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Highlight 

 We suggest a systemic risk measure by adopting PageRank algorithm from “too central to fail” perspective. 

 We model a simulation that financial institutions are interlinked in the financial system. 

 We analyze the impacts of network characteristics on the centrality by using the proposed measure, Rank. 

 We compare Rank with well-known systemic risk measures, CoVaR and MES whether Rank can capture 

network structure between financial institutions. 

 

Abstract 

The concept of being “too central to fail” has been on the rise since “too big to fail” and “too connected to fail.” 

We suggest a systemic risk measure, Rank, that adopts the PageRank algorithm. We examine the effects of varying 

network characteristics on the centrality captured as Rank. Then, we compare this measure which effectively 

captures network relationships between financial institutions from a centrality perspective with other well-known 

systemic risk measures, conditional value at risk (CoVaR) and marginal expected shortfall (MES). First, we model 

a simulation that generates bilateral connections between financial institutions. Second, we use real market data 

representing sample United States financial institutions. We find that the centrality increases 1) if the percentage 

of equity in financial institutions is low, 2) if there were small number of financial institutions in the financial 

system. However, we do not find significant association between the centrality and asset structure of financial 

institutions. Additionally, we show that Rank can capture network structure between financial institutions better 

than CoVaR and MES. Rank does not have procyclical properties, which means it is not dependent on market 

conditions. This paper contributes to developing a timely measure using publicly available market data. The 

measure overcomes the shortcomings of the balance sheet-based approach, which is that balance sheets have time 

lags because financial institutions release balance sheets quarterly. We also include both equity-type and liability-

type assets, in which systemic risk mainly propagates through intricately connected liability obligations. This 

work will help regulators and policy makers understand the full implications of monitoring systemic risk from a 

network perspective. 
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“The recent crisis showed that some financial innovations, over time, increased the system's vulnerability to 

financial shocks that could be transmitted throughout the entire economy with immediate and sustained 

consequences that we are still working through today. Some of these vulnerabilities were a consequence of 

innovations that increased the complexity and interconnectedness of aspects of the financial system.” 

Chair of the Board of Governors of the Federal Reserve System, Janet L. Yellen at the American Economic 

Association/American Finance Association Joint Luncheon, San Diego, California on 4 January 2013.3 

 

 

1. Introduction 

 

Managing financial systemic risk from a network perspective has been a major concern since the global financial 

crisis. To maintain financial stability, systemically important financial institutions (SIFIs) have been identified as 

a strengthening regulation by the International Monetary Fund (IMF), the Bank for International Settlements (BIS), 

and the Financial Stability Board (FSB) on the premise that financial institutions should be subject to higher 

capital buffer requirements if they are identified as SIFIs (IMF-BIS-FSB, 2009). For instance, JP Morgan Chase 

as a bucket four, and Bank of America, Citigroup, Deutsche Bank, and HSBC as a bucket three are required to 

have 2.5% and 2.0% higher capital buffers respectively than non-SIFIs as of November 2017 (FSB, 2017).4 

Identifying SIFIs has significant impacts on both regulatory agencies and individual financial 

institutions; however, we note two shortcomings regarding current SIFI criteria. First, assessment based on 

balance sheet data does not reflect the latest circumstances of financial institutions. Balance sheet data have time 

lags, as financial institutions usually release their balance sheets quarterly. Second, assessment methodology does 

not consider complex network relationships between financial institutions. 5 Less obvious forms of network 

relationships, such as common exposure among financial institutions are not covered, although the 

interconnectedness category of the current criteria does consider intra-financial system assets and liabilities (Table 

1). 

[Table 1] 

We argue that there are gaps across “too big to fail”, “to connected to fail”, and “too central to fail” 

(Figure 1). The size, connectedness, and centrality of financial institutions do not necessarily overlap. Although a 

                                           
3 See Yellen (2013) for the full speech. 

4 The FSB has identified SIFIs and published policy measures about not only globally systemically important 
banks since 2011 but also globally systemically important insurers since 2013. 

5 De Bandt and Hartmann (2000) and Nier et al. (2007) point complex networks as mechanisms the failure of 
multiple banks simultaneously arises: direct bilateral lending and borrowing between banks, a common source of 
risks from correlated exposure among banks, feedback effects with endogenous fire sale, and informational 
contagion. Their arguments support the motivation of this paper that SIFI current criteria do not fully capture the 
financial networks. 
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certain financial institution has huge assets, the institution could not be closely connected to other financial 

institutions in the financial system (i.e. “too big to fail” ≠ “to connected to fail”). It also varies depending on 

situations of financial market, individual financial institutions, or regulations. Similarly, a financial institution 

could be in a periphery position, although the institution is big or connected with other institutions (i.e. “too big 

to fail” ≠ “to central to fail” or “to connected to fail” ≠ “to central to fail”). 

[Figure 1] 

The main goal of this paper is to propose a new way to quantify network relationships between financial 

institutions from “too central to fail” perspective. We compare the proposed measures with well-known systemic 

risk measures using stock data. First, we model a hypothetical banking system for simulations. We assume a 

stylized balance sheet that includes asset and liability. Financial institutions in simulations have complex interbank 

network through their asset-type assets and liability-type assets. They may also default from shocks and financial 

distress propagates to an entire financial system through interbank network. Second, we check that the measure 

can capture the network structure using empirical analysis. We then conduct a panel regression analysis using 

both simulation and real market data. 

We represent the centrality of the sample US financial institutions using Rank as a motivating example 

(Figure 2). Edges denote connections between financial institutions while size of nodes implies the level of Rank. 

Due to the limited space, ticker replaces names of financial institutions (see Table A1 in the Appendix for tickers). 

We can notice that the financial network changes with Rank. Additionally, some financial institutions have a few 

connections with financial institutions but Rank is high. Others have dense connections with financial institutions 

but Rank is low. Not only characteristics of financial institution but also other factors such as business model can 

affect centrality.6 

[Figure 2] 

This paper contributes to existing literature in three ways. First, we consider the direction that how a 

financial institution influences, and is influenced by, another financial institution. In previous research using the 

PageRank algorithm to determine financial systemic risk, Dungey et al. (2012) suggest correlating a firm’s stock 

price movements with its network. Thus the research makes the restricted assumption that the effect on another 

financial institution is the same as the effect from another financial institution. Second, we cover both equity and 

liability connections to fully capture network relationships between financial institutions. Battiston et al. (2012) 

propose a way to quantify networks using equity investment. However, equity connections based on equity stakes 

can only cover partial network channels, as systemic risk mainly propagates through intricately connected liability 

obligations. Third, we support the validity of new network measures through both simulation and real financial 

data. Previous research proposes measures from a network perspective; however, such studies have used mainly 

descriptive-level analysis (Battiston et al., 2012; Kuzubas et al., 2014; Demirer et al., 2017).  

                                           
6 The centrality measure of Rank can help understand behaviors of financial institutions and entire financial 
system. Other centrality measures such as degree, closeness, betweenness, eigenvector centrality can be 
complementary for monitoring financial vulnerability. 
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This paper is organized as follows. We provide theoretical background through a literature review in 

Section 2. We explain the sample data and variables for the analysis in Section 3. In Section 4, we present a 

simulation model to construct a hypothetical banking system. We examine the effects of network characteristics 

on the centrality through simulations in Section 5. Then, we provide the empirical results in Section 6. Finally, 

we conclude this paper through summarizing the research and discussing future research in Section 7. 

 

 

2. Literature review 

 

The global financial crisis has provoked us an approach toward financial systemic risk from a network perspective. 

After Allen and Gale (2000) and Freixas et al. (2000) note the structure of financial networks, the drive to 

understand financial systems through networks has drawn attention in earnest with the collapse of Lehman 

Brothers. The theoretical analysis was that the more financial institutions were connected through various 

channels, the more resilient the financial system would be to shocks (Brunnermeier and Pedersen, 2009; 

Geanakoplos, 2010). A shock can be dispersed to each financial institution in a densely connected financial system. 

The lesson from the global financial crisis, however, changed this understanding: Financial systems can be 

vulnerable to shocks when financial institutions are excessively connected (Shin, 2010). As intermediation chains 

of financial institutions lengthen, initially small exogenous shocks are amplified to big endogenous shocks that 

can affect an entire financial system. Caballero (2015) and Minoiu et al. (2015) also empirically support that high 

connectedness between financial institutions can increase the probability of a banking crisis. 

The increasing interest in financial networks has led to developing a systemic risk measure to reflect 

network characteristics. The quantification and representation of a financial network as a measure, however, differ 

depending on the feature under focus.7 Well-known systemic risk measures used in financial networks include 

principal components analysis, interbank exposure, and cross-border linkages (Bisias et al., 2012). Principal 

component analysis gauges the degree of commonality and links significant factors with systemic risk.8 Interbank 

exposure illustrates entities as nodes and relationships as edges based on graph theory.9 Cross-border linkages 

                                           
7 Measuring systemic risk considering financial network is somewhat new. Many papers have suggested and 
studied measures. Kara et al. (2015) divide the network measures with direct and indirect approach: direct 
approach uses bilateral obligations between financial institutions while indirect approach estimates relationships 
between financial institutions from real market data. This research’s Rank also estimate complex network 
relationships of financial institutions by mainly using stock returns of financial institutions as real market data.  
See Kara et al. (2015) for the detailed taxonomy of financial network measures. 

8 Applications of principal components analysis include absorption ratio (Kritzman et al., 2011) and PCAS (Billio 
et al., 2012). 

9 Chan-Lau et al. (2009) and the IMF (2009) show network models in terms of interbank exposure. The Granger-
causality network of Billio et al. (2012) is also based on this property. 
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focus on the funding of global banks and examine risk transmission. 10  Regulatory agencies such as the 

International Monetary Fund (IMF), the Financial Stability Board, and central banks have also examined financial 

networks to maintain financial stability using systemic risk measures. The IMF examines four methods, including 

a network approach, to assess the systemic implications of financial linkages (IMF, 2009).11 It also analyzes three 

indicators by calculating the contribution of an institution to systemic risk (IMF, 2011).12 Then, Arregui et al. 

(2013) review tools to measure interconnectedness and analyzes the systemic risk of interconnectedness from a 

surveillance perspective.13 Furthermore, Chan-Lau (2010) suggests a way to impose additional regulatory capital 

charges by considering interconnectedness. 

Examining the evolution of network analysis helps us to develop a systemic risk measure from a 

financial network approach. Network methodologies have been developed at three levels in the field of network 

analysis (Battiston et al., 2010). The first level depends on a topological approach in which the links between 

entities simply exist or do not exist. The second level includes just weights or weights and directions to links. The 

direct interaction between entities is represented as a link, and the interaction can be a transaction, ownership, or 

credit relation in case of financial institutions.14 The top level assigns a degree of freedom to nodes, which 

proceeds to a non-topological variable to shape the network. This is in line with recent research that takes into 

account dynamics of nodes through centrality. The most commonly used centrality measures derived from social 

network analysis are degree, closeness, betweenness, and eigenvector centrality.15 In the finance/economics field, 

DebtRank of Battiston et al. (2012) identifies systemically important nodes in loans while SinkRank of Soramäki 

and Cook (2013) identifies systemically important banks in a payment system. Kuzubas et al. (2014) claim that 

centrality measures perform well in predicting SIFIs. In addition, Thurner and Poledna (2013) suggest that 

centrality measures can be effectively used to select a counterparty, which could decrease the number of failed 

firms and the amount of total loss. The interest in centrality from regulatory agencies also supports this research 

to examine the idea of being “too central to fail” (European Central Bank, 2010; Arregui et al., 2013). 

                                           
10 Cross-border linkages include the bank funding gap of Fender and McGuire (2010). 

11 The IMF Global Financial Stability Report after the global financial crisis represents a network approach, co-
risk model, distress dependence matrix, and default intensity model (IMF, 2009). 

12 Another IMF Global Financial Stability Report analyzes the performance of conditional value at risk (CoVaR), 
joint probability of distress (JPoD), and Diebold-Yilmaz index (Diebold and Yilmaz, 2009; 2014) (IMF, 2011). 
13 The measures include CoVaR, return spillovers, distress spillovers, JPoD, conditional probability of default, 
and systemic contingent claim analysis (Arregui et al., 2013). 
14 The finance literature using network analysis, for instance, includes interbank markets (Boss et al., 2004; Iori 
et al., 2006; Iori et al., 2008) and corporate control or ownership (Almeida and Wolfenzon, 2006; Vitali et al., 
2011). 
15 Degree centrality counts the number of immediate neighborhood nodes and finds very connected nodes. It 
counts incoming links (in-degree), outgoing links (out-degree), or all links (degree). Closeness centrality measures 
the shortest path between a node and all others, implying that a node with shorter paths to other nodes is more 
central. Betweenness centrality measures the number of times that a node passes the shortest path and finds nodes 
acting as “bridges.” Eigenvector centrality assigns scores to all nodes and finds connections to high-scoring nodes. 
The idea is that an important node is connected to important neighbors. An application of eigenvector centrality 
is Google’s PageRank. 
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The existing literature uses simulations because of lack of information about bilateral relationships 

between financial institutions. Specifically, micro-level bilateral information (from one financial institution to 

another) rather than aggregate-level bilateral information (from one country to another) is not publicly released. 

Thus, researchers have constructed hypothetical financial systems with economic agents based on theoretical 

background and examined the effects of financial networks on financial vulnerability. The simulation research 

has started with the regulatory purpose of the central bank to maintain a stable financial market. For instance, the 

National Bank of Belgium simulates the consequences of non-repayment of interbank loans by demonstrating the 

time-varying structure of the Belgian interbank market (Degryse and Nguyen, 2004). The Austrian National Bank 

develops the Systemic Risk Monitor (SRM) (Boss et al., 2006) and the Bank of England develops the Risk 

Assessment Model for Systemic Institutions (RAMSI) (Alessandri et al., 2009).16 Nier et al. (2007) analyze the 

impacts of different structures of banking network on systemic risk, and Erol and Ordoñez (2017) recently 

examine how levels of regulation affect systemic risk in interbank networks. Additionally, recent papers studying 

financial network have overcome limited data by using simulations. The model and assumptions used in 

simulation differ depending on the purpose and focus of the research. Gai and Kapadia (2010) and Gai et al. (2011) 

develop a model of contagion in financial networks and demonstrate the amplification of fragility as a result of 

complexity and concentration in a financial network. Krause and Giansante (2012) show that a network of 

interbank lending can be a transmission mechanism of bank failures. They allow for different bank characteristics 

and interactions with others to capture a more realistic financial network. Elliott et al. (2014) and Acemoglu et al. 

(2015) analyze the contagion of failures among interdependent financial organizations and the impacts of network 

structure on stability.17  

 

 

3. Data and variables 

 

3.1. Data 

 

We focus on the US financial institutions to analyze the notion of being “too central to fail” in the financial system. 

Following Adrian and Brunnermeier (2016), we select our sample financial institutions from among companies 

with a standard industrial classification (SIC) code from 60 to 65 whose headquarters are located in the United 

States. To exclude non-financial holding companies, we do not include financial institutions whose SIC are 67. 

                                           
16 Simulation analysis of central banks recently advances to stress testing in practice while fear about the 
European banking crisis was pervasive. Additionally, not only Austria and England but also other countries 
develop or upgrade their stress testing methods, including Brazil, Canada, Chile, the Czech Republic, France, 
Germany, Italy, Japan, Netherlands, Norway, Spain, Sweden, Switzerland, the United States, and the European 
Central Bank (Schmieder et al., 2011; Ong, 2014). 

17 Other simulation studies about financial networks are summarized in Upper (2011). 
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We also exclude small financial institutions whose market capitalization are less than US$5 billion as of June 

2007, before the global financial crisis occurred. Thus we include 92 sample financial institutions (see Table A1 

in the Appendix for the list of institutions). 

 We collect daily stock price and quarterly balance sheet data from the Center for Research in Security 

Price (CRSP) and Compustat, respectively, for the sample companies from 2000 to 2016. The balance sheet data 

we use are the financial institutions’ total assets in book value, leverage (liability to equity), and liquidity (sum of 

cash and short-term investments to total assets) (Tables 2 and 3). 

[Table 2] 

[Table 3] 

We also collect daily macroeconomic variables to reflect the US economic situation. We include the 

S&P 500 to capture overall stock market conditions from CRSP. We use the Volatility Index (VIX) to represent 

the volatility of the financial market from the Chicago Board Options Exchange (CBOE). In addition, we obtain 

3-month LIBOR data based on the US dollar and 3-month Treasury bill rates as money market variables from the 

Federal Reserve Bank of St. Louis and the Board of Governors of the Federal Reserve System, respectively. We 

then collect 10-year Treasury note and Baa-rated corporate bond yields as capital market variables from the Board 

of Governors of the Federal Reserve System and the Federal Reserve Bank of St. Louis, respectively. 

 

3.2. Measurement variables 

 

We represent the idea of calculating Rank and compare the Rank with well-known systemic risk measures of 

CoVaR (Adrian and Brunnermeier, 2016), and MES (Acharya et al., 2017) after quantifying the three measures 

as follows. 

 

3.2.1. Rank 

 

We quantify the centrality of individual financial institutions from a “too central to fail” perspective. Rank 

represents how much a financial institution is linked to another financial institution considering the other financial 

institution’s weight. 

First, we calculate an “effect matrix” that shows the extent to which each financial institution is 

connected to other financial institutions. We apply the Granger causality network of Billio et al. (2012) to make 

the effect matrix. Dungey et al. (2012) construct an effect matrix based on the correlation of financial institutions’ 

stock returns. Using correlation for an effect matrix, however, cannot capture direction. That is, in terms of 

correlation, the effect from financial institution i to j is the same as the effect from financial institution j to i. Thus 

we distinguish the effect of financial institution i to j from the effect of financial institution j to i. Billio et al. 

(2012) apply p-value to calculate each financial institution’s connectedness. In contrast, we use F statistics of the 

Granger causality network as the entity of the effect matrix (𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖). The use of F statistics rather than p-values can 
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account for wider variations in order to be more specific. 

Second, we calculate the value of financial institutions’ centrality. Based on the entity (i, j) of the effect 

matrix, we normalize the effect weight of each financial institution as follows: 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖
∑ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

where 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 denotes the extent of the effect from financial institution i to j at time t, and 𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖 means the effect 

weight on financial institution j from i at time t. We then apply the PageRank algorithm (Page et al., 1999) to 

obtain Rank. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 =
(1 − 𝛼𝛼)
𝑁𝑁

+ 𝛼𝛼�𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 is the Rank of firm i at time t, α is called a dumping factor and is usually set to be 0.85, and N is 

the total number of firms in the system. Rank has always a positive value, and a higher Rank value means that the 

firm has a greater contribution to systemic risk in the network structure. 

 

3.2.2. CoVaR 

 

Conditional value at risk (CoVaR) measures an individual firm’s contribution to systemic risk. We use quantile 

regression to calculate CoVaR following Adrian and Brunnermeier (2016). We can reflect extreme market 

situations by relaxing the assumption of error term’s normal distribution. The quantile regression model to 

calculate CoVaR is as follows: 

 

𝑋𝑋𝑖𝑖𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛾𝛾𝑖𝑖𝑀𝑀𝑖𝑖−1 + 𝜀𝜀𝑖𝑖𝑖𝑖 

𝑋𝑋𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 =  𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖 + 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖 + 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖𝑀𝑀𝑖𝑖−1 + 𝜀𝜀𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖 

where 𝑋𝑋𝑖𝑖𝑖𝑖 the is stock return of firm i at time t, 𝑀𝑀𝑖𝑖−1 is the vector of state variable at time t–1, and 𝑋𝑋𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠 is 

the index return at time t. 

 We select state variables generally following Adrian and Brunnermeier (2016). VIX, TED spread, 

changes in 3-month T-bill rate, maturity spread, credit spread, and return on S&P 500 are used. Details on the 

variables are provided in Table 2. 

We obtain estimated values of 𝛼𝛼𝑖𝑖, 𝛾𝛾𝑖𝑖, 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖 , 𝛽𝛽𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖 , and 𝛾𝛾𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖 using quantile regression. 

Using estimated parameters from the regression, we obtain the value at risk (VaR) and conditional value at risk 

(CoVaR) for each firm. Then, we calculate 𝛥𝛥𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  following the equation 

𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝑞𝑞) =  𝛼𝛼�𝑖𝑖 + 𝛾𝛾�𝑖𝑖𝑀𝑀𝑖𝑖−1 

𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝑞𝑞) =  𝛼𝛼�𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖 +  �̂�𝛽𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝑞𝑞) +  𝛾𝛾�𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠/𝑖𝑖𝑀𝑀𝑖𝑖−1 

𝛥𝛥𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  (𝑞𝑞) = 𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(𝑞𝑞) −  𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖(50%) 

where 𝛥𝛥𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  is a proxy for contribution to systemic risk; hereafter we simply call it CoVaR for convenience. 
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CoVaR usually has a negative value, and a small CoVaR could be interpreted as a greater contribution to systemic 

risk. 

 

3.2.3. MES 

 

Marginal expected shortfall (MES) is also the measure of an individual firm’s contribution to systemic risk 

(Acharya et al., 2017). Compared to CoVaR, MES averages a firm’s stock return on the condition that financial 

market is based on the lowest returns. The formula for MES is as follows: 

𝑀𝑀𝐸𝐸𝑀𝑀5%𝑖𝑖 = −𝐸𝐸�𝑋𝑋𝑖𝑖𝑖𝑖 � 𝐼𝐼5%]  

where 𝑋𝑋𝑖𝑖𝑖𝑖 is the stock return of firm i at time t, and 𝐼𝐼5% denotes index return when the index is in the lowest 5%. 

MES is usually larger than 0, and a larger value for MES can be interpreted as more contribution to systemic risk. 

 

 

4. Simulation methodology 

 

We construct a simple but reasonable simulation model to show whether Rank reflects network information 

compared to other measures. We may prove it theoretically or empirically to check that the measure truly reflects 

network information. Given the complexity of network relationships of multiple financial institutions as Krause 

and Giansante (2012) noted, however, it is hard to derive analytic solutions to show that the measure illustrates 

network information. We could not empirically show the effectiveness of Rank using real data, as information 

about bilateral exposure between financial institutions is not released publicly. 

 

4.1. Banking system 
 

We assume a hypothetical banking system in simulation model with each financial institution holding primitive 

assets (any factors of production or other investments) as portfolio.18 Then the values of financial institutions 

depend on the values of primitive assets (hereafter simply assets). We can track varying values of financial 

institutions based on changing values of assets. We set the number of financial institutions and assets in the 

banking system, respectively. There exist 𝑖𝑖 = 1, 2, … ,𝑁𝑁 financial institutions in the banking system. There are 

𝑖𝑖 = 1, 2, … ,𝑀𝑀 assets whose price movements follow geometric Brownian motion (GBM). The price movements 

of assets are independent of each other. Each financial institution can have several assets by choosing whether 

                                           
18 Based on Elliott et al. (2014), the idea that each financial institution has primitive assets portfolio in the banking 
system simplifies the development of simulations. The primitive assets can extend to debts and other contracts. 
We can also assume various cases in the experiments: we can examine different number of financial institutions, 
assets, or structure of balance sheet. In addition, we can prevent problems from model selection that can 
manipulate simulation results. 
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they hold each asset at random. Figure 3 depicts the price movement of assets using the GBM. 

[Figure 3] 

Total assets of financial institutions are composed of two types of assets (Figure 4). One is an equity-

type asset, and the other is a liability-type asset.19 The asset composition of financial institutions is decided 

randomly in the initializing simulation and will remain fixed. 

[Figure 4] 

The total equity-type asset of financial institution i is the sum of assets that follows GBM (Figure 5). 

𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖 =  �𝑃𝑃𝑖𝑖,𝑖𝑖 ∗ 𝑤𝑤𝑖𝑖𝑖𝑖
𝑖𝑖

 

where 𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖 is the sum of equity-type assets of institution i at time t, 𝑃𝑃𝑖𝑖,𝑖𝑖 is price of asset j at time t, and 
𝑤𝑤𝑖𝑖𝑖𝑖  denotes amount of assets that asset j belongs to financial institution i.  

[Figure 5] 

 

4.2. Interbank network 
 

Financial institutions have liability relationships with each other in the simulation model. That is, one financial 

institution may lend capital to another financial institution in random. The total liability-type asset of financial 

institution i is the sum of liability connections considering depreciation such as loan loss (Figure 6). 

𝐿𝐿𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖 =  �𝑐𝑐𝑖𝑖,𝑖𝑖
𝑖𝑖

∗ 𝑚𝑚𝑖𝑖𝑅𝑅 �
𝑬𝑬𝒋𝒋,𝒕𝒕−𝟏𝟏
𝑬𝑬𝒋𝒋,𝟎𝟎

, 1� 

where 𝐿𝐿𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖,𝑖𝑖 is the sum of liability-type assets of institution i at time t, 𝑐𝑐𝑖𝑖,𝑖𝑖 denotes the debt obligation of 

firm j that belongs to institution i, and 𝑬𝑬𝒋𝒋,𝒕𝒕 is total equity of financial institution j at time t. 

[Figure 6] 

The initial state of liability and equity for each firm will be decided by randomly selected leverage. 

Then, liability will be fixed (Figure 7). 

𝐸𝐸𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖,𝑜𝑜 + 𝐿𝐿𝑖𝑖𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑖𝑖𝑖𝑖,𝑜𝑜 = 𝑬𝑬𝒊𝒊,𝟎𝟎 + 𝑳𝑳𝒊𝒊 

where 𝑬𝑬𝒊𝒊,𝟎𝟎 is the total equity of financial institution i at time 0, and 𝑳𝑳𝒊𝒊 is the total liability of financial institution 
i. The market value of each firm is equal to its book value of equity. 

[Figure 7] 

We note that liability-based connection among financial institutions were more important than equity 

                                           
19 We construct a stylized balance sheet of individual financial institutions extending Nier et al. (2007) and Krause 
and Giansante (2012). We focus on the assets and liabilities that connect financial institutions each other instead 
of including all kinds of assets and liabilities. 
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connections because equity connections are easy to unwind. Recall that equity investors can sell stocks at any 

time when they want. However, Battiston et al. (2012) and Elliott et al. (2014) focus on equity-based connections 

among financial institutions. Therefore, their value of a firm’s connections linearly depends on each firm’s market 

value. In our simulation model, therefore, we make liability-type price functions as in Figure 8. The value of 

liability-type assets is only changed if the equity of the firm is lower than its initial value. The equity-based 

connection can also be covered by equity-type assets. 

[Figure 8] 

 

4.3. Shock and default mechanism 
 

A shock influences multiple financial institutions through financial linkages because a shock in financial 

institutions spreads to other financial institutions. We define a default if the equity of a financial institution 

becomes zero. We then define a shock as a plunge in the equity-type assets of a financial institution. Thus the 

probability of a default increases if the level of shock is disruptive, and vice versa. 

 The simulation model focuses on default from both asset and liability (Figure 9). Financial institutions 

are more likely to default when they do not hold enough asset and liability. If equity-type assets of a financial 

institution 1 become fragile because of a shock from GBM, its equity may plunge in the first round. It induces 

impairment of liability-type assets of other financial institutions 2 and 3 that have claims on 1 in the second round. 

While depreciation such as loan loss occurs in liability-type assets, the equity of financial institution 2 and 3 may 

plunge. This chain reaction continues in neighboring financial institutions and makes entire financial system 

vulnerable.20 

[Figure 9] 

 

4.4. Parameter calibration 
 

We estimate parameters to generate asset movements that follow geometric Brownian motion (GBM). The simple 

GBM used in simulations is as follows: 

𝑀𝑀𝑖𝑖 = 𝑀𝑀0𝑒𝑒𝑋𝑋𝑡𝑡  

Xt =  𝜎𝜎𝜎𝜎(𝑖𝑖) + 𝜇𝜇𝑖𝑖 

                                           
20 The lesson from the global financial crisis made us model simulations conservatively. Financial institutions 
can endure a shock longer through selling assets at a discounted price in reality, i.e., file sale. However, financial 
institutions in simulations are much more vulnerable to shock. They are directly exposed to drops in asset prices 
because the structure including assets and liability is fixed in the simulation model. In other words, they do not 
have buffer to remain liquidity in simulations in case of a shock. 
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where 𝑀𝑀𝑖𝑖  denotes asset price at time t, 𝑀𝑀0  means asset price at time 0, and 𝜎𝜎(𝑖𝑖) is the standard Brownian 

process. Specifically, we use risk-neutral GBM, and the drift (𝜇𝜇) and volatility term (σ) are as follows: 

𝜇𝜇∗ = 𝑟𝑟 −  𝜎𝜎2/2 

𝜎𝜎∗ =  𝜎𝜎 

where 𝑟𝑟 is the mean of asset returns and 𝜎𝜎2 is the variance of asset returns. 

 We use the S&P 500 to estimate the parameters of the mean and variance of asset returns. We 

differentiate regimes after examining low and high peaks in the time series (Table A2 in the Appendix). Then we 

calculate the mean and variance of the asset returns of each period. In our simulations, we assign the mean and 

variance of asset return returns between minimum and maximum values, respectively. The two parameters are set 

following uniform distribution and negatively associated. 

 

 

5. Centrality dynamics of financial networks 

 

We analyze the impacts of key parameters on centrality through simulation experiments. We can adjust some 

characteristics of financial networks by changing parameters: the percentage of equity capitalization in financial 

institutions (C), the number of financial institutions in simulations (N), the proportion of equity-type assets (E) 

and liability-type assets (L) in balance sheet of financial institutions (Table 4). We keep total number of primitive 

assets in the financial system (A) constant based on Nier et al. (2007). Then we vary one parameter at a time and 

analyze the effects on centrality of financial networks using Rank. We repeat the simulation experiments 100 

times and report average values. 

[Table 4] 

 First, we investigate the effects of equity (C) of financial institutions on financial networks. Figure 10 

(a) reports the decreasing centrality as the percentage of equity increases. Although the trend is not clearly 

monotonic, we note that maximum of Rank is high if the percentage of equity is close to low end of the range. As 

financial institutions remain low equity (i.e. business strategy using high leverage), they can save the costs from 

equity financing and pursue high efficiency in financial ratios. However, the lessons from the global financial 

crisis lead to more capital buffers on major financial institutions in the world (i.e. systemically important financial 

institutions). This is in line with the argument that bank equity is not costly (Admati et al., 2013).  

 Second, we examine the effects of the number of financial institutions in simulations on financial 

networks (N). The maximum Rank peaks if the number of financial institutions is close to zero (Figure 10 (b)). 

Then the Rank converges to lower values as the number of financial institutions increase from 0 to 30. We assume 

that a handful of financial institutions occupy so many transactions in lending and borrowing behaviors that the 

Rank of financial institutions increases. Although one cannot control the concentration in the real financial 



13 

markets, the results illustrate that the resilience of the system can be affected negatively from small number of 

financial intermediaries. 

Third, we investigate the effects of asset structure of financial institutions on Rank. Figure 10 (c) 

represents irregular pattern of Rank. We observe high Ranks in the low and high end of the range in equity-type 

assets. However, there is also an increase in Rank in middle of the range. This is because we assume that we do 

not divide asset side of financial institutions in detail. For instance, Krause and Giansante (2012) divide asset side 

of banks as cash, loans, and interbank loans. On the contrary, the asset side consists of equity-type and liability-

type assets in our simulations. We remain the impacts of asset structure of financial institutions on the centrality 

for the future research. 

 

 

6. Empirical analysis 

 

6.1. Analysis based on simulation 

 

We simulate stock data, firm characteristics, and network structure following the simulation methodology 

described in the previous section. For each simulation trial, we set the number of assets at N = 1,000, the number 

of financial institutions at M = 100, and the window length as 300 days. We conduct the simulation 100 times to 

consider various cases. We also perform the simulation 10,000 times for robustness; however, the results are 

qualitatively the same. We report empirical results of 100 simulations in this paper. The baseline model of 

regression analysis is as follows: 

𝑀𝑀𝑒𝑒𝑅𝑅𝐸𝐸𝑀𝑀𝑟𝑟𝑒𝑒𝑖𝑖,𝑖𝑖 =  𝛼𝛼 +  𝛽𝛽 ∙ 𝐹𝐹𝑖𝑖𝑟𝑟𝑚𝑚 𝑐𝑐ℎ𝑅𝑅𝑟𝑟𝑅𝑅𝑐𝑐𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ,𝑖𝑖 +  𝛾𝛾 ∙ 𝑀𝑀𝑅𝑅𝑐𝑐𝑟𝑟𝐶𝐶𝑒𝑒𝑐𝑐𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖 +  𝜖𝜖𝑖𝑖,𝑖𝑖 

where 𝑀𝑀𝑒𝑒𝑅𝑅𝐸𝐸𝑀𝑀𝑟𝑟𝑒𝑒𝑖𝑖,𝑖𝑖  denotes the calculated measures (Rank, CoVaR, or MES) of firm i at trial t, and 

𝐹𝐹𝑖𝑖𝑟𝑟𝑚𝑚 𝑐𝑐ℎ𝑅𝑅𝑟𝑟𝑅𝑅𝑐𝑐𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ,𝑖𝑖 includes a firm’s size, leverage, liquidity, and network connections. We use size as a 

logarithm of the book value of total assets, leverage as liability over equity, liquidity as equity-type assets to total 

assets, and network connections as the number of liability connections where the amount of liability-type assets 

exceeds 0.5% of total assets. 𝑀𝑀𝑅𝑅𝑐𝑐𝑟𝑟𝐶𝐶𝑒𝑒𝑐𝑐𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖 includes volatility, which is defined as the standard deviation of 

the index (a summation of all assets is considered the index in the simulated financial system). 

The estimation results in Table 5 show the impact of firm characteristics and network structure on Rank. 

The results show that firm size has a significantly positive effect on Rank, which means that as the financial 

institution gets larger, it holds a higher Rank, which is in accordance with being “too big to fail.” On the contrary, 

liquidity has a significantly negative effect on Rank. We infer that Rank gives less value to firms with sufficient 

cash or cash equivalent. The results are consistent with previous research in that shock may not propagate to other 

financial institutions when a financial institution has sufficient liquidity. Additionally, network connections have 

a significantly positive effect on Rank, which is the most remarkable result. This means that Rank gives greater 

weight to financial institutions that have more connections with other financial institutions. This result supports 
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the “too central to fail” argument. Note that we mention that CoVaR and MES are not associated with network 

connections in the following results. We argue that Rank is the only measure capturing the network structure from 

stock data. Lastly, the results illustrate that market volatility has no significant effect on Rank. Thus, we could say 

that Rank is not a procyclical measure, which means that Rank can detect systemic risk equivalently in both normal 

and crisis periods. 

[Table 5] 

Tables 6 and 7 show the results when the dependent variable is changed to CoVaR or MES. Specifically, 

firm size has a significantly positive effect on CoVaR, and leverage has a positive effect on MES. CoVaR represents 

market pressure when a firm is experiencing bad days, while MES reflects a firm’s average return when the market 

is in a bad situation. It is reasonable that size rather than leverage is the dominant factor in CoVaR. In contrast, 

leverage rather than firm size is the dominant factor in MES. Additionally, the results show that liquidity has a 

significantly negative effect on both measures. We can interpret them in the same way as before. Lastly, the results 

show that network connections have no significant effect on either measure. Thus, we could say that CoVaR and 

MES are less capable of capturing network information. 

[Table 6] 

[Table 7] 

 Risk measures using stock data usually have procyclical properties. “Procyclical” means the measure has 

a strong correlation to market conditions. In other words, a particular measure tends to grow when the economy 

grows and tends to decline when the economy declines. We note that market volatility has a significant effect on 

CoVaR and MES but not on Rank. This means that Rank is the only measure that does not have procyclical 

properties. Thus financial institutions’ contribution to systemic risk can be captured well regardless of market 

conditions. 

 

6.2. Analysis based on real market data 

 

We examine whether Rank captures network relationships using real market data. We quantify Rank, CoVaR, and 

MES for the sample US financial institutions. We calculate each measure over a 1-year window. The baseline 

model of the panel regression is as follows: 

𝑀𝑀𝑒𝑒𝑅𝑅𝐸𝐸𝑀𝑀𝑟𝑟𝑒𝑒𝑖𝑖,𝑖𝑖 =  𝛼𝛼 +  𝛽𝛽 ∙ 𝐹𝐹𝑖𝑖𝑟𝑟𝑚𝑚 𝑐𝑐ℎ𝑅𝑅𝑟𝑟𝑅𝑅𝑐𝑐𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ,𝑖𝑖 +  𝛾𝛾 ∙ 𝑀𝑀𝑅𝑅𝑐𝑐𝑟𝑟𝐶𝐶𝑒𝑒𝑐𝑐𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖 +  𝜖𝜖𝑖𝑖,𝑖𝑖 

where 𝑀𝑀𝑒𝑒𝑅𝑅𝐸𝐸𝑀𝑀𝑟𝑟𝑒𝑒𝑖𝑖,𝑖𝑖 denotes calculated measures (Rank, CoVaR, and MES), and 𝐹𝐹𝑖𝑖𝑟𝑟𝑚𝑚 𝑐𝑐ℎ𝑅𝑅𝑟𝑟𝑅𝑅𝑐𝑐𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖𝐸𝐸𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ,𝑖𝑖 includes 

the size, leverage, liquidity, and network connections of financial institution i at time t. We use size as a logarithm 

of the book value of total assets, leverage as liability to equity, liquidity as the sum of cash and short-term 

investments to total assets, and network connections as the number of connections whose p-value on the Granger 

causality network was less than 0.05. 𝑀𝑀𝑅𝑅𝑐𝑐𝑟𝑟𝐶𝐶𝑒𝑒𝑐𝑐𝐶𝐶𝑅𝑅𝐶𝐶𝑚𝑚𝑖𝑖𝑐𝑐𝑖𝑖  includes VIX, Ted spread, maturity spread, and credit 

spread. Additionally, Firm classification is a dummy variable based on SIC classification (see Table A1 in the 

Appendix in detail). 

The estimation results in Table 8 show that network connection has a significantly positive effect on 

Rank. This result supports the finding that Rank can capture network structure, as indicated by the previous 

empirical analysis based on the simulation. However, firm size does not have a significant effect on Rank, which 
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is inconsistent with previous empirical analyses based on simulations. We assume that Rank cannot capture the 

difference by firm size, because we focus on big financial institutions. 

[Table 8] 

Focusing on macroeconomic variables, the results illustrate that Rank is not a procyclical measure. VIX 

and maturity spread have no significant effect on Rank. Additionally, TED and credit spread have significantly 

negative and positive effects, respectively. Higher values denote that a financial market is in bad condition, as 

VIX represents uncertainty and TED represents market fear of interbank money markets. Maturity and credit 

spread also indicate higher costs for maturity and credit risk, respectively. Lastly, firm classification has no 

significant effect on Rank. Thus we can say that Rank is not affected by the type of financial institutions. 

Table 9 shows the estimation results when the dependent variable is CoVaR. We find that firm size has 

a significantly positive effect on CoVaR. This result is consistent with our previous results in the empirical analysis 

based on the simulations. However, leverage has a significantly negative effect on CoVaR, which differs from the 

empirical analysis based on the simulations. Existing research argues that more-leveraged financial institutions 

tend to contribute more to systemic risk. CoVaR does not effectively capture leverage information in our analysis. 

Additionally, the results show that network connection has no significant effect on the measure; thus, we can 

suggest that CoVaR cannot capture network structure. Furthermore, all macroeconomic variables have a 

significantly positive effect on CoVaR. Thus, we can say that CoVaR is a procyclical measure. Lastly, as to the 

type of financial institutions, non-depository institutions tend to have larger CoVaR than depository institutions. 

Insurance firms have a smaller CoVaR than depositories. Broker-dealers show no significant difference from 

depositories. 

[Table 9] 

Table 10 illustrates the case of dependent variable MES. The results show that firm size and leverage 

have a significantly positive effect on MES. However, network connections have a weak negative effect on MES. 

It is intuitive that a highly connected firm has a larger contribution to systemic risk. In that sense, MES cannot 

capture network structure well. Additionally, all macroeconomic variables have a significantly positive effect on 

MES. Thus we can say that MES is also a procyclical measure, as CoVaR is. Lastly, the type of financial institution 

shows no difference for the measure, except for non-depositories, which tend to have larger MES value than other 

types of firms. 

[Table 10] 

To sum up, when checked empirically, Rank is the only measure that can consider a firm’s network 

structure from stock data. In addition, we show that Rank is not a procyclical measure, so it could have consistent 

value regardless of market condition. However, Rank seems unable to capture traditional properties like size and 

leverage in the empirical analysis. 
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7. Conclusion 

 

The concept of being “too central to fail” has been on the rise recently since being “too big to fail” or “too 

connected to fail” received attention during the global financial crisis. The methodology of BCBS (2011) includes 

the category of interconnectedness to identify systemically important financial institutions (SIFIs). However, the 

existing measures do not fully consider the centrality of financial institutions. 

 First, this paper proposes a simulation model that considers centrality of financial institutions. We 

assume the number of financial institutions and assets, and financial institutions decide to hold how many assets 

they have as their portfolio. This simplifies the simulation model and prevents problems from model selection. 

The new method also uses market data to measure a financial institution’s contribution to systemic risk. Analyzing 

a balance sheet cannot consider complex network of financial institutions. Because a balance sheet has time lags 

to be released, a balance sheet does not reflect current situations. Additionally, a balance sheet just includes 

information in structured formats and does not show implicit connections among financial institutions such as 

common exposure.  

Second, we show the impacts of network characteristics on the centrality in the simulations. We examine 

the effects of the centrality by adjusting key parameters in the simulations. We find that the centrality increases 

as the percentage of equity in financial institutions and the number of financial institutions decrease. Additionally, 

we prove that the measure reflects the network structure using both simulation and real market data. We compare 

Rank with two other well-known measures, CoVaR and MES. The results show that Rank captures network 

structure more accurately than the other two measures. Rank also shows non-procyclical characteristics. 

A policy implication of this research is that regulators should consider an additional measure to reflect 

financial network. We suggest that considering centrality of financial institutions can achieve a goal of financial 

stability more effectively. If financial institutions are identified as SIFIs, they should hold capital buffers. This is 

in line with recent papers including Admati et al. (2013) that argue further capitalization for banks. They support 

that bank capitalization such as BaselⅢ agreement can be beneficial rather than expensive. In the real world, it 

is hard to access the proper network information to apply to the network structures due to the opaqueness of 

financial institutions. Currently, market data can be an alternative to access network structure. Policy makers can 

utilize our simulation model and predict possible results when they design financial regulations. 

The paper proposes new avenues for future research. For example, future research could deal with 

improving the centrality measure by including various characteristics of firms. Our empirical results suggest that 

Rank only reflects network structure, not other characteristics of firms such as size or leverage. This problem 

could be solved by using an adapted version of the PageRank algorithm, suggested by Dungey et al. (2012). 

Previous research has added a firm’s characteristic weight, like the firm’s size, leverage, and liquidity, instead of 

a dumping factor. 

 
 



17 

Acknowledgements 
 
The authors sincerely thank the editor and anonymous reviewers for their constructive comments. The authors 

would like to thank useful comments on the conference “Finance and Economic Growth in the Aftermath of the 

Crisis” on Milan, Italy (11-13 September 2017). 

 
 
References 
 
 
Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A., 2015. Systemic risk and stability in financial 

networks. The American Economic Review 105(2), 564-608. 
 
Acharya, V. V., Pedersen, L. H., Philippon, T., Richardson, M. P., 2017. Measuring systemic risk. Review of 

Financial Studies 30(1), 2-47. 
 
Admati, A. R., DeMarzo, P. M., Hellwig, M. F., Pfleiderer, P. C., 2013. Fallacies, irrelevant facts, and myths in 

the discussion of capital regulation: Why bank equity is not socially expensive. Research Paper No.13-7, 
Graduate School of Business Stanford University. 

 
Adrian, T., Brunnermeier, M. K., 2016. CoVaR. The American Economic Review 106(7), 1705-1741. 
 
Alessandri, P., Gai, P., Kapadia, S., Mora, N., Puhr, C., 2009. Towards a framework for quantifying systemic 

stability. International Journal of Central Banking 5(3), 47-81. 
 
Allen, F., Gale, D. 2000. Financial contagion. Journal of Political Economy 108(1), 1-33. 
 
Almeida, H. V., Wolfenzon, D., 2006. A theory of pyramidal ownership and family business groups. The Journal 

of Finance 61(6), 2637-2680. 
 
Arregui, M. N., Norat, M. M., Pancorbo, A., Scarlata, J. G., Holttinen, E., Melo, F., Surti, J., Wilson, C., Wehrhahn, 

R., Yanase, M., 2013. Addressing interconnectedness: concepts and prudential tools. Working paper No.13-199, 
International Monetary Fund. 

 
Battiston, S., Glattfelder, J. B., Garlaschelli, D., Lillo, F., Caldarelli, G., 2010. The structure of financial networks. 

In: Network Science. 131-163. Springer London. 
 
Battiston, S., Puliga, M., Kaushik, R., Tasca, P., Caldarelli, G., 2012. Debtrank: Too central to fail? financial 

networks, the fed and systemic risk. Scientific reports 2. 
 
BCBS., 2011. Assessment methodology and the additional loss absorbency requirement. Basel Committee on 

Banking Supervision Consultative Document. 
 
Billio, M., Getmansky, M., Lo, A. W., Pelizzon, L., 2012. Econometric measures of connectedness and systemic 

risk in the finance and insurance sectors. Journal of Financial Economics 104(3), 535-559. 
 
Bisias, D., Flood, M., Lo, A. W., Valavanis, S., 2012. A survey of systemic risk analytics. Annual Review of 

Financial Economics 4(1), 255-296. 
 
Boss, M., Breuer, T., Elsinger, H., Krenn, G., Lehar, A., Puhr, C., Summer, M., 2006. Systemic risk monitor: Risk 

assessment and stress testing for the Austrian banking system. Financial stability report No.11, National Bank 
of Austria. 

 
Boss, M., Elsinger, H., Summer, M., Thurner 4, S., 2004. Network topology of the interbank market. Quantitative 

Finance 4(6), 677-684. 
 



18 

Brunnermeier, M. K., Pedersen, L. H., 2009. Market liquidity and funding liquidity. Review of Financial Studies 
22(6), 2201-2238. 

 
Caballero, J., 2015. Banking crises and financial integration: Insights from networks science. Journal of 

International Financial Markets, Institutions and Money 34, 127-146. 
 
Chan‐Lau, J. A., 2010. Regulatory Capital Charges for Too‐Connected‐to‐Fail Institutions: A Practical Proposal. 

Financial Markets, Institutions & Instruments 19(5), 355-379. 
 
Chan-Lau, J., Espinosa, M., Sole, J., 2009. On the use of network analysis to assess systemic financial linkages. 

Working paper, International Monetary Fund. 
 
De Bandt, O., & Hartmann, P. (2000). Systemic risk: a survey. Working paper No.35. European Central Bank. 
 
Degryse, H., Nguyen, G., 2004. Interbank exposure: An empirical examination of systemic risk in the Belgian 

banking system. Working paper No.43, National Bank of Belgium. 
 
Demirer, M., Diebold, F. X., Liu, L., Yılmaz, K., 2017. Estimating global bank network connectedness. Journal 

of Applied Econometrics, Forthcoming. 
 
Diebold, F. X., Yilmaz, K. (2009), “Measuring financial asset return and volatility spillovers, with application to 

global equity markets”, The Economic Journal, Vol. 119 No. 534, pp. 158-171. 
 
Diebold, F. X., Yılmaz, K. (2014), “On the network topology of variance decompositions: Measuring the 

connectedness of financial firms”, Journal of Econometrics, Vol. 182 No. 1, pp. 119-134. 
 
Dungey, M., Luciani, M., Veredas, D., 2012. Ranking systemically important financial institutions. Discussion 

Paper No.12-115/IV/DSF44, Tinbergen Institute. 
 
Elliott, M., Golub, B., Jackson, M. O., 2014. Financial networks and contagion. The American Economic Review 

104(10), 3115-3153. 
 
Erol, S., Ordoñez, G., 2017. Network reactions to banking regulations. Journal of Monetary Economics 89, 51-

67. 
 
European Central Bank., 2010. Recent advances in modelling systemic risk using network analysis. 
 
Fender, I., McGuire, P., 2010. Bank structure, funding risk and the transmission of shocks across countries: 

concepts and measurement. Quarterly Review, 63-79, Bank for International Settlements. 
 
Financial Stability Board., 2017. 2017 list of global systemically important banks (G-SIBs). 
 
Freixas, X., Parigi, B. M., Rochet, J. C., 2000. Systemic risk, interbank relations, and liquidity provision by the 

central bank. Journal of Money, Credit and Banking 32(3), 611-638. 
 
Gai, P., Haldane, A., Kapadia, S., 2011. Complexity, concentration and contagion. Journal of Monetary Economics 

58(5), 453-470. 
 
Gai, P., Kapadia, S., 2010. Contagion in financial networks. In Proceedings of the Royal Society of London A: 

Mathematical, Physical and Engineering Sciences 466(2120), 2401-2423. The Royal Society. 
 
Geanakoplos, J., 2010. The leverage cycle. NBER Macroeconomics Annual 24, 1-65. 
 
International Monetary Fund, 2009. Global financial stability report: Responding to the financial crisis and 

measuring systemic risk. World Economic and Financial Surveys, International Monetary Fund. 
 
International Monetary Fund, 2011. Global financial stability report: Grappling with crisis legacies. World 

Economic and Financial Surveys, International Monetary Fund. 
 



19 

International Monetary Fund, Bank for International Settlements, Financial Stability Board., 2009. Guidance to 
assess the systemic importance of financial institutions, markets and instruments: initial considerations. Report 
to G20 finance ministers and governors. 

 
Iori, G., De Masi, G., Precup, O. V., Gabbi, G., Caldarelli, G., 2008. A network analysis of the Italian overnight 

money market. Journal of Economic Dynamics and Control 32(1), 259-278. 
 
Iori, G., Jafarey, S., Padilla, F. G., 2006. Systemic risk on the interbank market. Journal of Economic Behavior & 

Organization 61(4), 525-542. 
 
Jeong, D., Park, S., 2018. The more connected, the better? Impact of connectedness on volatility and price 

discovery in the Korean financial sector. Managerial Finance 44(1), 46-73. 
 
Kara, G. I., Tian, M. H., Yellen, M., 2015. Taxonomy of Studies on Interconnectedness. Working paper 

No.2704072, SSRN. 
 
Krause, A., Giansante, S., 2012. Interbank lending and the spread of bank failures: A network model of systemic 

risk. Journal of Economic Behavior & Organization 83(3), 583-608. 
 
Kritzman, M., Li, Y., Page, S., Rigobon, R., 2011. Principal components as a measure of systemic risk. The Journal 

of Portfolio Management 37(4), 112-126. 
 
Kuzubaş, T. U., Ömercikoğlu, I., Saltoğlu, B., 2014. Network centrality measures and systemic risk: An 

application to the Turkish financial crisis. Physica A: Statistical Mechanics and its Applications 405, 203-215. 
 
Minoiu, C., Kang, C., Subrahmanian, V. S., Berea, A., 2015. Does financial connectedness predict crises?. 

Quantitative Finance 15(4), 607-624. 
 
Nier, E., Yang, J., Yorulmazer, T., Alentorn, A., 2007. Network models and financial stability. Journal of Economic 

Dynamics and Control 31(6), 2033-2060. 
 
Ong, M. L. L., 2014. A guide to IMF stress testing: methods and models. International Monetary Fund. 
 
Page, L., Brin, S., Motwani, R., Winograd, T., 1999. The PageRank citation ranking: Bringing order to the web. 

Stanford InfoLab. 
 
Schmieder, M. C., Hasan, M., Puhr, M. C., 2011. Next generation balance sheet stress testing. Working paper 

No.11-83, International Monetary Fund. 
 
Shin, H. S., 2010. Risk and liquidity. Oxford University Press. 
 
Soramäki, K., Cook, S., 2013. SinkRank: An algorithm for identifying systemically important banks in payment 

systems. Economics: The Open-Access, Open-Assessment E-Journal 7, 1-27. 
 
Thurner, S., Poledna, S., 2013. DebtRank-transparency: Controlling systemic risk in financial networks. Scientific 

Reports 3. 
 
Upper, C., 2011. Simulation methods to assess the danger of contagion in interbank markets. Journal of Financial 

Stability 7(3), 111-125. 
 
Vitali, S., Glattfelder, J. B., Battiston, S., 2011. The network of global corporate control. PloS one 6(10). 
 
Yellen, J., 2013. Interconnectedness and systemic risk: Lessons from the financial crisis and policy 

implications. In Speech at the American Economic Association/American Finance Association Joint Luncheon, 
San Diego, California, 4 January, US Board of Governors of the Federal Reserve System. 

 



Figure 1. Scheme of “too big to fail”, “too connected to fail”, and “too central to fail” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Centrality of the US financial institutions using Rank 

(a) Year of 2007 

 

 

(b) Year of 2008 

 



(c) Year of 2012 

 

 

Notes: Edges denote connections between financial institutions while size of nodes implies the 
level of Rank. 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3. Price movement of assets under GBM 

 

 

Notes: We assume that there are N assets whose price movements follow geometric Brownian 
motion (GBM). Their price movements are independent of each other. 

 

 

 

Figure 4. Balance sheet framework in simulation 

 

 

Notes: We suppose simple balance sheet framework. Total assets of financial institutions are 
divided to two types of assets. One is equity-type asset, and the other is liability-type asset. 

 

 

 

 



Figure 5. Equity-type asset movement in simulation 

 

 

Notes: We assume that total equity-type assets of financial institution are the sum of assets that 
follow GBM. 

 

 

 

Figure 6. Liability-type asset movement in simulation 

 

 

Notes: We assume that total liability-type assets of financial institution are the sum of debt 
obligation considering depreciation (loan loss). 

 

 



Figure 7. Equity value changes in simulation 

 

 

Notes: The equity of financial institution changes as equity-type and liability-type assets 
changes. 

 

 

 

Figure 8. Function of liability value changes 

 

 

Notes: The value of liability-type asset is only changed if the equity of the financial institution 
is lower than initial value. 

 

 

 



Figure 9. Default mechanism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 10. Rank changes depending on parameters 

 

 
(a) Capitalization and centrality 

 
 

 
(b) Concentration and centrality 

 
 

 
(c) Asset structure and centrality 
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Table 1. Indicator-based measurement approach 

Category  
(weight) 

Individual indicator 
Indicator 

weight 
Cross-jurisdictional activity 

(20%) 
Cross-jurisdictional claims 
Cross-jurisdictional liabilities 

10% 
10% 

Size 
(20%) Total exposures as defined for use in the BaselⅢ leverage ratio 20% 

Interconnectedness 
(20%) 

Intra-financial system assets 
Intra-financial system liabilities 
Wholesale funding ratio 

6.67% 
6.67% 
6.67% 

Substitutability/financial 
institution infrastructure  

(20%) 

Assets under custody 
Payments cleared and settled through payments systems 
Values of underwritten transactions in debt and equity markets 

6.67% 
6.67% 
6.67% 

Complexity (20%) 
OTC derivatives notional value 
Level 3 assets 
Held for trading and available for sale value 

6.67% 
6.67% 
6.67% 

Source: BCBS (2011) 

 



Table 2. Variable definitions and data sources 

 

 

Variables Definition Sources 
Measurement   

Rank 
Measure of centrality of individual financial institutions from ‘Too central to fail’ 
perspective 

Author’s calculation based on 
Page et al. (1999) and Billio et al. (2012) 

CoVaR Extent of contribution to systemic risk of individual financial institutions 
Author’s calculation based on 

Adrian and Brunnermeier (2016) 

MES 
Average stock return of individual financial institutions on the condition that financial 
market is in the worst return 

Author’s calculation based on 
Acharya et al. (2017) 

Firm characteristics   
  Size Total asset in book value of individual financial institutions Compustat 

   Leverage Liability to equity ratio of individual financial institutions Compustat 
   Liquidity Sum of cash and short-term investment to total asset ratio of individual financial institutions Compustat 

   Network connection 
Bilateral network relationships between financial institutions distinguishing effect to and 
from another financial institution 

Author’s calculation based on 
Billio et al. (2012) and Jeong and Park (2018) 

Macroeconomic variables   
   S&P 500 Index of Standard and Poor’s 500 CRSP 
   VIX Volatility index on S&P 500 stock index option prices CBOE 

   TED spread Difference between 3-month LIBOR based on US dollar and 3-month Treasury bill rate 
Federal Reserve Bank of St. Louis 

Board of Governors of the Federal Reserve System 
   Maturity spread Difference between 3-month Treasury bill and 10-year Treasury bond rate Board of Governors of the Federal Reserve System 

   Credit spread Difference between 10-year Treasury bond and Baa-rated corporate bond yield 
Board of Governors of the Federal Reserve System 

Federal Reserve Bank of St. Louis 



Table 3. Summary statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables Observation Mean 
Standard 
deviation 

Min Max 

Measurement      
Rank 5,272 0.0123 0.0055 0.0038 0.0593 
CoVaR 5,272 0.0147 0.0111 -0.0026 0.0882 
MES 5,272 0.0333 0.0272 -0.0070 0.2159 

Firm characteristics 
Size (million USD) 5,711 169,596.1 352,538.2 207.5180 2,577,148 
Leverage 5,711 7.1622 5.7796 0.0320 50.8369 
Liquidity 5,711 0.1375 0.1402 0.0012 0.9081 
Network connection 5,272 1 0.9683 0 9.3729 

Macroeconomic variables 
VIX 6,256 20.7412 7.0320 12.6349 49.3615 
TED spread (%) 6,256 0.4159 0.3506 0.1621 1.6226 
Maturity spread (%) 6,256 1.9110 1.0777 -0.2482 3.4266 
Credit spread (%) 6,256 2.1159 0.5999 1.3035 4.6473 



Table 4. Parameters of the simulation model 

Parameter Definition Benchmark Range of variation 

A Total number of primitive assets in the financial system 1000 Fixed 

C Proportion of equity in financial institutions 20% 11-25% 

N Number of financial institutions in the simulation 100 5-150 

E Proportion of equity-type assets in financial institutions 90% 81-99% 

L Proportion of liability-type assets in financial institutions 10% 1-19% 

Notes: Sum of equity-type and liability-type assets should be one (E + L = 1). 

 

 

 

Table 5. Impact of network connection on Rank in simulation analysis 

Notes: p value in parentheses, *p<0.10, **p<0.05, ***p<0.01 

 

 

 

 

 

 

 

 

 (1) (2) (3) (4) (5) (6) 
Constant 0.00692*** 

(0.00) 
0.0326*** 

(0.00) 
0.00678*** 

(0.00) 
0.0324*** 

(0.00) 
0.0324*** 

(0.00) 
0.00986*** 

(0.00) 
Firm characteristics  

Size 0.000528*** 
(0.00) 

0.000974*** 
(0.00) 

0.000531*** 
(0.00) 

0.000977*** 
(0.00) 

0.000977*** 
(0.00) 

 

Leverage -0.0000836 
(0.39) 

-0.0000777 
(0.41) 

-0.0000849 
(0.39) 

-0.0000792 
(0.41) 

-0.0000792 
(0.41) 

 

Liquidity  -0.0318*** 
(0.00) 

 -0.0318*** 
(0.00) 

-0.0318*** 
(0.00) 

 

Network connection   0.0000179* 
(0.06) 

0.0000194** 
(0.03) 

0.0000194** 
(0.03) 

0.0000173* 
(0.06) 

Macroeconomic variable  
Market volatility     2.791 

(0.84) 
 

Observations 10,000 10,000 10,000 10,000 10,000 10,000 
R-squared 0.0024 0.0641 0.0028 0.0646 0.0646 0.0004 



Table 6. Impact of network connection on CoVaR in simulation analysis 

Notes: Dependent variables were multiplied by 10,000 to make the coeficients of the variables easier to recognize. 

p value in parentheses, *p<0.10, **p<0.05, ***p<0.01 

 

 

Table 7. Impact of network connection on MES in simulation analysis 

Notes: Dependent variables were multiplied by 10,000 to make the coeficients of the variables easier to recognize. 

p value in parentheses, *p<0.10, **p<0.05, ***p<0.01 

 

 

 (1) (2) (3) (4) (5) (6) 
Constant 0.0178* 

(0.09) 
0.0466*** 

(0.00) 
0.0183* 
(0.08) 

0.0470*** 
(0.00) 

0.00387 
(0.78) 

0.0366*** 
(0.00) 

Firm characteristics  
Size 0.00315** 

(0.02) 
0.00365*** 

(0.01) 
0.00314** 

(0.02) 
0.00364*** 

(0.01) 
0.00373*** 

(0.00) 
 

Leverage -0.000496 
(0.67) 

-0.000490 
(0.68) 

-0.000492 
(0.67) 

-0.000485 
(0.68) 

-0.000351 
(0.73) 

 

Liquidity  -0.0356** 
(0.02) 

 -0.0356** 
(0.02) 

-0.0332** 
(0.01) 

 

Network connection   -0.0000613 
(0.58) 

-0.0000596 
(0.59) 

-0.0000759 
(0.44) 

-0.0000646 
(0.56) 

Macroeconomic variable  
Market volatility     8,293.7*** 

(0.00) 
 

Observations 10,000 10,000 10,000 10,000 10,000 10,000 
R-squared 0.0006 0.0012 0.0006 0.0012 0.2381 0.0000 

 (1) (2) (3) (4) (5) (6) 
Constant 0.156 

(0.45) 
1.871*** 

(0.00) 
0.164 
(0.43) 

1.877*** 
(0.00) 

0.752*** 
(0.00) 

0.855*** 
(0.00) 

Firm characteristics  
Size -0.00859 

(0.74) 
0.0212 
(0.41) 

-0.00871 
(0.74) 

0.0211 
(0.42) 

0.0234 
(0.24) 

 

Leverage 0.150*** 
(0.00) 

0.150*** 
(0.00) 

0.150*** 
(0.00) 

0.150*** 
(0.00) 

0.154*** 
(0.00) 

 

Liquidity  -2.126*** 
(0.00) 

 -2.125*** 
(0.00) 

-2.064*** 
(0.00) 

 

Network connection   -0.000987 
(0.65) 

-0.000889 
(0.68) 

-0.00133 
(0.43) 

-0.000876 
(0.69) 

Macroeconomic variable  
Market volatility     216,338.2*** 

(0.00) 
 

Observations 10,000 10,000 10,000 10,000 10,000 10,000 
R-squared 0.0042 0.0092 0.0042 0.0092 0.4230 0.0000 



Table 8. Impact of network connection on Rank in empirical analysis 

 (1) (2) (3) (4) 
Constant 0.0124*** 

(0.00) 
0.0117*** 

(0.00) 
0.0128*** 

(0.00) 
0.0121*** 

(0.00) 
Firm characteristics     
Size -0.0000506 

(0.49) 
-0.0000948 

(0.22) 
-0.0000835 

(0.26) 
-0.000136* 

(0.09) 
Leverage 0.00000442 

(0.83) 
0.0000225 

(0.30) 
0.0000104 

(0.65) 
0.0000334 

(0.16) 
Network connection 0.000351*** 

(0.00) 
0.000353*** 

(0.00) 
0.000353*** 

(0.00) 
0.000356*** 

(0.00) 
Macroeconomic variables 
VIX  -0.0000104 

(0.63) 
 -0.0000157 

(0.47) 
TED spread  -0.00136*** 

(0.00) 
 -0.00133*** 

(0.00) 
Maturity spread  -0.0000435 

(0.61) 
 -0.0000323 

(0.70) 
Credit spread  0.000906*** 

(0.00) 
 0.000951*** 

(0.00) 
Firm classification dummy 
Non-depositories   -0.000508 

(0.11) 
-0.000501 

(0.11) 
Insurances   0.000221 

(0.41) 
0.000254 

(0.34) 
Broker-dealers   -0.000216 

(0.63) 
-0.000315 

(0.47) 
Observations 5,256 5,256 5,256 5,256 
R-squared 0.0036 0.0106 0.0059 0.0131 

Notes: p value in parentheses, *p<0.10, **p<0.05, ***p<0.01 

 

 

 

 

 

 

 

 

 

 



Table 9. Impact of network connection on CoVaR in empirical analysis 

 (1) (2) (3) (4) 
Constant 0.00325* 

(0.07) 
-0.0370*** 

(0.00) 
0.00343* 

(0.07) 
-0.0367*** 

(0.00) 
Firm characteristics     
Size 0.00106*** 

(0.00) 
0.00257*** 

(0.22) 
0.00110*** 

(0.00) 
0.00255*** 

(0.00) 
Leverage -0.0000382 

(0.42) 
-0.000305*** 

(0.00) 
-0.0000421 

(0.41) 
-0.000311*** 

(0.00) 
Network connection 0.0000463 

(0.78) 
0.0000147 

(0.84) 
0.0000312 

(0.85) 
0.0000129 

(0.86) 
Macroeconomic variables 
VIX  0.000775*** 

(0.00) 
 0.000775*** 

(0.00) 
TED spread  0.00920*** 

(0.00) 
 0.00920*** 

(0.00) 
Maturity spread  0.000676*** 

(0.00) 
 0.000676*** 

(0.00) 
Credit spread  0.00230*** 

(0.00) 
 0.00230*** 

(0.00) 
Firm classification dummy 
Non-depositories   0.00103 

(0.20) 
0.00161** 

(0.01) 
Insurances   -0.00162** 

(0.02) 
-0.00146** 

(0.01) 
Broker-dealers   -0.00128 

(0.25) 
0.000243 

(0.79) 
Observations 5,256 5,256 5,256 5,256 
R-squared 0.0115 0.7406 0.0209 0.7558 

Notes: p value in parentheses, *p<0.10, **p<0.05, ***p<0.01 

 

 

 

 

 

 

 

 

 

 



Table 10. Impact of network connection on MES in empirical analysis 

 (1) (2) (3) (4) 
Constant 0.0113** 

(0.02) 
-0.0653*** 

(0.00) 
0.00622 
(0.22) 

-0.0675*** 
(0.00) 

Firm characteristics     
Size 0.00162*** 

(0.00) 
0.00369*** 

(0.00) 
0.00194*** 

(0.00) 
0.00376*** 

(0.00) 
Leverage 0.000641*** 

(0.00) 
0.000129* 

(0.08) 
0.000624*** 

(0.00) 
0.000112 

(0.14) 
Network connection -0.000311 

(0.43) 
-0.000351* 

(0.07) 
-0.000356 

(0.36) 
-0.000360* 

(0.07) 
Macroeconomic variables 
VIX  0.00135*** 

(0.00) 
 0.00136*** 

(0.00) 
TED spread  0.0273*** 

(0.00) 
 0.0272*** 

(0.00) 
Maturity spread  0.00235*** 

(0.00) 
 0.00233*** 

(0.00) 
Credit spread  0.00673*** 

(0.00) 
 0.00668*** 

(0.00) 
Firm classification dummy 
Non-depositories   0.00991*** 

(0.00) 
0.00912*** 

(0.00) 
Insurances   -0.00157 

(0.41) 
-0.00229 

(0.15) 
Broker-dealers   0.00129 

(0.67) 
0.00483* 

(0.05) 
Observations 5,256 5,256 5,256 5,256 
R-squared 0.0292 0.6868 0.0537 0.7180 

Notes: p value in parentheses, *p<0.10, **p<0.05, ***p<0.01 

 

 



Appendix 
 

Table A1. List of sample financial institutions 

 Financial institution Ticker 

Depositories 
SIC = 60 

BANK OF AMERICA CORP 
BANK OF NEW YORK MELLON CORP 
BB&T CORP 
COMERICA INC 
COMMERCE BANCORP INC/NJ 
CREDICORP LTD 
FIFTH THIRD BANCORP 
HUDSON CITY BANCORP INC 
HUNTINGTON BANCSHARES 
JPMORGAN CHASE & CO 
KEYCORP 
M & T BANK CORP 
MARSHALL & ILSLEY CORP 
MASTERCARD INC 
NATIONAL CITY CORP 
NEW YORK CMNTY BANCORP INC 
NORTHERN TRUST CORP 
PEOPLE'S UNITED FINL INC 
PNC FINANCIAL SVCS GROUP INC 
REGIONS FINANCIAL CORP 
STATE STREET CORP 
SUNTRUST BANKS INC 
SYNOVUS FINANCIAL CORP 
U S BANCORP 
WACHOVIA CORP 
WASHINGTON MUTUAL INC 
WELLS FARGO & CO 
ZIONS BANCORPORATION 

BAC 
BK 
BBT 
CMA 
CBH 
CCL 
FITB 
HCBK 
HBAN 
JPM 
KEY 
MTB 
MI 
MA 
NCC 
NYCB 
NTRS 
PBCT 
PNC 
RF 
STT 
STI 
SNV 
USB 
WB 
WAMUQ 
WFC 
ZION 

Non-depository 
institutions 

SIC = 61, 62, 65 
excluding 6211 

AMERICAN EXPRESS CO 
BLACKROCK INC 
BLACKSTONE GROUP LP 
CAPITAL ONE FINANCIAL CORP 
CBRE GROUP INC 
CIT GROUP INC 
CITIGROUP INC 
CME GROUP INC 
COUNTRYWIDE FINANCIAL CORP 
FEDERAL HOME LOAN MORTG CORP 
FRANKLIN RESOURCES INC 
INTERCONTINENTAL EXCHANGE 
INVESCO LTD 
JANUS CAPITAL GROUP INC 
LEGG MASON INC 
NYMEX HOLDINGS INC 
NYSE EURONEXT 
PRICE (T. ROWE) GROUP 

AXP 
BLK 
BX 
COF 
CBG 
CITG 
CITI 
CME 
CFC 
FMCC 
FRI 
ICE 
IVZ 
JNS 
LM 
NMX 
NYX 
TROW 



PRINCIPAL FINANCIAL GRP INC 
SCHWAB (CHARLES) CORP 
SEI INVESTMENTS CO 
WYNDHAM WORLDWIDE CORP 

PFG 
SCHW 
SEIC 
WYN 

Insurance 
SIC = 63, 64 

AETNA INC 
AFLAC INC 
ALLSTATE CORP 
AMERICAN INTERNATIONAL GROUP 
ANTHEM INC 
ARCH CAPITAL GROUP LTD 
ASSURANT INC 
AXIS CAPITAL HOLDINGS LTD 
BERKLEY (W R) CORP 
CHUBB CORP 
CIGNA CORP 
CINCINNATI FINANCIAL CORP 
CNA FINANCIAL CORP 
COVENTRY HEALTH CARE INC 
EVEREST RE GROUP LTD 
FIDELITY NATL FINL FNF GROUP 
GENWORTH FINANCIAL INC 
HARTFORD FINANCIAL SERVICES 
HEALTH NET INC 
HUMANA INC 
LINCOLN NATIONAL CORP 
LOEWS CORP 
MARSH & MCLENNAN COS 
MBIA INC 
METLIFE INC 
PROGRESSIVE CORP-OHIO 
PRUDENTIAL FINANCIAL INC 
SAFECO CORP 
TORCHMARK CORP 
TRAVELERS COS INC 
UNITEDHEALTH GROUP INC 
UNUM GROUP 
WHITE MTNS INS GROUP LTD 
XL GROUP LTD 

AET 
AFL 
ALL 
AIG 
ANTM 
ACGL 
AIZ 
AXS 
WRB 
CBH 
CI 
CINF 
CAN 
CVH 
RE 
FNF 
GNW 
HIG 
HNT 
HUM 
LNC 
LC 
MMC 
MBI 
MET 
PGR 
PRU 
SAF 
TMK 
TRV 
UNH 
UNM 
WTM 
XL 

Broker dealers 
SIC = 6211 

AMERIPRISE FINANCIAL INC 
BEAR STEARNS COMPANIES INC 
E TRADE FINANCIAL CORP 
GOLDMAN SACHS GROUP INC 
LEHMAN BROTHERS HOLDINGS INC 
MERRILL LYNCH & CO INC 
MORGAN STANLEY 
TD AMERITRADE HOLDING CORP 

AMP 
BSC 
ETFC 
GS 
LEHMQ 
MER 
MS 
AMTD 

Notes: Following Adrian and Brunnermeier (2016), we select our sample financial institutions from among 
companies with a standard industrial classification (SIC) code from 60 to 65 whose headquarters are located in 
the United States. To exclude non-financial holding companies, we do not include financial institutions whose 
SIC are 67. We also exclude small financial institutions whose market capitalization are less than US$5 billion as 
of June 2007, before the global financial crisis occurred. 



 

Table A2. Parameter calibration 

 Relative value 
[S&P 500 on 2001-01-02] = 1 

Date 

First trough 0.628536611 2002-10-09 
First peak 1.254168989 2007-07-19 
Second trough 0.541885835 2009-03-09 

 

Period Start date End date Mean return Standard deviation 
Bear period 1 2001-01-02 2002-10-09 -0.00000524 0.000220896 
Bull period 1 2002-10-10 2007-07-19 0.00000058 0.000069363 
Bear period 2 2007-07-20 2009-03-09 -0.0000104 0.000510138 
Bull period 2 2009-03-10 2016-12-30 0.00000028 0.000109223 
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