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Abstract

We develop a two-periods and two-agents model to study the effects of the costly

information acquisition and fraudulent practice on the optimal way of funding with as-

sets. When an asset holder faces the liquidity needs but cannot issue unsecured debt,

the agent can use the asset as a medium of exchange either by making secured loan

contracts or selling the asset. In the model, the future value of an asset is uncertain,

but a lender (or a buyer of the asset) can acquire private information about the future

value of the asset at a cost. The asset holder (a borrower), however, has an incentive

to use a fraudulent asset as a medium of exchange at a cost. The model, then, is used

to study the conditions under which collateralized debt contracts and asset sales are

inequivalent, so one or the other emerges as an optimal contract for funding with the

asset. Collateralized debt contracts can be optimal for two reasons. When the asset
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holder has a high incentive to use the fraudulent asset as a medium of exchanges, the

asset cannot be sold directly but can be used as collateral because over-collateralization

reduces the fraud incentive making collateralized debt contracts optimal. Furthermore,

collateralized debt contracts can be also optimal because it reduces the lender’s incen-

tive to acquire costly information. However, under collateralized debt contracts, the

borrower may default opportunistically. Thus, if both fraud incentive and information

acquisition incentive are not severe, an asset sale can be optimal.

J.E.L. Classification: D8, D53, E0, E44, G12

Keywords: Asymmetric information, costly information acquisition, fraud, collateralized loan

contract

1 Introduction

When an asset holder faces liquidiy needs but cannot issue unsecured debts, he or she can

raise funds with the asset in two different ways: the agent can sell the asset directly or can

use the asset as collateral to raise fund for liquidity. Many studies on collateralized debt

contracts relies on asymmetric valuation on collateral assets. More precisely, a borrower

values the asset more than a lender (See Antinolfi et. al 2014, Lacker 2001, Monnet and

Narajabad 2012, Zhang 2014, Williamson forthcoming). This argument justifies the practice

of collateralized debt contracts where collateral assets are real assets like houses, for example,

because homeowners enjoy housing services by living there. However, this story cannot justify

the practice of using financial assets as collateral well, because the intrinsic value of financial

assets does not necessarily depend on the identity of asset holders. Furthermore, agents

can simply repurchase or resell financial assets in a spot market if they want. However,

trillions of dollars of financial assets, such as government bonds and asset backed securities

(ABS), are traded daily in a repo and security lending markets as collateral, and at the

same time, financial assets are also traded immediately on the spot without any repurchase
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agreements (see Gorton and Metrick 2012). Consequently, there is a tension between theory

and practices in the real world.

In this paper, we attempt to make a progress in filling a gap between theory and practices

in the real world. In particular, we answer to the following questions. Under which conditions

economic agents choose to make secured loan contracts or to sell assets to raise funds when

intrinsic value of assets are same across all agents. When are secured loan contracts over-

collateralized and why? What determines the interest rate on secured loan contracts?

For this purpose, we construct a two-periods and two-agents model. In the model, the

borrower makes an offer to get consumption goods from the lender in the first period. Because

of limited commitment problem, unsecured loans are not possible. Instead, the borrower has

Lucas trees that give dividend at the end of the second period, and he can use Lucas trees

as a medium of exchanges. Dividend of Lucas trees follows a stochastic process. In a good

state, Lucas trees yields dividend, and in a bad state, trees yield nothing. Dividend state

is realized at the end of the second period. In principle, the borrower can raise funds for

consumption with Lucas trees in two ways. First, he can sell trees to the lender directly

(asset sale). Second, he can collateralize trees to borrow consumption goods from the lender

in the first period. In general, these two types of trading would generate the same result in

a standard exchange model (See Lagos 2010, and Rocheteau 2011).

One of key assumption in the model, however, is that the lender can acquire a private

information about the dividend state of trees at a cost in the first period before trading with

the borrower. The borrower does not have the technology to obtain information about the

dividend state. However, the borrower receives the information about the dividend state

at the begining of the second period with some probability. Thus, if the borrower made a

secured loan contract in the first period and he learns that trees yield nothing, the borrower

would default on the loan opportunistically. The other important assumption is that the

borrower has an incentive to misrepresent the tree quality. More precisely, the borrower can

produce fraudulent trees at some cost and use fraudulent trees as a medium of exchanges,
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which generates the fraud incentive constraint in the model.

We first focus on the terms of trade of secured loan contract that gives the highest

payoff to the borrower among secured loan contracts. The type of loan contracts depend

on whether the lender acquires the costly information about the dividend state or not and

whether the fraud incentive constraint of the borrower binds or not. Depending on the

information acquisition decision by the lender, the loan contract can be divided into two

groups. First, information insensitive contract (IIS) does not induce the lender to acquire

the costly information about the dividend state. Second, information sensitive contract

(IS), on the other hand, triggers the information acquisition by the lender. Interest rates

of IIS loan contract is a compensation for the opportunistic default by the borrower and

may include the informational rent to deter the lender from the information acquisition.

Under IS loan contracts, the lender accepts the borrower’s offer only if the dividend state

is good, so there is no opportunistic default by the borrower. Instead, the borrower must

compensate the lender for information acquisition cost in the form of a positive interest

rate. Obviously, it is more likely that IIS loan contracts dominate IS loan contracts as the

information acquisition cost rises. In addition to the information acquisition incentive, the

fraud incentive also matter for the type of secured loan contracts. In particular, if the fraud

incentive constraint binds, the borrower over-collateralizes loans, so the value of collateral

asset is higher than the size of repayment. This is because overcollateralization in the model

lowers the payoff on the fraud, so it reduces the fraud incentive.

In the model, secured loan contracts can be optimal for two reasons. First, when the

incentive problem of misrepresenting the quality of trees is severe, the borrower cannot sell

trees directly to the lender. However, by over-collateralizing a secured loan contract, the

borrower can mitigate the fraud incentive problem, so trees can be traded as a medium of

exchanges. Thus, a secured loan contract is optimal. Second, even though the fraud incentive

problem does not matter, a secured loan contract can be still optimal because it reduces the

lender’s incentive to acquire the information about the dividend state. Under a secured loan
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contract, the borrower takes collateral trees whenever he makes repayment on the loan. Thus,

the lender has less incentive to get costly information about the dividend state compared to

the direct sales of trees. However, when the lender does not have any incentive to acquire

the information because of the high acquisition cost, a secured loan contract only allows the

borrower to default in a profitable way whenever it is possible. Thus, the lender faces a risk

of strategic default by the borrower. Because the borrower must compensate the lender for

taking such risk to make him accept the offer, a secured loan contract can be suboptimal,

and a direct sale of trees emerges as the optimal contract.

Related work on the optimal type of trading mechanism using asset includes Monnet and

Narajabad (2012), Gottardi, Maurin, and Monnet (2015), Tomura(2015), Madison (2017),

and Parlatore (2017). Most of these studies focus on the optimality of secured loan contract,

but in our paper we also study the economic environment in which asset sale is optimal.

Most relatedly, Dang, Gorton, and Holmstrom (2012) used costly information acquisition

to study optimal contract for asset trading. However, the authors still focused on the opti-

mality of repo contract and not the other way. Furthermore, we relax the model to allow

a positive repo rate, and show that the lender can obtain positive profit even though the

borrower has the whole bargaining power. We also show that costly information technol-

ogy cannot explain over-collateralization practice in a secured loan contract different from

Dang, Gorton, and Holmstrom (2012). Instead, we show that overcollateralization occurs

to circumvent fraud incentive problem making secured loan contracts optimal. Our paper

also related to the literature about information acquisition in an asset exchange models such

as Andolfatto and Martin (2013), Andolfatto, et. al (2014), Gorton and Ordonez (2014),

and the literature about fraudulent practices such as Li, Rocheteau, and Weill (2012), Kang

(2017), and Williamson (forthcoming). However, in these literature, collateralized loan con-

tracts are equivalent to asset sales, and they focused on the effects of information acquisition

or fraudulent practices in asset markets on assets’liquidity.

The rest of the paper is organized as follows. Section 2 presents the environment of the
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model and section 3 solves bargaining problem to find the optimal contract. Section 4 is the

conclusion.

2 The Model Economy

We consider an exchange economy that consists of two agents-a borrower (b) and a lender

(l)- and two periods, t ∈ {0, 1}. The utility of each agent is

U b = mcb0 − lb0 + cb1

U l = cl0 − l0 + cl1,

where m is the marginal value of consumption of the borrower at t = 0, cit and lit are utility

from consumption of goods and disutility from labor of agent i ∈ {b, l} in period t. We

assume that m > 1, which can be interpreted as the borrower has liquidity needs at period

t = 0. There is a single non-durable consumption good in each period, and the endowments

of agents are as follows. The lender is endowed with a large amoung of consumption good e at

period t = 0 and receives nothing at period t = 1. On the other hand, the borrower does not

receive any consumption goods at period t = 0 and is endowed with e units of consumption

goods in period t = 1 with probability 1 − α ∈ [0, 1]. In addition to consumptions goods,

the borrower is also endowed with a units of the divisible Lucas tree that can be interpreted

as equity, bonds, asset-backed securities, or land at t = 0. One unit of tree yields y units of

consumption goods at the end of period t = 1 with probability of σ ∈ [m−1
m
, 1] (good state)

while it yields nothing with complement probability (bad state). We assume that e > ya so

that there are enough consumption goods that can be traded with trees. The dividend state

is realized at the end of period t = 1.

Given the utility functions and endowment process, there are gains from trade at period

t = 0. However, because of a lack of commitment, the unsecured credit is not feasible since

the borrower would always default on his obligation. Therefore, trees are necessary as a
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medium of exchanges for a trade to occur in period t = 0, and the borrower can finance his

liquidity needs at period t = 0 using trees through one of two ways. On the one hand, the

borrower can sell a′ units of trees in exchange of q units of consumption goods to the lender

(an asset sale). On the other hand, the borrower can borrow consumption goods from the

lender by pledging trees as collateral (collateralized debt contract). A secured loan consists

of three terms, (q, p, a′): At period t = 0, the borrower receives q units of consumption goods

from the lender, and promises to repay p units of consumption goods in period t = 1. Thus,

the interest rate on the secured loan is r = p−q
q
. At the same time, the borrower post a′

units of trees as collateral at period t = 0. Thus, if the borrower fails to make repayments,

then the lender seizes collateral trees. This transaction is akin to a repo contract where the

borrower sell a′ units of trees with a repurchase agreement that the borrower can repurchase

the collateral trees with p units of consumption goods at period t = 1. In a bargaining at

period t = 0, we assume that the borrower makes a take-it-or-leave-it offer to the lender.

In this environment, if there are no other frictions, then the borrower could purchase σya

units of goods from the lender in exchange of a units of trees in period t = 0, given risk

neutral preferences of each agent. At the same time, the borrower can borrow σya units

of goods at period t = 0 by pledging a units of trees as collateral, and promises to repay

σya units of goods at period t = 1 if he receives the endowment. Therefore, the borrower is

indifferent between a direct sale of trees and collateralized debt for financing choice.

Costly Information Acquisition In reality, an economic agent may want to acquire

more information about future value of an asset than its expected value before purchasing

the asset. For example, an agent may obtain analytic reports about the financial statements

of the company and its future prospects of business that would give more precise information

about the value of equity share even though there is a common perception about the ex-

pected value of company’s equity share. Then, he makes investment decision based on that

information. Similarly, when an agent considers purchasing houses, he may gather more
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detailed information about living environment and government policy direction that could

affect the housing value in the neighborhood. Certainly, these types of information acquisi-

tion are costly. One may have to purchase research reports from analysts or must input his

own efforts and time to obtain detailed information. In order to capture this practice, we

assume that the lender, who is a buyer of trees under direct sale of trees or may seize collat-

eral trees under collateralized debts, can acquire a private information about the dividend

state of trees before trading with the borrower at period t = 0. To obtain this information,

the borrower must incur a fixed cost of γ > 0 in terms of labor in period t = 0.

Defaults on a secured loan Under collateralized debt contracts, a borrower may default

on the loan for two reasons. First, the borrower is not able to repay on the loan because

he is not able to do. This is captured by parameter α in the model. With probability of α,

the borrower does not receive any consumption goods in period t = 1, so he cannot make

repayment on the loan. Second, the borrower may default on the loan even though he has

suffi cient resources because it is profitable to him. Specifically, the borrower will compare the

value of the collateral to the value of the avoided repayment, and will default optimally when

the later is higher than the first. We introduce this type of default into the model in a very

simple way. As Plantin (2009) argued, the owner of an asset may obtain private information

about the future cash flow of the asset by holding the asset, which was dubbed as “learning

by holding”. Thus, we assume that the borrower receives a private information about the

dividend state of trees at the end of period t = 0 with probability of η ∈ [0, 1], after all

transactions have take place. Therefore, if the borrower learns that trees yield nothing, then

he will default on the loan at period t = 1. Note that the borrower receives the information

about dividend state after trading with the lender, not before making an offer to the lender.

Thus, the borrower does not have private information when he makes an offer to the lender

at period t = 0.1 We make this timing assumption to avoid signaling problem to make the

1Different from our study, Hopenhayn and Werner (1996), Velde, Weber, and Wright (1999), and Ro-
cheteau (2011) study how informational asymmetries regarding the future value of assets affect assets’role
in transaction and their liquidity when the owner of an asset has private information about the future cash
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analysis as simple as possible but without compromizing the economic intuition.

Fraud in financial affairs Misrepresenting the quality of financial assets has been preva-

lent throughout history. Counterfeiting of money has a long history going back to the

clipping of coins in ancient Rome, and the economic effects of counterfeiting of money has

been one of the important topics in monetary economics (Williamson 2002, Nosal and Wal-

lace 2007, Li and Rocheteau 2011, Kang 2017). However, money is not the only asset that

has been a victim of frauds. For example, the complicated securitization process of asset

backed securities (ABS) has made it diffi cult to peirce the veil of ABS and caused the lack

of recognizability problem in ABS markets making ABS the target of fraudster. Anecdotes

about fraudulent asset appraisals of asset backed securities (ABS) with rating deficiencies

and false documentation concerning the underlying assets were common before the financial

crisis and fraudulent activities in financial market were criticized as one of key factors in

the financial crisis of 2008 (see Barnett 2012, Gourinchas and Jeanne 2012, and the Finan-

cial Crisis Inquiry Report 2011).2 Furthermore, fraudulent practices are not restricted on

financial assets. Mortgage markets are also susceptible to mortgage frauds such as misrep-

resenting the quality of collateral houses. One example is property flipping that involves

the purchase and subsequent resale of property at artificially inflated price that enables the

purchaser to obtain a greater loan and then default. Although no central repositor collects

data of all mortgage frauds, Suspicious Activity Reports from financial institutions indicates

the size of mortgage fraud is not negligible.

We introduce the incentive problem of misrepresenting the asset quality in the following

way. The borrower can produce fraudulent trees that give no dividend at a proportional cost

of k units of labor, and exchange fake trees with the lender’s goods at period t = 0, similar

flow of the asset.
2Robert Lucas, in his interview with the Wall Street Journal (Sep. 24, 2011) also emphasized this

fraudulent practice in the financial market as the key factor of the financial crisis arguing that “Instead, the
shock came because complex mortgage-related securities minted by Wall Street and “certified as safe” by
rating agencies had become part of the effective liquidity supply of the system. All of a sudden, a whole
bunch of this stuff turns out to be crap. It is the financial aspect that was instrumental in the meltdown of
’08.”
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to the faking technology of Williamson (forthcoming). We assume that the lender can get

the information about the dividend state of trees at a cost, but that information does not

reveal the authenticity of trees. Obviously, checking the authenticity of assets would require

different information and technology in reality.

To simplify the signaling problem, we assume that the borrower decides whether to

produce fake trees or not after making an offer to the lender, but before the lender decides

whether to accept the offer or not. Therefore, the borrower makes fraud decision given the

terms of trade, which diciplines the lender’s belief. However, the analysis and results do

not hinge on this timing assumption. Even though the borrower makes faking decision first

before making an offer, we get the same results as long as we use the reordering invariance

equilibrium concept proposed by In and Wright (2017) to refine equilibria as demonstrated

by Li, Rocheteau, and Weill (2012) and Kang (2017). In equilibrium, the borrower will

not produce fake trees and the fraud possibility generates the incentive constraint (e.g. see

Li, Rocheteau, and Weill, 2012 and Williamson, forthcoming). Figure 1 summarizes the

sequence of actions in the economy.

3 Funding liquidity needs with trees in period t = 0

In this section, we study the terms of trade that the borrower offers to the lender in period

t = 0. As discussed in the previous section, the borrower can obtain consumption goods

from the lender with trees either by selling trees directly (asset sale) or collateralizing trees

instead (secured loan contract). However, in the model, we can interpret the tree sale as a

special case of a secured loan when α = 1, because, in that case, the borrower cannot make

repayment on the loan and the lender will seize collateral trees for sure. Therefore, we focus

on a secured loan contract between the borrower and the lender in period t = 0 from now

on, and compare secured loans and a tree sale later.
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Figure 1: Timeline of borrower’s and lender’s decision

3.1 Secured loans

Under a secured loan, when the borrower defaults on the loan, the lender seizes the collateral

trees. In that circumstance, the lender’s final payoff from the secured loan contract depends

on the dividend state of trees. Thus, the lender has an incentive to acquire information about

the dividend state. However, if the lender believes that default would not occur or occurs

with very low probability, he would not acquire the costly information about the dividend

state of trees. On the other hand, if the lender has a belief that default would occur with a

high probability, he may want to check the dividend state of trees before trading with the

borrower and accepts the offer only if the dividend state is good. Thus, the lender’s payoff

from the loan contract (q, p, a′) depends on whether he acquires the costly information on

the dividend state or not.

First, when the lender does not acquire the information, his expected payoff from a
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secured loan contract (q, p, a′) is

(1) πIIS = −q + (1− α)[1− (1− σ)η]p+ ασya′.

Here, once the lender accepts the borrowers offer, the lender transfers q units of consumption

goods to the borrower in period 0. Then, he receives either p units of consumption goods

from the borrower or seizes a′ units of collateral trees in period 1. With probability of α,

the borrower does not receive any endowments in period 1, so he cannot make repayment

of p. As a consequence, the lender seizes collateral trees that give σya′ units of dividend in

expectation. On the other hand, with probability 1− α, the borrower recieves consumption

goods in period t = 1, so he is able to make repayment p on the loan and maintain the

ownership on the collateral trees as long as it is profitable to him. However, if the borrower

learns that trees give no dividend, then he will default on the loan even though he has

suffi cient consumption goods to make repayment on debts. The term (1 − α)(1 − σ)ηp in

equation (1) represents the lender’s loss from this opportunistic default because the lender

does not receive any dividend from collateral trees in that case.

Second, when the lender acquires information about the dividend state of trees, he will

accept the borrower’s offer only if the dividend state is good. Therefore, the lender’s expected

payoff is

(2) πIS = σ [−q + (1− α)p+ αya′]− γ.

Note that the borrower cannot default opportunistically in this case, because the lender only

accept the borrower’s offer when the dividend state is good. However, the lender must incur

γ units of labor cost to acquire private information.

Given terms of trade (q, p, a′), if πIIS ≥ πIS and πIIS ≥ 0, then the lender will accept

the borrower’s offer without information acquisition. On the other hand, if πIIS < πIS, then

the lender has an incentive to acquire the costly information about the dividend state first
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and make acceptance decision based on the information about the dividend state as long

as πIS ≥ 0. Following the language of Dang, Gorton, and Holstrom (2012), we say that

a secured loan contract is information insensitive (IIS) if it does not trigger information

acquisition by the lender and the contract is information sensitive (IS) otherwise.

Similarly, the borrower’s surplus from trade depends on the lender’s information acquisi-

tion decision. Specifically, an information insensitive contract ensures a trade with certainty

as long as the lender’s participation constraint is satisfied, so the borrower’s surplus is but

the borrower can achieve a trade only if the dividend state is good under the information

sensitive contract. Thus, our strategy of finding a secured loan contract that the borrower

would offer to the lender is as follows. First, we solve the borrower’s problem under each

type of loan contract - IIS and IS. Then, we compare the borrower’s payoff under each type,

and choose a secured loan contract that gives the highest surplus to the borrower.

3.1.1 Information Insensitive (IIS) loan contracts

We first start with an IIS secured loan contract under which the lender has no incentive to

acquire information about the dividend state. Under a secured loan contract (q, p, a′), the

borrower must transfer p units of consumption goods to the lender in period t = 1 or has

to cede a′ units of collateral trees to the lender. Note that information about the dividend

state is not produced under IIS loan contracts, so the expected value of collateral trees at

the beginning of date t = 1 is σya′. Therefore, a haircut θ, defined as the difference between

the collateral value and the size of granted loan, is θ = σya′−q
σya′ .

Next, as we explained above, the borrower could make fraudulent trees at the proportional

cost of k. If the borrower pledges fraudulent trees as collateral, then he will default in the next

period for sure without losing genuine trees. Thus, he can save (1−α)[1−η(1−σ)]p+ασya′

units of consumption goods from fraud, but he has to pay the ka′ units of labor to produce a′

units of fraudulent trees. Given the terms of contract (q, p, a′), the payoff from fraud should

not be higher than the fraud cost. Otherwise, the lender would not accept the borrower’s
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offer. This generates the fraud incentive constraint in the borrower’s problem below. Then,

the borrower’s maximized value under IIS repos, VIIS, is given by

(3) VIIS =Max
q,p,a′

{mq − (1− α)[1− (1− σ)η]p− ασa′ + σya}

subject to

−q + (1− α)[1− (1− σ)η]p+ ασya′ ≥ 0(4)

−(1− σ)q + (1− η)(1− α)(1− σ)p+ γ ≥ 0(5)

ka′ − (1− α)[1− (1− σ)η]p− ασya′ ≥ 0(6)

σya′ − p ≥ 0(7)

a− a′ ≥ 0(8)

q, p, a′ ≥ 0(9)

The objective function (3) consists the borrower’s suplus from trade, mq−(1−α)[1−(1−

σ)η]p−ασa′, and the expected value of trees. The inequality (4) is the lender’s participation

constraint without information acquisition. (5) is the no information acquisition incentive

constraint that deters the lender from information acquisition about the dividend state, which

means that the lender’s payoff with information acquisition (2) should not be higher than

the payoff without information acquisition (1). Next, (6) is the fraud incentive constraint

that prevents the borrower from producing fraudulent trees. The inequality (7) implies that

the value of the avoided repayment is not higher than the expected value of collateral trees,

so the borrower has an incentive to make repayment unless he receives a private information

that tells the dividend state is bad. Here, if p < σya′, then we call the secured loan is

over-collateralized and define σya′−p
σya′ as the over-collateralization rate. Note that if p = σya′,

then the positive interest rate on the secured loan r = p−q
q
menifests itself as the positive

haircut θ = σya′−q
σya′ although the denominator is different. Thus, we focus on the analysis of
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the interest rate when p = σya′, and analyze the interest rate and haircut separately only if

the secured loan is over-collateralized, i.e., p < σya′. Finally, (8) and (9) are the feasibility

constraints. The following lemma describes the solution to the above maximization problem

describing the terms of information insensitive (IIS) secured loan contracts.

Lemma 1 Define the level of information acquisition cost γ∗IIS ≡ [α + (1− α)ησ] (1−σ)σya

and γ∗∗IIS ≡
[ηk+(1−η)αy](1−σ)σa

1−η(1−σ) , and the probability that the borrower does not receive endow-

ments α∗ ≡ (1−η)(m−1)−ησ
1+(1−η)(m−1)−ησ and α

∗∗ ≡ k[(m−1)(1−η)−ησ]
m(1−η)σy . Then, terms of IIS secured loan

constracts are as follows:

1. Suppose [1− η(1− α)(1− σ)]σy ≤ k.

1-a) [IIS-1] If γ∗IIS ≤ γ, then q = [1− (1− α)(1− σ)η]σya, p = σya, a′ = a, and

VIIS = [m− (m− 1)(1− α)(1− σ)η]σya.

1-b) [IIS-2] If γ < γ∗IIS and α ≤ α∗, then q = (1 − α)(1 − η)σya + γ
1−σ , p = σya,

a′ = a, and VIIS = m
[
(1− η)(1− α)σya+ γ

1−σ
]
+ (1− α)(1− σ)ησya.

1-c) [IIS-3] If γ < γ∗IIS and α > α∗, then q = [1−(1−α)(1−σ)η]γ
[α+(1−α)ησ](1−σ) , p =

γ
[α+(1−α)ησ](1−σ)

where a′ = γ
[α+(1−α)ησ](1−σ)σy , and VIIS =

(m−1)[1−(1−α)(1−σ)η]γ
[α+(1−α)ησ](1−σ) + σya.

2. Suppose ασy ≤ k < [1− η(1− α)(1− σ)]σy.

2-a) [IIS-4] If γ∗∗ ≤ γ, then q = ka, p = (k−ασy)a
(1−α)[1−η(1−σ)] , a

′ = a, and VIIS = (m −

1)ka+ σya

2-b) [IIS-5] If γ < γ∗∗IIS and α ≤ α∗∗, then q = (1−η)(k−ασy)a
1−η(1−σ) + γ

1−σ , p =
(k−ασy)a

(1−α)[1−η(1−σ)] ,

a′ = a, and VIIS = m
{
(1−η)(k−ασy)a
1−η(1−α) + γ

1−σ

}
− ka+ σya

2-c) [IIS-6] If γ < γ∗∗IIS and α > α∗∗, then q = [1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ , p =

(k−ασy)γ
[ηk+α(1−η)y](1−α)(1−σ)σ ,

a′ = [1−η(1−σ)]γ
[ηk+α(1−η)y](1−σ)σ , and VIIS =

(m−1)[1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ + σya

3. Suppose k < ασy. Then, an IIS secured loan contract is not feasible

Proof. See Appendix
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As one can see from lemma 1, the solution to the problem (3) depends on the fraud cost

k, the information acquisition cost γ, and the probability that the borrower does not receive

endowments α because of the effects of those variables on the no information acquisition

incentive constraint (5) and the fraud incentive constraint (6), and there are 7 cases. In the

following, we analyze each type of IIS secured loan contracts and provide economic intuitions

for the results.

When [1−η(1−α)(1−σ)]σy ≤ k, the fraud cost is suffi ciently high, so the fraud incentive

constraint (6) does not bind. In this case, as one can see from lemma 1, p = σya′. The type

and terms of secured loan contract depend on parameters that affect the lender’s incentive

to acquire information about the dividend state: the information acquisition cost γ and the

probability α that the borrower does not receive endowments in period t = 1. Here, the effect

of γ on the information acquisition incentive is straightforward. As γ increases, the lender

has less incentive to acquire the information. Next, α is the probability that the borrower is

not able to make repayment on the loan in the period t = 1. Thus, as α increases, it is more

likely that the lender ends up holding the ownership of the collateral trees, so he has higher

incentive to get the information.

If γ ≥ γ∗IIS, then the information acquisition cost is so high that the lender has no

incentive to acquire information, so the no information acquisition incentive constraint (5)

does not bind. Under a secured loan contract, the borrower can default on the loan in a

profitable way when he receives the private information about the dividend state at the

beginning of period t = 1. Because the lender knows the possibility of opportunistic default,

the borrower has to compensate the lender for taking such risk. This is given by the positive

interest rate on the loan r = (1−α)(1−σ)η
1−(1−α)(1−σ)η . Note that if η = 0 so the borrower cannot default

in a profitable way, then the interest rate is zero. As the probability that the borrower does

not receive endowment α or the probability of good dividend state σ increases, there is less

chance for the borrower to default opportunistically. Thus, the interest rate and haircut fall

as α and σ rise.
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However, when the information acquisition cost γ is low such that γ < γ∗IIS, the incentive

constraint (5) starts to bind. Specific type of IIS loan contracts depends on the probability

α that the borrower is not endowed in period t = 1 because of its effects on the information

acquisition incentive of the lender. More precisely, as α decreases, the borrower will cede

collateral trees to the lender with higher probability. Thus, the lender’s incentive to acquire

information rises.

If α ≤ α∗ (IIS-2 type), then the borrower will be able to repay on the loan with relatively

high probability, so the information acquisition incentive is relatively low. In this case,

the borrower posts all trees as collateral, i.e., a′ = a, and reduces the lender’s information

acquisition by lowering the loan size q in (5). Note, that a decrease of q relaxes the lender’s

participation constraint (4) more than no information incentive constraint (5). Therefore, in

order to discourage the lender from the information acquisition, the borrower must provide

a positive surplus, which is an informational rent, to the lender under IIS-2 loan contract,

and this rent rises as the information acquisition incentive increases. Hence, the interest

rate, r =
[η(1−α)+α]a− γ

1−σ
(1−α)(1−η)a+ γ

1−σ
, contains the compensation for the risk of opportunistic default

and informational rent. Note that even if η = 0, the interest rate of IIS-2 loan contract is

still positive. The effects of η on the interest rate is same with IIS-1 case above: higher η

means higher probability of opportunistic default, so the borrower must provide a higher

interest rate similar to IIS-1 loan contract. However, because of the binding no-information

incentive constraint (5), the probability of exogenous default α has two opposing effects on

the interest rate. First, as explained above, the borrower has less chance to default on the

loan in an opportunistic way as α increases, which pushes down the interest rate. Second, as

α increases, the probability that the lender ends up holding the ownership of the collateral

trees increases. Therefore, the lender has more incentive to acquire the costly information

about the future value of trees, which pushes up the interest rate. In the IIS-2 case, the second

effect dominates the first effect, so the interest rate increases with α. By the same reasoning,

as the quantity of collateral trees a increases or the information acquisition cost γ decreases,
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the lender’s information acquisition incentive rises, so the interest rate increases. Finally,

because the lender concerns the bad dividend state of trees when he owns the collateral trees,

the information acquisition incentive decreases with σ. Thus, the interest rate on the loan

falls as σ rises. In the extreme case, if trees yeild dividend always, i.e., σ = 1, then the

information has no bites, and (5) does not bind always.

On the other hand, when γ < γ∗IIS and α > α∗, the borrower defaults on the loan

with the relatively high probability. Thus, the lender has a high incentive to acquire the

information about the dividend state. In this circumstance, it is too costly to discourage

the lender from information acquisition by rendering the informational rent to the lender.

Instead, the borrower posts only a fraction of trees as collateral, i.e., a′ < a, and reduce q

and p, to reduce the lender’s information acquisition incentive. Given all other things equal,

as the quantity of collateral trees falls, the benefit of the information about the future value

of trees decreases. Thus, the lender has less incentive to acquire the information given the

fixed cost of information acquisition. The quantity of collateral trees a′ = γ
[α+(1−α)ησ](1−σ) ,

here, increases with γ and decreases with η and α because of their effects on the lender’s

information acquisition incentive. Because the borrower does not give the informational rent

to the lender in this case, the interest rate on the collateral loan, r = (1−α)(1−σ)η
1−(1−α)(1−σ)η is same

with the IIS-1 case.

Now consider the case where k < [1−η(1−α)(1−σ)]σy, so the borrower has an incentive

to use fraudulent trees as a medium of exchangs, and hence the lender may be reluctant to

trade with the borrower because of threat of fraud. In this environment, the borrower can

mitigate the fraud incentive problem in the following way. As explained above, the borrower

can save (1−α)[1− η(1− σ)]p+ασya′ units of consumption goods in expectation by giving

fraudulent trees to the lender. Thus, given the quantity of collateral trees, a′, the benefit from

fraud decreases as p falls, while the cost of producing fraudulent mortgages does not change.

Therefore, the borrower can give a signal about the quality of his collateral trees to the lender

by over-collateralizing the loan, i.e., p < σya′. However, when k < ασy, the fraud incentive
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problem is so severe that the borrower cannot circumvent the fraud incentive problem and

cannot issue IIS secured debts. On the other hand, if ασy ≤ k < [1 − η(1 − α)(1 − σ)]σy,

the fraud incentive is not too high, and, hence, the IIS secured loan contracts are feasible

with the binding fraud incentive constraint (6) and over-collateralization. The ratio of over-

collateralization, σya′−p
σya′ , is same for all types (IIS-4 to IIS-6) as

[1−η(1−α)(1−σ)]σy−k
(1−α)[1−η(1−σ)]σy , and it

increases (decreases) with α and σ (k and η), because of the effects of each parameter on

the fraud incentive: the payoff from fraud, (1− α)[1− η(1− σ)]p+ ασya′, increases with α

and σ (decreases with η), and the borrower has less incentive to commit fraud as the fraud

cost k increases.

Although the binding fraud incentive constraint (6) generates the over-collateralization,

the effects of γ, α, and a′ on the lender’s information acquisition incentive and the structure

of IIS repo contract, as one can see from lemma 1, are similar to the case with the non-binding

fraud incentive constraint (6). For example, as the lender’s incentive to acquire information

about the dividend state increases, the borrower attempts to deter information acquisition

by providing informational rent first (IIS-5) and then cuts the quantity of collateral trees

instead of resorting on informational rent (IIS-6). In the following, we focus on the interest

rate and haircuts that might provide new insights.

As explained above, IIS-4 and IIS-6 loan contracts do not contain informational rent.

Thus, the interest rate is the same as [α+η(1−α)(1−σ)]k−ασy
(1−α)[1−η(1−σ)]k for both cases, and it increases

with η and decreases with α and σ because of their effects on the opportunistic default of

the borrower similar with IIS-1 and IIS-3 contracts. However, in these cases, fraud cost k

affects the interest rate owing to the binding fraud incentive constraint (6). More precisely,

an increase of the fraud cost k raises the repayment p through the binding fraud incentive

constraint (6). This, in turn, increases the loan size q by relaxing the lender’s participation

constraint (4) or the no information acquisition incentive constraint (5). Then, as one can

see from (4) and (5), an increase of k raises p more than q, so the interest rate of IIS-4

and IIS-6 increases with k. One interesting result is that if Lucas trees are a safe asset,
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i.e., σ = 1, the interest rate is α(k−y)
(1−α)k < 0 given k < y. Then, by continuity, the interest

rate of IIS-4 or IIS-6 debt contracts collateralized by an asset with σ ≈ 1 might feature the

negative interest rate. This result provides an explanation for some indicative evidence on

the negative interest rate in repo markets.

The interest rate of IIS-5 is a bit more complicated as [α+η(1−α)](k−ασy)(1−σ)a−(1−α)[1−η(1−σ)]γ
(1−α){(1−η)(k−ασy)(1−σ)a+[1−η(1−σ)]γ}

because of the informational rent. The effects of parameters such as η, a, γ, and σ on the

interest rate are same with those of IIS-2 by the similar reasoning. The interest rate also

increases with the fraud cost k because of its effect on the value of repayment p and loan size

q. However, the effects of α on the interest rate is unclear in contrast to the IIS-2 type. As

we explained above, when the incentive constraint of no information acquisition binds, an

increase of α has two opposing effects on the interest rate. First, it lowers an opportunistic

default possibility which pushes down the interest rate. Second, it tightenes the incentive

constraint of no information acquisition by the lender, which pushes up the interest rate.

In IIS-2 case, the second effect dominates the first one. In the IIS-5 type, there is a third

effect: An increase of α lowers the repurchase price, p, through the binding fraud incentive

constraint, which works as a force of lowering the interest rate. Combined all together, the

effects of changing α on the interest rate is ambiguous.

Next, when the fraud cost k is high enough that the fraud incentive constraint (6) does

not bind, p = σya′. Thus, the interest rate on the loan r = p−q
q
and haircut θ = σya′−q

σya′ show

a positive correlation in responding to various source of frictions. However, when the fraud

incentive constraint (6) binds, the secured loan is over-collateralized, i.e., p < σya′, and hence

the interest rate on the loan r = p−q
q
does not represent the haircut θ = σya′−q

σya′ precisely.

Therefore, it seems worthwhile to spend a little time on the haircut. From the part 2 of lemma

1, we have θ = σy−k
σy

for IIS-4 and IIS-6 types, and θ = 1 − (1−η)(k−ασy)(1−σ)a+[1−η(1−σ)]γ
(1−σ)[1−η(1−σ)]σya for

IIS-5 type. Thus, the haircut and the interest rate on secured loan contracts can move in a

different way in response to the change of parameters that represent economic environment

and asset’s properties. For example, as α or σ rises, the interest rate on IIS-4 loan contract
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falls, but the haircut does not change. In particular, as the fraud cost k increases, the interest

rates rise but haircuts fall for all types (IIS-4 to IIS-6).

3.1.2 Information sensitive loan contracts (IS)

If the information acquisition cost γ is too low, then the information insensitive (IIS) secured

loan contracts may not be attractive to the borrower. Instead, an offer that triggers the

information acquisition by the lender can be a better option. Notice that the borrower can

always decide not to trade with the lender, which gives the payoffof V = σya in expectation.

Thus, if the information acquisition cost, γ, is not low enough, then the information sensitive

(IS) contract is not profitable or, even it is not feasible. Here, we focus on IS loan contracts

that give higher payoff to the borrower than no trade option, and impose the necessary

conditions for those type of contracts to exist.

Under IS loan contracts, the lender trades with the borrower only if the dividend state

is good, so the borrower cannot default opportunistically. Thus, the borrower’s expected

payment to the lender is σ [(1− α)p+ αya′]. Given our timing assumption that the borrower

makes faking decision after making an offer to the lender but before the lender’s acceptance

decision, this expected payment should not be higher than the fraud cost ka′ to prevent the

borrower from fraud, which generates the fraud incentive constraint for IS loan contract.

Then, the borrower’s maximized value under IS loan contracts, VIS, is obtained by solving

the following maximization problem:

(10) VIS =Max
q,p,a′

{σ[mq − (1− α)p− αya′] + σya}
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subject to

−σq + (1− α)σp+ ασya′ − γ ≥ 0(11)

(1− σ)q − (1− η)(1− α)(1− σ)p− γ ≥ 0(12)

ka′ − (1− α)σp− ασya′ ≥ 0(13)

ya′ − p ≥ 0(14)

a− a′ ≥ 0(15)

q, p, a′ ≥ 0.(16)

The objective function (10) is sum of borrower’s expected suplus from trade and the

expected value of trees. The inequality (11) is the lender’s non-negative profit constraint

with the information acquisition. (12) is the information acquisition incentive constraint that

induces the lender to acquire the information about the dividend state of trees, and (13) is

the fraud incentive constraint which states that the benefit from fraud with the information

acquisition by the lender must be less than the cost of producing fraudulent trees. The

inequality (14) is the incentive constraint for the borrower to make repayments on the loan,

and (15) and (16) are the feasibility constraints. Notice, from (14), that the borrower has an

incentive to repay on the loan instead of abandoning the collateral trees as long as p ≤ ya′

because the lender trades with the borrower only if the dividend state of trees is good.

As explained above, when the lender acquires the information about the tree’s dividend

state, the borrower must compensate the lender for the information acquisition cost to make

the lender accept the offer. Therefore, for IS loan contracts to exist, the information acquisi-

tion cost, γ, must be suffi ciently low. In other words, there is no {q, p, a′} that satisfies (11)

- (16) if γ is suffi ciently high. For example, if γ > [α + (1 − α)η](1 − σ)σya, then (11) and

(12) cannot be satisfied at the same time. Moreover, VIS must be higher than σya because

no trade is always a feasible option. Given these arguments, the next lemma describes the

information sensitive (IS) secured loan contracts.
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Lemma 2 Define the cutoff level of γ as γ∗∗IS ≡ [ηk + α(1 − η)σy](1 − σ)a. Then, an IS

secured loan contract has one of the following forms:

1) (IS-1) If σy ≤ k and γ ≤Min
{
[α + (1− α)η](1− σ)σya, (m−1)σya

m

}
, then q = ya− γ

σ
,

p = ya, a′ = a, and VIS = m(σya− γ)

2) (IS-2) If ασy ≤ k < σy and γ ≤Min
{
γ∗∗IS,

(m−1)ka
m

}
where γ∗∗IS ≡ [ηk+α(1−η)σy](1−

σ)a, then q = ka−γ
σ
, p = (k−ασy)a

(1−α)σ , a
′ = a, and VIS = (m− 1)ka−mγ + σya

3) Otherwise, IS secured loan contracts are not feasible or worse than no trade, i.e., a′ = 0

and VIS = σya

Proof. See Appendix

Similar to the IIS loan contracts, if the fraud cost k is lower than ασy, IS loan contracts

are not feasible, and when k is in a moderate range as ασy ≤ k < σy (IS-2 type), the IS

loan contract is over-collateralized. The difference from IS loan contracts is that for IS loan

contracts to be feasible or profitable, the information acquisition cost γ should be suffi ciently

low as explained above. More precisely, if γ > [ηMin{k, σy}+ α(1− η)σy] (1−σ)a, then IS

loan contracts are not feasible because it cannot satisfy the lender’s participation constraint

and induce the lender to acquire information at the same time. On the other hand, if

γ > Min{k,σy}(m−1)a
m

, then IS loan contracts are worse than no trade even though they may

be feasible.

Given the information acquisition, trade occurs only if the dividend state is good, and

hence, the lender’s acceptance of the offer reveals this information. Thus, the expected

value of the collateral is ya′, and the ratio of over-collateralization and haircut are defined

as ya′−p
ya′ and ya′−q

ya′ respectively. First, the over-collateralization ratio, which is same for IS-

1 and IS-2 as σy−k
(1−α)σy , increases with α and σ, and is decreasing in k similar to IIS loan

contracts. Second, the haircut is γ
σya

for IS-1 and σya−ka+γ
σya

for IS-2. Thus, it increases with

the information acquisition cost γ for both cases but decreases with the fraud cost k for the
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IS-2 loan contract. As one can see, over-collateralization ratio and haircuts do not depend

on η because the opportunistic default is not possible.

Next, under IS loan contracts, there is no reason for the borrower to provide informational

rent to deter information acquisition, and the expected surplus of the lender is zero. Interest

rates on the loan, γ
σya−γ for IS-1 and

(1−α)γ−α(σy−k)a
(1−α)(ka−γ) for IS-2, respectively, are a compensation

for the cost of information acquisition. Thus, the interest rate increases with the information

acquisition cost, γ, and decreases with the quantity of trees, a, given the fixed cost of the

information acquisition, in contract to IIS loan contracts. Note that the interest rate on

IS-2 loan contract that is over-collateralized can be negative if γ ≈ 0. Because trade occurs

only if the dividend state is good under IS loan contracts, Lucas trees can be interpreted

as safe asset if γ ≈ 0. Thus, the negative interest rate when the fraud incentive constraint

(13) binds is consistent with IIS loan contract cases. Further, similar to IIS loan contracts,

a correlation between the interest rate and haircuts on IS-1 loan contract is positive, but

the interest rate and haircut change in an opposite direction for IS-2 loan contract when k

changes.

Finally, the borrower’s maximized value VIS does not depend on the counter-party risk

α and η under IS loan contracts. The intuition is as follows. First, because the borrower

cannot default opportunistically under IS loan contracts, the probability η that the borrower

receives the information about the dividend state at the end of t = 0 does not matter for

terms of contracts and maximized value VIS. Second, under IS-1 contract, the probability

α that the borrower does not receive endowments does not affect terms of contract because

trade occurs when the dividend state is good and p = ya′. However, terms of IS-2 contract

when the fraud incentive constraint (13) binds depends on α because of its effects on the

fraud incentive. More precisely, whenever the loan is over-collateralized, i.e., p < ya′, it is

more costly for the borrower to cede collateral trees a′ than to make repayment p. Therefore,

as α increases, the borrower’s expected payment to the lender, σ [(1− α)p+ αya′], increases

raising the borrower’s incentive to produce fraudulent trees. In order to satisfy the binding
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fraud incentive constraint (13), the repayment p falls. Therefore, an increase of α has two

opposing effects on the borrower’s expected payment: It increases the probability of losing

the ownership of collateral trees but it lowers the size of repayment. These two effects are

exactly cancelled out, so the initial loan size q and borrower’s maximized value VIS do not

change.

3.1.3 Induce information acquisition or not?

In the model, the borrower has a whole bargaining power and makes an offer to the lender at

t = 0. Therefore, the borrower will optimally chooses collateralized debt contracts between

IIS contracts and IS contracts by comparing the maximized value VIIS and VIS given in equa-

tions (3) and (10), respectively. Thus, the borrower’s maximized value with collateralized

debts is given as V = Max{VIIS, VIS}. If VIIS ≥ VIS, then an IIS loan contract dominates

an IS loan contract, and vice versa. What type of loan contract that the borrower would

choose depends on the information acquisition cost γ, fraud cost k, and exogenous default

probability α, which is described in the following proposition.

Proposition 1 The type of secured loan contract that gives the highest payoff to the borrower

among secured loan contracts is as follows:

1) Suppose σy ≤ k.

1-a) If α ≤ α∗, there is γ̂1 < γ∗IIS such that the secured loan type is i) IS-1 for all

γ ∈ (0, γ̂1), ii) IIS-2 for all γ ∈ [γ̂1, γ∗IIS), and iii) IIS-1 for all γ ≥ γ∗IIS.

1-b) If α > α∗, there is γ̃1 < γ∗IIS such that the secured loan type is i) IS-1 for all

γ ∈ (0, γ̃1), ii) IIS-3 for all γ ∈ [γ̃1, γ∗IIS), and iii) IIS-1 for all γ ≥ γ∗IIS.

2) Suppose [1− η(1− α)(1− σ)]σy ≤ k < σy.

2-a) If α ≤ α∗, there is γ̂2 < γ∗IIS such that the secured loan type is i) IS-2 for all

γ ∈ (0,Min {γ̂2, γ∗∗IS}), ii) IIS-2 for all γ ∈ [Min {γ̂2, γ∗∗IS} , γ∗IIS), and iii) IIS-1

for all γ ≥ γ∗IIS.
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2-b) If α > α∗, then there is γ̃2 < γ∗IIS such that the secured loan type is i) IS-2 for all

γ ∈ (0,Min {γ̃2, γ∗∗IS}), ii) IIS-3 for all γ ∈ [Min {γ̃2, γ∗∗IS} , γ∗IIS), and iii) IIS-1

for all γ ≥ γ∗IIS.

3) Suppose ασy ≤ k < [1− η(1− α)(1− σ)]σy.

3-a) If α ≤ α∗∗, there is γ̂3 < γ∗∗IIS such that the secured loan type is i) IS-2 for all

γ ∈ (0, γ̂3), ii) IIS-5 for all γ ∈ [γ̂3, γ∗∗IIS), and iii) IIS-4 for all γ ≥ γ∗∗IIS.

3-b) If α > α∗∗, there is γ̃3 < γ∗∗IIS such that the secured loan type is i) IS-2 for all

γ ∈ (0, γ̃3), ii) IIS-2 for all γ ∈ [γ̃3, γ∗∗IIS), and iii) IIS-4 for all γ ≥ γ∗∗IIS

4) If k < ασy, then a secured loan contract is not feasible.

Proof. See Appendix

Although the specific type of the secured loan contract depends on the fraud cost k in the

proposition 1, it is more likely that IIS loan contracts give a higher payoff to the borrower

than IS loan contracts as γ increases. The intuition is is in line with our earlier observations.

As one can see from lemmas 1 and 2, VIIS weakly increases with the information acquisition

cost, γ, while VIS weakly decreases with γ. This is because an increase of γ relaxes the no

information acquisition incentive constraint (5) for IIS loan contracts while it means a higher

information acquisition cost for IS loan contracts. Thus, the borrower makes an offer that

induces the lender to acquire the information only if the information acquisition cost γ is

suffi ciently low. This is illustrated in Figure 2 that describes VIIS and VIS with respect to γ

when σy ≤ k, and the maximized value of the borrower under secured loan contracts, V , is

given by the upper line of both graphs. Because we analyzed terms of each contract such as

an interest rate, haircuts, and over-collateralization in the previous subsection, we focus on

other issues.

First, as k decreases, the fraud incentive starts to matter for IS loan contracts first as one

can see from proposition 1. This is because under IIS loan contracts, the borrower can default

opportunistically, which lowers the expected repayment on the loan. This, in turn, implies
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Figure 2: VIIS and VIS with respect to γ when σy ≤ k

less benefit from producing fraudulent trees. Note that if η = 0 so the borrower cannot

default opportunistically, then the second case in proposition 1, where [1−η(1−α)(1−σ)]σy ≤

k < σy, disappears, and the fraud incentive constraint binds for both IIS loan contracts and

IS loan contracts when k < σy.

Second, consider two limiting cases: 1) γ → ∞ and 2) γ → 0. When [1 − η(1 −

α)(1 − σ)]σy ≤ k, the fraud incentive constraint of IIS loan contracts does not bind.

In that case, as γ → ∞, IIS-1 loan type is optimal among secured loan contracts and

V = [m− (m− 1)(1− α)(1− σ)η]σya. On the other hand, lim
γ→0

V = mσya under IS-1 loan

contract if σy ≤ k or lim
γ→0

V = (m− 1)ka+ σya under IS-2 loan contract if k < σy. In either

cases, the borrower obtains higher surplus when γ → 0 than when γ →∞. The reason is as

follows. Under IIS-1 loan contract, the borrower can default opportunistically if he receives

private signal about the dividend state. Thus, the borrower has to compensate the lender for

taking such risk. When the lender acquires the information, there is no asymmetric informa-

tion. Thus, the borrower cannot default in an opportunistic way, and the borrower does not

need to pay for opportunistic default risk. Note that if η = 0 so the borrower does not receive

private signal, then lim
γ→∞

V = mσya, which equals lim
γ→0

V if σy ≤ k and is strictly higher than

lim
γ→0

V if k < σy because of the binding fraud incentive constraint under IS-2 loan contract.
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On the other hand, when ασy ≤ k < [1−η(1−α)(1−σ)]σy, the fraud incentive constraint of

IIS-4 loan contract binds as ka = (1−α)[1−η(1−σ)]p+ασya. Thus, the value of repayment,

p, is adjusted as η changes, and the borrower’s expected payment is fixed as ka, which equals

the loan size q given the binding lender’s participation constraint (4). Therefore, VIIS under

IIS-4 loan contract does not depend on η, and lim
γ→∞

V = lim
γ→0

V = (m− 1)ka+ σya.

Third, if the fraud cost k is suffi ciently high, for instance, higher than σy as in the first

case in proposition1, the fraud incentive constraints - equation (6) for IIS loan contracts

and (13) for IS loan contracts - do not bind. In that case, over-collateralization does not

exist, as one can see from lemmas 1 and 2. Therefore, default risk and lender’s information

acquisition incentive cannot explain the existence of over-collateralization practice in secured

loan contracts in the model. Instead, interest rates reflect default risk and the information

acquisition incentive.

On a related point, it seems worthwhile to discuss recent work on repo contracts in the

context of information acquisition presented by Dang, Gorton, and Holmstrom (2012) who

derived over-collateralization, which equals haircuts in their model, in a similar economic

environment. However, they assumed that the interest rate should be zero, and this assump-

tion drives a positive haircut in secured loan contracts. Given that the repo rate is zero,

haircuts are same with the over-collateralization ratio. More precisely, a lender, in Dang,

Gorton, and Holmstrom (2012), may have to sell collateral assets at a discounted price to the

third party because the third party can learn the exact value of collateral assets at some cost

similar to the information acquisition technology of our model. Obviously, when a borrower

and a lender make a secured loan contract, the borrower must compensate, in any shape or

form, the lender for the possibility that the lender has to sell collateral asset at a discounted

price. However, Dang, Gorton, and Holmstrom (2012) did not allow a positive interest rate

in their model, so the compensation was embodied in a secured loan contract in the form

of over-collateralization, which is the haircut in their model. On the other hand, we extend

the model to allow the interest rate can be positive, and show that over-collateralization oc-
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cur not because of information acquisition incentive but because of the threat of fraudulent

practice in financial markets.

Finally, if k < ασy, secured loan contracts are not feasible because of the threat of fraud.

Furthermore, trees cannot be traded under the direct asset sale because an asset sale is a

special case of a secured loan contract where α = 1. Thus, trees are illiquid when the fraud

incentive problem is severe similar to Li, Rocheteau, and Weill (2012) although a secured

loan contract and an asset sale were treated equivalently in their model. The difference from

Li, Rocheteau and Weill (2012) is that when the fraud incentive problem is severe, the entire

trees are not traded in our model, while only a fraction of an illiquid asset is not traded in

Li, Rocheteau and Weill (2012).

3.2 Collateralized debts vs. Asset sale

So far, we have focused on secured loan contracts. However, as argued before, the borrower

can potentially sell trees to the lender on the spot in period 0. This asset sale can be

interpreted as a special case of a secured loan contract with α = 1 because, in that case, the

borrower can never be able to repay on the loan so the lender always seizes the collateral

trees. Thus, the borrower’s maximized value with an asset sale, which is denoted as Vα=1, can

be obtained by plugging α = 1 into proposition 1. Because trees are illiquid when k < ασy,

we focus on the cases where k ≥ ασy.

As one can see from lemma 1, necessary conditions to have the binding fraud incentive

constraints are ασy ≤ k < [1 − η(1 − α)(1 − σ)]σy for IIS-type loan contracts and ασy ≤

k < σy for IS-type loan contracts. If α = 1, either of these two conditions cannot be

satisfied. Therefore, if the optimal secured loan contract among secured loan contracts is

over-collateralized, then an asset sale is not feasible option for trading trees, so the secured

loan is the optimal contract. More precisely, by over-collateralizing secured loan contracts,

which is not possible under a direct sale of trees, the borrower can give the lender signal

about the authenticity of collateral trees he offers, circumventing the fraud incentive problem.
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From a technical point of view, this result implies that it suffi cies to look at the first case of

proposition 1, where σy ≤ k, for comparing secured loan contracts and tree sales because,

in other cases, tree sales are not a feasible option. The next lemma shows a property of

IS-1 loan contract, which is a general property of information sensitive (IS) loan contracts,

providing a useful intermediate step.

Lemma 3 Suppose k ≥ σy and γ < Min{γ̂1, γ̃1} given α = α0. Then, IS-1 is the best

among collateralized debts for all α ≥ α0, and the borrower is indifferent between secured

loan contracts and a direct sale of trees.

Proof. See Appendix

In the proof of Lemma 3, we show that γ̂1 ≤ γ̃1 if and only if α ≤ α∗. Therefore,

when k ≥ σy and α = α0, IS-1 loan contract is optimal among secured loan contracts for

all γ < Min{γ̂1, γ̃1}. Then, Lemma 3 states that IS-1 loan contract is also optimal for all

α ≥ α0, which implies that a direct sale of trees is also information sensitive because tree

sale equals secured loan contract with α = 1. Furthermore, under IS-1 loan contract, there

is no asymmetric information problem, and the borrower’s maximized value does not depend

on α (see lemma 2). Therefore, whenever IS-1 loan contract is optimal among secured loan

contracts, the borrower is indifferent between a secured loan contract and a tree sale. In the

following, we focus on the case in which the borrower strictly prefers one type to the other.

First, suppose that η = 0, so the borrower cannot default on the loan in an opportunistic

way in period 1. Then, under IIS-1 loan contract, when the no information acquisition

incentive constraint does not bind, the borrower’s maximized value, VIIS, does not depend

on α similar to the case with the information sensitive (IS) loan contracts. On the other hand,

VIIS strictly decreases with α under the IIS loan contracts with the binding no information

acquisition incentive constraint. That means V = Max{VIIS, VIS} is weakly decreasing

in α, so secured loan contracts are either better than or equivalent to tree sales. Thus,

secured loan contracts are always optimal contract similar with previous studies like Gottardi,
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Maurin, and Monnet (2015), Tomura(2015), Parlatore (2017). The intuitive explanation for

this finding is as follows. Under a secured loan contract, the borrower takes the collateral

trees when he receives endowment and makes repayment on the loan at t = 1. Hence, the

lender has less incentive to acquire the costly information about the dividend state because

the dividend state matters to the lender only if he becomes the owner of collateral trees.

Therefore, the borrower can relax the no information acquisition incentive constraint by

offering a secured loan contract rather than a direct sale of trees.

On the other hand, if the borrower receives a private information about the dividend

state with a positive probability η > 0, the borrower can default on loans in a profitable

way at period 1 even though he receives the endowments. The borrower must compenstate

the lender for this opportunistic default on a loan contract. Because the borrower can

default opportunistically only if he receives his endowment e, an increase of the probability

α that the borrower does not receive the endowments lowers the possibility that the borrower

takes an advantage of private information under IIS loan contracts. However, when the no

information acquisition incentive constraint binds, an increase of α tightens the binding

incentive constraint because as α increases, it is more likely that the lender ends up having

collateral trees. This effect of an increase of α dominates the first effect on opportunistic

default possibility as explained in the previous section. Thus, an increase of α reduces V

under IIS loan contracts with the binding no information acquisition incentive constraint.

However, when the information acquisition cost γ is suffi ciently high such that the no

information acquisition incentive constraint does not bind as the IIS-1 loan contract, an

increase of α only reduces the opportunistic default possibility. Hence, the borrower’s max-

imized value, V , under the IIS-1 loan contract strictly increases with α. Furthermore, note,

from the first case with σy ≤ k in proposition 1, that if γ ≥ γ∗IIS at α = α0, then

the IIS-1 loan contract is optimal among secured loan contracts for all α ≤ α0 because

γ∗IIS ≡ [α + (1− α)ησ] (1 − σ)σya, defined in lemma 1, increases with α. Now suppose

that there exists α′ ∈ (0, 1) such that when α = α′, the IIS-1 contract is optimal among
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Figure 3: V with respect to α when σy ≤ k

secured loan contracts and the borrower’s maximized value V equals the maximized value

with tree sales Vα=1. Then, a direct sale of trees is optimal for all α < α0 because VIIS

under IIS-1 contract increases with α, as illustrated in Figure 3. Otherwise, secured loan

contracts are optimal or the borrower is indifferent between both types of trading arrange-

ment if the secured loan contract is information sensitive. The above analysis leads to the

next proposition.

Proposition 2 1. Suppose ασy ≤ k < σy. Then an asset sale is not feasible, and, hence,

secured loan contracts are optimal.

2. Suppose σy ≤ k. 2-a) If γ < Min{γ̂1, γ̃1}, then secured loan contracts and as-

set sales are information sensitive and the borrower is indifferent between them. 2-b) If

Max
{
(m−1)(1−σ)σya
m−1+m(1−σ) , [1− η(1− σ)](1− σ)σya

}
≤ γ, then for all α ∈

[
0, γ−[1−η(1−σ)](1−σ)σya

η(1−σ)2σya

)
,

tree sales are optimal. 2-c) Otherwise, the borrower prefers secured loan contracts to tree

sales because secured loan contracts reduces the lender’s information acquisition incentive.

Proof. See Appendix

The above proposition show that secured loan contracts can be the optimal contract

for two reasons. First, when the fraud incentive problem of misrepresenting the quality of

trees is severe, a secured loan contract is optimal because over-collateralization in a secured
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loan contract mitigates the fraud incentive problem, allowing trees tradeable as a medium

of exchanges. Thus, whenever a secured loan contract is over-collateralized, it must be

the optimal contract. Second, even though the fraud incentive problem does not matter, a

secured loan contract can be still optimal because it reduces the lender’s incentive to acquire

the costly information about the dividend state.

However, when the lender does not have any incentive to acquire the information because

of the high acquisition cost, a secured loan contract only allows the borrower to default in a

profitable way whenever it is possible. Thus, the lender faces a risk of opportunistic default

by the borrower. Because the borrower must compensate the lender for taking such risk to

make him accept the offer, a secured loan contract can be suboptimal, and a direct sale of

trees emerges as the optimal contract.

4 Conclusion

In this paper, we construct a simple model to study the effects of the costly information

acquisition and fraudulent practice on an optimal type of funding with an asset. In the

model, the dividend of an asset follows a stochastic process, but a lender can acquire private

information about the future dividend state at a cost. A borrower who owns an asset at the

first period has an incentive to fake the quality of asset at a cost. The borrower can use

the asset as a medium of exchange either by making secured loan contracts or selling the

asset. The model is used to study the conditions under which secured loan contracts and

asset sales are inequivalent, so one or the other emerges as an optimal trading arrangement

for funding with the asset. Secured loan contracts can be optimal for two reasons. When the

fraud incentive problem is severe, over-collateralization reduces the incentive to misrepresent

the asset quality, and, hence, a secured loan contract is optimal. A secured loan contract

can be also optimal because it reduces the lender’s incentive to acquire costly information.

However, under a secured loan contract, the borrower may default opportunistically. Thus,
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if both faking incentive and information acquisition incentive do not matter, an asset sale

can be optimal.
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Appendix: Omitted proofs

Proof of Lemma 1. We define the Lagrangian function for the optimal information insen-

sitive repo contract problem (3) as

L = mq − (1− α)[1− (1− σ)η]p− ασa′ + σya+ λ1 [−q + (1− α)[1− (1− σ)η]p+ ασya′]

+ λ2 [−(1− σ)q + (1− η)(1− α)(1− σ)p+ γ] + λ3 [ka
′ − (1− α)[1− (1− σ)η]p− ασya′]

+ λ4 [σya
′ − p] + λ5 [a− a′] + λ6q + λ7p+ λ8a

′
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where λi for i ∈ {1, . . . 8} are the Lagrange multipliers. The first order conditions are

{q} : m+ λ6 = λ1 + λ2(1− σ)(17)

{p} : λ4 − λ7 = (1− α) {(λ1 − λ3 − 1)[1− η(1− σ)] + λ2(1− η)(1− σ)}(18)

{a′} : λ5 − λ8 = (λ1 − λ3 − 1)ασy + λ3k + λ4σy.(19)

Case 1 (IIS-1). λ2 = λ3 = 0

From (17) - (19), we obtain λ1 > 0, λ4−λ7 > 0, and λ5−λ8 > 0. Thus, a′ = a, p = σya,

q = [1− η(1− α)(1− σ)]σya, and VIIS = (m− 1)[1− η(1− α)(1− σ)]σya + σya. To have

λ2 = λ3 = 0, it must be γ ≥ [α+ (1− α)ησ](1− σ)σya and k ≥ [1− η(1− α)(1− σ)]σy.

Case 2 (IIS-2). λ2 > 0, λ1 = λ3 = 0

Because (5) binds in this case, q > 0 and λ6 = 0. Then from (17) and (18), λ4 − λ7 =

(1− α)[m− 1− η(m− 1 + σ)]. Suppose η > m−1
m−1+σ . Then, λ4 = 0, λ7 > 0. Then, q =

γ
1−σ

by (5), and it must be a′ > 0 to satisfy (4). However, from (19), we obtain λ5 − λ8 < 0, so

a′ = 0, a contradiction. Thus, we assume that η ≤ m−1
m−1+σ from now on. Then, λ4 − λ7 ≥ 0.

Thus, p = σya′. Suppose a′ = 0. Then, q = 0 by (4) and it must be λ2 = 0, which is a

contradiction. Thus, a′ > 0 must hold which implies λ7 = λ8 = 0. . From (19), we obtain

(20) λ5 = σy {(m− 1)(1− η)− ησ − α [(m− 1)(1− η)− ησ + 1]} .

Thus, α ≤ (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 must hold and, hence, a

′ = a and p = σya. Then, from the

binding (5), q = (1 − η)(1 − α)σya + γ
1−σ , and the maximized value is given as VIIS =

m
[
(1− η)(1− α)σya+ γ

1−σ
]
+ (1−α)(1− σ)ησya. Finally, to have λ1 = λ3 = 0, it must be

γ ≤ [α + (1− α)ησ](1− σ)σya and k ≥ [1− η(1− α)(1− σ)]σy.

Case 3 (IIS-3). λ1 > 0, λ2 > 0, λ3 = 0

Because λ2 > 0, it must be q > 0 by (5) so λ6 = 0. Further, if a′ = 0 so p = 0, then (4)
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cannot satisifed. Thus, a′ > 0 and λ8 = 0 must hold. Next, from (17) - (19), we obtain

λ4 − λ7 = (1− α) [(m− 1)(1− η) + ησ(λ1 − 1)]

(21)

λ5 − λ8 = σy {(m− 1)(1− η)− ησ − α[1 + (m− 1)(1− η)− ησ] + λ1[α + (1− α)ησ]} .

(22)

Suppose λ7 ≥ 0, so p = 0 and λ4 = 0. Then, it must be λ1 ≤ 1− (m−1)(1−η)
ησ

to satisfy (21).

Then, λ5 − λ8 < 0 so a′ = 0, which contradicts with the binding (18). Thus, it must be

λ4 ≥ 0, and p = σya′. Then, from the binding (4) and (5), we obtain q = [1−η(1−α)(1−σ)]γ
[α+(1−α)ησ](1−σ)

and a′ = γ
[α+(1−α)ησ](1−σ)σy . Thus, p =

γ
[α+(1−α)ησ](1−σ) and VIIS =

(m−1)[1−(1−α)(1−σ)η]γ
[α+(1−α)ησ](1−σ) + σya.

Thus, if α ≤ (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 , then a

′ = a, it is the knife edge case of case 2. Thus, focus

on the case where a′ < a which requires α > (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 . Given this, one can always

find λ1 ∈ (0,m) that makes λ4 ≥ 0 and λ5 = 0 in (22). Finally, to have λ3 = 0, k ≥

[1− η(1− α)(1− σ)]σy must hold.

Case 4 (IIS-4). λ2 = 0, λ3 > 0, p > 0

Given λ2 = 0, λ1 = m+ λ6 > 0, and we obtain, from (17 - (19),

λ4 − λ7 = (m+ λ6 − λ3 − 1)(1− α)[1− η(1− σ](23)

λ5 − λ8 = σy(m+ λ6 − λ3 − 1)[1− η(1− α)(1− σ)] + λ3k.(24)

Suppose λ4 > 0, so p = σya′ and λ7 = 0. Because m + λ6 − λ3 − 1 > 0 to have λ4 > 0,

λ5 − λ8 > 0. Thus, a′ = a and q = [1 − η(1 − α)(1 − σ)]σya by the binding (4). To have

λ3 > 0, it must be k = [1 − η(1 − α)(1 − σ)]σy. This is exactly the knife edge case of case

1. Thus, from now on, we assume that λ4 = 0, which implies p < σya′. From (23) and (24),

we get λ5 − λ8 = λ3k > 0. Thus, a′ = a and λ8 = 0. Next, from the binding constraint (4),

38



we obtain

(25) q = (1− α)[1− η(1− σ)]p+ ασya > 0,

so λ6 = 0. Given λ3 > 0, the constraint (6) must bind, which gives

(26) p =
(k − ασy)a

(1− α)[1− η(1− σ)] .

Thus, it must be ασy < k < [1− η(1− α)(1− σ)]σy. Substituting (26) into (25), we obtain

q = ka, and VIIS = (m−1)ka+σya. Finally, to have λ2 = 0, it must be [ηk+(1−η)αy](1−σ)σa1−η(1−σ) ≤ γ.

Case 5 (IIS-5). λ1 = 0, λ2 > 0, λ3 > 0

From the binding (5), we obtain q = (1− η)(1− α)p+ γ
1−σ > 0, so λ6 = 0 and λ2 =

m
1−σ

by (17). Further, to satisfy the constraint (4), a′ > 0 must hold given q > 0, so λ8 = 0. Now

suppose λ4 > 0 so p = σya′ and λ7 = 0. Next, from the binding constraint (6), we obtain

(27) k = [1− η(1− α)(1− σ)]σy.

Then, from (18), (19), and (27), we get equation (20). Thus, α ≤ (m−1)(1−η)−ησ
(m−1)(1−η)−ησ+1 must hold

and, hence, a′ = a and p = σya. This is exactly same with case 2 above.

Thus, focus on the case where λ4 = 0 and, hence, p < σya′. If p = 0, then k = ασy

by (6). Then, from (19), λ5 = −ασy, which is a contradiction. Therefore, it must be

p > 0 and λ7 = 0. From (18) and (19), we obtain λ5 ≈ k − m(1−η)ασy
(m−1)(1−η)−ησ . Therefore,

α ≤ [(m−1)(1−η)−ησ]k
m(1−η)σy must hold, and, then, a′ = a. Next, from the binding (5) and (6),

we get q = (1−η)(k−ασy)a
1−η(1−σ) + γ

1−σ and p = (k−ασy)a
(1−α)[1−η(1−σ)] , and the maximized value of the

objective is given as VIIS = m
{
(1−η)(k−ασy)a
1−η(1−α) + γ

1−σ

}
− ka + σya. Because p ∈ (0, σya),

ασy < k < [1 − η(1 − α)(1 − σ)]σy must hold. Finally, to satisfy the constraint (4) with

λ1 = 0, it must be γ ≤ [ηk+α(1−η)y](1−σ)σa
1−η(1−σ) .
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Case 6 (IIS-6). λ1 > 0, λ2 > 0, λ3 > 0

Since λ2 > 0 and the constraint (5) binds q > 0 and λ6 = 0 must hold. Therefore, it

must be a′ > 0 and λ8 = 0 to satisfy (4) and (7). Next, the binding constraint (6) gives

ka′ = (1− α)[1− η(1− σ)]p + ασya′. Now suppose λ4 > 0 so p = σya′. If a′ = a, then the

result is same with case 1. On the other hand, if a′ < a, then the result is same with case 3.

Therefore, we focus on the case where λ4 = 0 and p < σya′.

From (4) - (6), we obtain q = [1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ , p =

(k−ασy)γ
[ηk+α(1−η)y](1−α)(1−σ)σ , and a′ =

[1−η(1−σ)]γ
[ηk+α(1−η)y](1−σ)σ . Next, because p ∈ [0, σya

′), it must be ασy ≤ k < [1− η(1−α)(1− σ)]σy,

and, hence, λ7 = 0. Then, from (17) - (19), we get

λ1 =
λ3[1− η(1− σ)]− (m− 1)(1− η) + ησ

ησ
(28)

λ5 =
λ3[(1− η)αy + ηk]− (m− 1)(1− η)αy

η
.(29)

Because λ1 > 0, then λ3 >
(m−1)(1−η)−ησ

1−η(1−σ) must hold by (28). Then, substituting λ3 =

(m−1)(1−η)−ησ
1−η(1−σ) into (29), we obtain

λ5 >
[(m− 1)(1− η)− ησ]k − αm(1− η)σy

1− η(1− σ) .

Therefore, if α ≤ [(m−1)(1−η)−ησ]k
m(1−η)σy , then a′ = a, and the result is same with case 6. Thus, focus

on the case where α > [(m−1)(1−η)−ησ]k
m(1−η)σy and a′ < a, which requires γ < [ηk+α(1−η)y](1−σ)σa

1−η(1−σ) by

definition of a′ in this case. Then, the value of objective is given as VIIS =
(m−1)[1−η(1−σ)]γk
[ηk+α(1−η)y](1−σ)σ+

σya

Case 7 (No trade). λ2 = 0, λ3 > 0, p = 0

In this case, we get, from (6), ka′ = ασya′. Thus, if a′ > 0, it must be k = ασy and

q = ka given λ1 = m+ λ6 > 0, which is the knife edge case of case 4 above. Assume a′ = 0,

and hence, q = 0, which means that trees are not traded in period t = 0. Then, (24) becomes

−λ8 = (m + λ6 − 1)ασy − λ3(ασy − k). Therefore, the necessary condition for this case to
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exist is k < ασy.

By defining γ∗IIS ≡ [α + (1− α)ησ] (1−σ)σya, γ∗∗IIS ≡
[ηk+(1−η)αy](1−σ)σa

1−η(1−σ) , α∗ ≡ (1−η)(m−1)−ησ
1+(1−η)(m−1)−ησ ,

and α∗∗ ≡ k[(m−1)(1−η)−ησ]
m(1−η)σy and reorganizing the cases 1-7 above, we obtain lemma 1.

Proof of Lemma 2. If a′ = 0, then p = 0 by (14). Then, (11) cannot be satisfied. Further,

q > 0 must hold by the constraint (12). Therefore, it must be q > 0 and a′ > 0. Suppose

p = 0. Then, k = ασy by (13). We will show that p = 0 is the limiting case where p < ya′

when k goes to ασy. Thus, we focus on the case where p > 0. Then, the first-order conditions

are

λ1 = m+
(1− σ)λ2

σ
(30)

λ4 = (1− α) [(m− 1)σ + η(1− σ)λ2 − σλ3](31)

λ5 = (λ1 − λ3 − 1)ασy + kλ3 + yλ4,(32)

where λ1, λ2, λ3, λ4, and λ5 are the Lagrange multipliers for (11) - (15), respectively. Note,

from (13), that k ≥ (1−α)σp
a′ + ασy. Thus, λ5 > 0, and, hence, a′ = a. Next, because λ1 > 0

by (30). Thus, the constraint (11) must bind, so

(33) q = (1− α)p+ αya− γ

σ
.

Case 1 (IS-1). λ3 = 0

In this case, λ4 > 0 by (31), so p = ya, q = ya − γ
σ
, and VIS = m(σya − γ). Then,

constraints (12) and (13) requires γ ≤ [α + (1 − α)η](1 − σ)σya and k ≥ σy, respectively.

Finally, the borrower can always choose no trade, which gives the borrower the payoff σya.

Thus, it must be VIS = m(σya−γ) ≥ σya, which requires γ ≤ (m−1)σya
m

. Combined together,

it must be γ ≤Min
{
[α + (1− α)η](1− σ)σya, (m−1)σya

m

}
for this case to be the optimal IS

repo contract.

Case 2 (IS-2). λ3 > 0
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Suppose λ4 > 0. Then p = ya and k = σy, which is same with the previous case.

Thus, focus on the case where λ4 = 0 and p < ya. From the binding (13), p = (k−ασy)a
(1−α)σ .

Thus, ασy ≤ k < σy mus hold. From (33), we get q = ka−γ
σ
. Then, VIS = (m −

1)ka − mγ + σya. Finally, to satisfy the constraint (12) and VIS ≥ σya, it must be

γ ≤Min
{
[ηk + α(1− η)σy](1− σ)a, (m−1)ka

m

}
Note that we impose the condition to have IS repo contract gives a higher payoff than no

trade, i.e., VIS ≥ σya. Thus, expect the above two cases, IS repo contract is either infeasible

or worse than no trade, so the borrower would not make IS repo contract with the lender.

By defining the cutoff level for γ as γ∗∗IS ≡ [ηk + α(1 − η)σy](1 − σ)a and summarizing the

cases 1 and 2 above, we obtain lemma 2.

Proof of Proposition 1. To save space, let VIIS−i, where i ∈ {1, . . . 6}, denote the max-

imized value of the borrower under the IIS-i type repo contracts. For example, VIIS−1 =

[m− (m− 1)(1− α)(1− σ)η]σya. Similarly, let VIS−1 and VIS−2 denote the maximized

value of the borrower under the IS-1 and IS-2 type repo contract, respectively. The optimal

repo contract can be obtained by comparing VIIS and VIS. The key is that VIIS is weakly

increasing in γ while VIS is decreasing in γ, which implies the following remark.

If VIIS = VIS at γ = γ0, then VIIS R VIS for all γ R γ0

From lemmas 1 and 2, we can divide analysis into three groups: 1) σy ≤ k, 2) [1− η(1−

α)(1− σ)]σy ≤ k < σy, and 3) ασy ≤ k < [1− η(1− α)(1− σ)]σy.

Case 1. σy ≤ k.

In this case, IIS-1, IIS-2, IIS-3, and IS-1 are candidates for the optimal repo contracts.

First, note that for all γ ≥ γ∗IIS, VIIS−1 ≥ VIS−1 given σ ≥ m−1
m
. Note, from lemmas 1 and
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2, that

VIIS−2 ≥ VIS−1 iff γ ≥
{m[α + (1− α)η]− (1− α)(1− σ)η} (1− σ)σya

(2− σ)m ≡ γ̂1

(34)

VIIS−3 ≥ VIS−1 iff γ ≥
(m− 1)[α + (1− α)ησ](1− σ)σya

(m− 1)[1− (1− α)(1− σ)η] +m(1− σ)[α + (1− α)ησ] ≡ γ̃1.

(35)

A simple algebra shows that (m−1)σya
m

> γ̃1. Next, it can be verified that if α ≤ α∗, (m−1)σya
m

>

γ̂1. Finally, note that γ∗IIS < [α + (1 − α)η](1 − σ)σya by definition of γ∗IIS, and, hence, γ̂1

and γ̃1 are lower than the value, [α+ (1− α)η](1− σ)σya. From the above analysis, we can

obtain Figure 2, which proves the part 1 of the proposition 1.

Case 2. [1− η(1− α)(1− σ)]σy ≤ k < σy

In this case, IIS-1, IIS-2, IIS-3, and IS-2 are candidates for the optimal repo contracts.

Similarly, VIIS−1 > VIS−2 when γ = γ∗IIS, and from lemmas 1 and 2,

VIIS−2 ≥ VIS−2 iff γ ≥
{{1− (1− α)[m(1− η) + (1− σ)η]}σya+ (m− 1)ka} (1− σ)

(2− σ)m ≡ γ̂2

VIIS−3 ≥ VIS−2 iff γ ≥
(m− 1)[α + (1− α)ησ](1− σ)ka

(m− 1)[1− (1− α)(1− σ)η] +m(1− σ)[α + (1− α)ησ] ≡ γ̃2.

In this case, we need to compare (m−1)ka
m

, γ̂2, and γ̃2. First, a simple algebra shows
(m−1)ka

m
>

γ̃2. Next, using the condition that α ≤ α∗, one can show that (m−1)ka
m

> γ̂2. However, in

this case, it is possible that γ∗∗IS, defined in lemma 2, is smaller than γ̂2 and γ̃2. If γ
∗∗
IS < γ̂2,

for example, then for all γ ∈ [γ∗∗IS, γ∗IIS), IIS-2 is optimal when α ≤ α∗. On the other hand,

if γ∗∗IS ≥ γ̂2, then for all γ ∈ [γ̂2, γ∗IIS), IIS-2 is optimal when α ≤ α∗. The similar argument

applies when α > α∗. Then, using the remark 1, we obtain the part 2 of the proposition 1.

Case 3. ασy ≤ k < [1− η(1− α)(1− σ)]σy

In this case, we have to compare IIS-4, IIS-5, and IIS-6 with IS-2. Note that VIIS−4 >
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VIS−2 for any γ > 0. By definition of VIIS−5, VIIS−6, and VIS−2, we obtain

VIIS−5 ≥ VIS−2 iff γ ≥
[kη + α(1− η)y](1− σ)σa
(2− σ)[1− (1− σ)η] ≡ γ̂3

VIIS−6 ≥ VIS−2 iff γ ≥
(m− 1)[kη + α(1− η)y]k(1− σ)σa

(m− 1)[1− η(1− σ)]k +m[kη + α(1− η)y](1− σ)σ ≡ γ̃3.

Observe that (m−1)ka
m

> γ̃3. Similar to the above cases, it can be verified that
(m−1)ka

m
> γ̂3

if α ≤ α∗∗, where α∗∗ is defined in lemma 1. Finally, a simple algebra shows γ∗∗IS > γ̂3 and

γ∗∗IS > γ̃3 given k ≥ ασy. Thus, if α ≤ α∗∗, for example, IS repo contract - either IIS-4 or

IIS-5, is optimal for all γ ≥ γ̂3. Using the remark 1 and the above results, we can prove the

part 2 of the proposition 1.Then, using the remark 1, we obtain the part 3 of the proposition

1.

Case 4. k < ασy

From lemmas 1 and 2, one can see that repo contracts - either IIS or IS- are not feasible

if k < ασy.

Finally, by reorganizing the analysis of the above 4 cases, we obtain the proposition 1.

Proof of Lemma 3. From (34) and (35), it can be verified that γ̂1 and γ̃1 increases with

α. Thus, if γ ≤Min{γ̂1, γ̃1} when α = α0, then γ < Min{γ̂1, γ̃1} for all α ≥ α0. Next, from

(34) and (35), we obtain γ̂1 ≥ γ̃1 if and only if

(1− σ)

 α [1 + (1− η)(m− 1)− ησ]

−(1− η)(m− 1) + ησ

 {mα + η(1− α)(mσ −m+ 1)} ≥ 0.

Then, because σ ≥ m−1
m
, γ̂1 ≥ γ̃1 if and only if α ≥ α∗ ≡ (m−1)(1−η)−ησ

(m−1)(1−η)−ησ+1 . Thus, if γ <

Min{γ̂1, γ̃1}, then IS-1 type is the best among collateralized debt contracts by the first part

of proposition 1 when k ≥ ασy. Combined together, IS-1 is the best among collateralized

debts for all α ≥ α0. Furthermore, the borrower’s maximized value does not depend on α

under IS-1 loan contract (see lemma 2). Therefore, whenever IS-1 loan contract is optimal
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among secured loan contracts, the borrower is indifferent between a secured loan contract

and a tree sale.

Proof of Proposition 2. We already proved the first part in the main body and lemma

3 proves 2-a) part. Furthermore, once we prove 2-b) part of proposition 2, then 2-c) part is

straightforward. Thus, we focus on the proof of 2-b) part of proposition 2 here. As one can

see from proposition 1, the type of loan contract with α = 1 can be IIS-1, IIS-3, or IS-1 when

σy ≤ k. For tree sales to be optimal, IIS-1 loan contract should be best among secured loan

contracts because if the other type of secured loan contract is the best among secured loan

contracts, then loan contract always gives higher payoff than tree sales (or at least the same

payoff with tree saes). Thus, we compare the borrower’s maximized value V with IIS-1 loan

contract and the maximized value with tree sales, Vα=1. For the IIS-1 to be the best loan

contract among secured loan contracts, it must be γ ≥ γ∗IIS ≡ [α + (1− α)ησ] (1 − σ)σya,

which requires α ≤ γ−η(1−σ)σ2ya
(1−ησ)(1−σ)σya . Then, it must be

(36) γ > η(1− σ)σ2ya,

because α ≥ 0. Now, we consider three possiblce cases for the type of loan contract with

α = 1 which is same with direct sales of trees.

First, suppose that the type of loan contact with α = 1 is IIS-1. Then, tree sales are

optimal because V is increasing in α. When α = 1, γ∗IIS = (1− σ)σya. Thus, the necessary

condition for this case is

(37) γ ≥ (1− σ)σya.

Second, suppose that the type of loan contract with α = 1 is IIS-3, which requires γ ∈

[γ̃1, γ
∗
IIS) with α = 1, and the borrower’s maximized value is given by Vα=1 =

(m−1)γ
1−σ + σya.

By substituting α = 1 into the definitions of γ̃1 and γ∗IIS, which are given in the proof of case
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1 of proposition 1 and lemma 1, respectively, we obtain the necessary condition for IIS-3 to

be the best with α = 1 as

(38)
(m− 1)(1− σ)σya
m− 1 +m(1− σ) ≤ γ < (1− σ)σya.

Note, from lemma 1 and lemma 2, that the borrower’s maximized value, V , under IIS-1

loan contract is (m − 1)[1 − η(1 − α)(1 − σ)]σya + σya, and tree sales delievers the payoff

Vα=1 =
(m−1)γ
1−σ + σya to the borrower. Thus, tree sales are better than secured loan contract

so are optimal only if α ≤ γ−[1−η(1−σ)](1−σ)σya
η(1−σ)2σya . Since α ≥ 0, the necessary condition is

(39) [1− η(1− σ)](1− σ)σya ≤ γ.

Third, suppose that the type of loan contract with α = 1 is IS-1, and the maximized

value is Vα=1 = (m− 1)σya−mγ+σya. Then, the the borrower’s maximized value V under

IIS-1 contract is

V = [m− (m− 1)(1− α)(1− σ)η]σya

> [m− (m− 1)(1− σ)η]σya

> (m− 1)σya−mγ + σya,

where the second inequality comes from the condition of (36). Thus, if the type of loan

contract with α = 1 is IS-1, then the IIS-1 type loan contract dominates tree sales.

Combining (36) - (39), we obtain the necessary condition for tree sales to be optimal

as Max
{
(m−1)(1−σ)σya
m−1+m(1−σ) , [1− η(1− σ)](1− σ)σya

}
≤ γ. Given this condition, tree sales are

optimal for all α ≤ γ−[1−η(1−σ)](1−σ)σya
η(1−σ)2σya , which finishes the the proof of 2-b).
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