constant value of the policy
paramether z?

In what follows, setting z= Z(a constant) we reduce (1) to (4) to a pair of dif-
ferential equations and sketch the phasediagram for the system as a preliminary
step towards the investigation of its stability.

Defining = z-y, from equations (1) and (3) we get:

u= g(p-p) (%)

Differentiating (2) with respect to time t and using (2), (4), and (5), we obtain:
p= h'twg (p-p) + kf [p(1-k") + k-'h(u)] (6)

To obtain the equilibrium of the system consisting of (5) and (6), we set i =p=0.
From (5) we get p= p(=z-y). From (6) and 1 =0 and p =0, noticing that by equa-
tion (4) f-! (0)=0, u=1u=h-! [(1-k) p]. Thus, the system has a unique equilibrium
(u, p).

The phase diagram for the differential equation system (5) and (6) is given in
Figure 1. The horizontal arrows in Figure 1 represent the fact that 1’1%0 depen-
ding on p%ﬁ. The vertical arrows are derived from (6) and these reflect the fact
that ap/dp= h'g’+ (k-1) f’<0 (i.e., for any given value of u, at any point above
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(resp. below) the line p= 0, p is negative (resp. positive)). To complete the ex-
planation of the phase diagram, we only need to justify the location of the line p=0.
Differentiating (6) with respect to u and p we get:

b _ pog 4 ot (7a)
du
9P _pgy k) f1<0 (7b)
ap

Noticing that p= 0 defines a function* p=p(u) and using (7a) and (7b), we have®:

f'(Oh’ (u)
ap/d = - 0 8
Lop/av] 5= W + ®DTO ®
u

Inequality (8) together with the fact that the equilibrium (u, p) is uniuge en-
sures us that the line p=p(u) given by p=0 lies in quadrants I and III as shown
in Figure 1.

Noting that all the arrows in the phase diagram do not point ‘‘inwards’’ towards
the equilibrium and that a trajectory such as the one indicated by the dotted line
may be possible, one may draw the following (false!) conclusions: Firstly, the
equilibrium may not be ‘‘locally’’ stable and that trajectories, even if they started
““close’ to (u, p), may not converge. Secondly, even if the system is locally stable,
it may not be stable in the sense of ‘“‘Lyapounov’’® (i.e., trajectories starting near
the equilibrium may not remain near the equilibrium, moving away before con-
verging). Finally, the ststem may not be ‘‘globally stable; in other words, for some
initial condition the trajectory may never approach (u, p).

As pointed out earier, instability of equilibrium seriously jeopardizes any mean-
ingful comparative static analysis and reduces the significance of policy conclu-
sions derived from such analysis. Below, we define formally the three concepts
of stability described above and prove a theorem to show that the system of dif-
ferential equations (5) and (6) is stable in all three sense.

“From (7b), p is a decreasing function in p for any given value of u. Hence, for any u, there exists
at most one p such that p=0. For sufficienctly large (resp. small) p, f[p(1-k'") + k-! h(u)] is less (resp.
greater) than f(0) =0 ((given u). Hence, given u, p is less (resp. greater) than 0 for sufficiently large
(resp. small) p. By continuity, there exists unique p such that for the given u, p=0. Hence, p =0 defines
a function p =p(u).

*Note that u=1u and p=p imply g=0.

°Local stability and Lyapounov stability are independent concepts: Neither implies the other (see
Cesari ([4], p.96)).

’See Footnote 6.
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Definition. Let (u(t), p(t)) be a solution path of the equation system (5) and
(6) for the initial values of u and p given by u=u(0) > 0 and p = p(0), and let (u,
p) be the equilibrium.

(1.1) (u,p) is locally stable, if and only if there exists d > 0 such that for all
(u(0), p(0), | (u, p)-(u(0),p(0)) | < J implies that as t—>, (u(t),p(t)) = (u, p).

(1.2) (u, p) is Lyapounov stable, if and only if for all ¢ >0 there exists d >0
such that |(u, p)-(u(0),p(0))| <d implies that [(u, p)-(u(t),p(t))| < ¢ for all t.

(1.3) (u, p) is globally stable, if and only if for all (u(0),p(0)), as t—=>o,
(u(®),p)~>(u, p).

(1.4) (u, p) is asymptotically locally stable, if and only if it is (a) locally stable
and (b) Lyapounov stable.

(1.5) (u, p) is asymprotically globally stable, if and only if it is (a) globally stable
and (b) Lyapounov stable.

Remark. Clearly, asymptotic global stability implies all the other types of
stability.

Theorem. (u, p), the equilibrium of our model, is asymptotically globally stable.

IV. PROOF OF THEOREM
The Jacobian matrix, J, for the system of equations (5) and (6) is given by

0 g’ 7
J= J
h'g + fh' h'g' + (k-1) f'

It has a negative trace. Furthermore, the determinant of J evaluated at the
equilibrium (u, p) is positive.® This establishes the following lemma.

Lemma 1. (u, p) is locally stable. Next, we show

Lemma 2. (u, p) is asymptotically locally stable.

Proof: By Lemma 1 and definition (1.4), it is sufficient to prove Lyapounov
stability of (u, p). This can be done by constructing a real valued ‘‘Lyapounov”
function V(u(t), p(t)) satisfying the following conditions (see Hahn ([7]):

(i) V(u(@®), pt)= 0.
(1) V(u(t), p(t))=0 if and only if u(t)=u and p(t)= p.
(iii) V(u(@), p)< 0.

#At points other than ones where p=p, we have g#0. Hence (under our assumptions) the sign of
the determinant cannot be determined. This prevents us from applying ‘‘Olech’s Theorem.” (See Olech

((1on.)
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Consider the following function V:

p(®) _ u(t)
V= f g(x-p) dx - k f 5 £ (k) + k1 heo] dx ©)

By the fundamental theorem of integral calculus and the differentiability (and hence
the continuity) of f, g, and h, the integrals in (9) exist. Hence, V is well defined.’
Furthermore, V has the following properties:

(a) p(t) > (resp. <) p if and only if x > (resp. <) p and hence, if and only if,
g(x-p)> (resp. <) 0. Therefore, for all p(t)#p,

ptty _ PO
f _ g(x-p) dx>0, and for p(t)= p, f _ g(x-p)dx=0
p p

Similarly, remembering that f[p (1-k-1) +k-! h(@)]= 0 and £">0, h'<0, it follows
that for all u(t)#u, the integral

u(t)
- 5 fB k) + kT heo] dx

is positive, and is 0 if u(t)= u
(b) Differentiating (9) and using (5) and (6), we have:

V(u(v), p(t)) = gp-p) p-kf [P(1-k!) + kth(u)] 0
=g(p-p) [h' (wg (p-p) + kf[p(1-k-}) + k-th(u)]]
-kf[p (1-k-1) + k-th(u) g(p-p)
=g(p-p) k [f[p(1-k-)) + k1 h(u)] - f[p(1-k-1) + k-th(u)]]
+ h'(v) [g(p-p)]? <0.7° (10)

°For the function V to be well defined, it is necessary that u(t)>0 (since for u(t)<0, h(u) would not
be defined). Given the initial value u(0)>0 of u, our assumptions imply that u(t)>0. Assume to the
contrary that there exists t = such that u(t)=0. (If u(t)<0 for some t>0, then by continuity such t
exists.) Then, by (2), as t—1, h(u(t))—< and p*(t)— — o (since p(t) is finite). Pick an increasing se-
quence {t,}, t,~1 (as n—>0) such that p*(t,) <0 for all t,. By (4), p*(t,)>0 for sufficiently large n,
since [p(t,)-p*(t,)] = [p(t)-p*(1)] = o. This contradicts our choice of t,.

°The inequality follows from the fact that (a) h’<0 and (b) g(0) = f(0) = 0 and g™>0 and >0 imply
that p=(resp. <) p, if and only if, g2(resp. <) 0. Also, [f(p(1-k-) + k-'h(u))-f(p(1-k-'0 + k-'h(u))] <
(resp. >) 0, if and only if, p(1-k-!) < (resp. >) p(1-k*), if and only if p2 (resp. <) D.
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(a) and (b) imply that V satisfies the conditions (i), (ii), and (iii), hence (u, p) is
Lyapounov stable.*!

Proof of Theorem: Let E be the locus of points (u,p) such that V=0and M
the largest invariant set'? contained in E. Note that the Lyapounov function in-
troduced in the proof of Lemma 2 satisfies the following properties:

() V(u(®),P®)>0, for (u(t),pt))=(u, p),
(i) V(u(),p(1) <0,
(iii) V(u(t),p(t))= as u(t),p(t) —>."

Hence, by Theorem VIII in La Salle and Lefschetz ([9], p.66), all solutions ap-
proach M as t—oo, Thus, to complete the proof, it is sufficient for us to show
that M = {(u, p)}. By equation(10), E consists of all the points (u,p) such that p=p.
Clearly, (0, pYEM <E. Assume to the contrary that the largest invariant set con-
tained in E is not {(u, p)}. Then choose a point (@, P)EM such that (T, P)#(U,
p). Consider the solution path (u(t),p(t)) such that (u(ty), p(ty)) =1, p)= (T, P)-
By the definitions of M and E, p(t)=p. for any t>t,. Thus, p(t)=p for all t>t,.
By (5), moreover, p(t) =p implies i =0. Thus, for all t>t), t=p=0. But this im-
plies that for all t>t; u(t)=u and p(t) = p. By continuity this implies u(ty) =u and
p(ty) =Pp, contradicting (T, P)#(, P).

"'V in Lemma 2 just falls short of being the ‘‘standard’’ type of Lyapounov function needed to
prove global stability, since V=0 at u# and pP=p.

'?An invariant set M is defined to be a set such that if a point x, belongs to the set, then its whole
path (forward and backward) lies in M.

“Assume that the sequence {t,}, t,>t, ,, is such that either {p(t,)} or {u(t,)} becomes unbounded.
If p(t,)—=, or p(t,)— — o, then the first integral on the R.H.S. of (9) deverges to «, and the second
integral on R.H.S. of (9) remains negative. If u(t,)—<°, then while the first integral remains positive,
the second one goes to-. By (2) and footnote 9, u(t)>0 for all t. Hence, in any case we have: For
the increasing sequence {t }, V(t,)—>, as n—>oo.
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