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FI-BREAK MODEL OF US INFLATION RATE:
LONG-MEMORY, LEVEL SHIFTS, OR BOTH?*

NAMWON HYUNG** -PHILIP HANS FRANSES#***

This paper presents a new time series model, called the FI-BREAK model,
which is used to describe US inflation, and incorporates long memory and
occasional level shifts at a priori unknown locations. It is demonstrated that,
even in the presence of such level shifts, the long memory parameter of the
FI-BREAK model can be estimated reasonably accurately. For US inflation, it is
found that the proposed model’s in-sample fit and out-of-sample forecasts are
superior over those of single-feature models with long memory or level shifts.
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1. INTRODUCTION AND MOTIVATION

A popular application of long-memory time series models concerns some
economic time series, such as inflation rates or certain financial volatility series.
There is substantial evidence to suggest that inflation rates have long memory, a
feature which can be captured by a fractionally integrated I(4d) model, see
Hassler and Wolters (1995) and several papers cited in Baillie (1996).
Alternatively, Bos et al. (1999) demonstrated that US inflation rates may perhaps
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have long memory, because of the presence of neglected breaks in the series
rather than because they are actually I( 4) alone. Indeed, occasional level shifts
may mimic the effect of a long-lasting shock, and hence one might be inclined
to believe that the data did have long memory. It appears from studies such as
Diebold and Inoue (2001) and Granger and Hyung (2004) that apparent long
memory can also be caused by neglected occasional level shifts.

For out-of-sample forecasting, it is important as to whether one opts for one
or the other model, since the forecast generating equations are completely
different. Hence, it seems of practical relevance to examine which model is
more appropriate for a given time series, that is, a long-memory model or a
model with occasional level shifts or, as demonstrated in this paper, a hybrid
model with both features.

Hyung and Franses (2001) compared time series models with structural breaks
and models with long memory for US inflation rates in terms of out-of-sample
forecasting and found that these two types of models are difficult to distinguish.
They suggest that a joint BREAK model and I( 4) model is able to capture all
long memory components of inflation rates. There are studies which incorporate
level shifts in a long memory model, where the location of the shifts is
determined from the outset, see for example Bos, Franses and Ooms (1999,
2002). However, it might be more reasonable to allow the data to reveal where
these shifts occur. There are various ways to detect breaks in time series data,
however, we will use a model which jointly incorporates both long memory and
occasional level shifts. Hyung and Franses (2005) propose such a model, the
FI-BREAK model, where FI means ‘fractionally integrated’.

In this paper, evidence of long memory in US inflation rates is examined
with regard to correlation with occasional breaks. After small sample properties
of the FI-BREAK model are examined for estimation of the long memory
parameter, this model is used to see if US inflation has a long memory, has
occasional level shifts or both, in terms of in-sample estimation and
out-of-sample forecastability.

The outline of the paper is as follows. Section II discusses the FI-BREAK
model and a method to estimate its parameters. In Section III, a model is
considered for US inflation, and its fit is compared with models containing long
memory feature or models with only occasional level shifts. In an out-of-sample
forecasting exercise, it is found that the FI-BREAK model performs better than
these two single-feature models. In Section IV, conclusions are presented.
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[I. THE FI-BREAK MODEL

Hyung and Franses (2005) exploit the possibility that the occasional structural
break model (or simply BREAK model) and autoregressive fractionally integrated
model (or simply ARFI model) can be summarized into a single joint model.
The following representation of a FI-BREAK model is considered:

a(L)Y(1—L)%,=x,
x,=m,+ & (1)

and

my— M1+ qi-16-1
(e,+..+e_y41)?
7’+(Et+ . Et—s+])2 ’

q:=

where @(L)=(1—a,L—...—a,L"). For simplicity, it is assumed that ¢, ~ ii.d.
(0, &), although, if necessary, this assumption can be relaxed.

The FI-BREAK model “nests” various possible useful models. When &=
and y—oo, the model in (I) becomes an AR(p) model. Indeed, as y— oo,
q,=0 for all ¢, implies that s, is constant for all ¢. Furthermore, if 4=0,
then a(L)y,=e¢,. Next, when (0<d<1 and y—oco, the model becomes an
ARFI(p,d) model, that is, a(L)(1—L)‘y,=e¢,. When d=0 and (< y<oo, the
model in (1) becomes an endogenous smooth break model (See Smith (2003))
such that o(L)y,=m,+e, with m,=m, +q,_  e,,. Finally, when (< d<1
and (< y<oo, the FI-BREAK model combines the I( ¢) model and the break
model. In addition, if one suspects that ¢>1, proper differences could be used,
and then one of the models above could be used.

For estimation of the parameters ¢ =(q,, .y @y d,7,my) in the FI-BREAK
model, Beran’s (1995) approximate maximum likelihood (AML) estimator is
modified for invertible and possibly nonstationary ARFIMA models, to allow for
occasional level changes. The AML estimator for the FI-BREAK model is
consistent and asymptotically normal. The resulting estimator amounts to
minimizing the sum of squared residuals
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Qr(p) = 2 (o)

t=1
where the residuals e/(¢) are computed as

tp=1
elo)=y,—m+ — Ty~

where  m,=m,_ 1+ a Qe al@)=C(e+ .. +e )/ {r+ (et ..+ erse)’}
The x,’s are the autoregressive coefficients in the infinite order FI-BREAK
representation as given in  (1—aL—..—apLY(1—=L)=Z2grl’. my is
treated as a parameter to be estimated. If y—co, it can be shown that the
estimate of m, is consistent. When y< oo, the influence of my, decays as ¢
increases and it will not have any effect as to the asymptotic distribution of the
other parameters, as explained by Smith (2003).

This section examines the finite sample performance of the estimator & in the
FI-BREAK model. We generate level shifts discretely as in Granger and Hyung
(2004), where they show that the estimated long memory parameters are closely
related with the number of breaks and size of breaks. The simulations reveal
how well this FI-BREAK model can approximate discrete shifts and estimate the
long memory parameter reasonably accurately even in the presence of such level
shifts. If level shifts are not considered properly, the estimate of & reveals
upward bias from the true value. We simulate 7  observations from four
different DGPs of long-memory processes with occasional breaks:

(1=L)%,=mte,. ®)
Discrete level shifts are generated using

my=m—y+ q;
where g, follows an i.i.d. binominal distribution, that is,

4= {l, with probability &
V1, with probability 1— 6
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For simplicity, it is assumed &, ~ nid. (0, 1), and 7, ~ nid. (0, &%), where

3

n” denotes the normal distribution. If % increases, the size of jumps in the
simulations is likely to be large.

In order to see small sample properties, it is assumed that the expected
number of breaks, E{X/,q}=Ts, is fixed. Strictly speaking, if ¢>0, a
break component #, becomes essentially an I(1) process in the limit (as
T—oo), and the series y, is I(d’) where &'>1. In this paper, this case is
not explored further. The expected number of breaks is set equal to 3, that is,
T5=3, and hence it does not increase with the sample size: when 7= 300,
8=0.01, when 7T=600, 6=0.005, and when 7=1500, &=0.002. The
estimated values of the long memory parameter in a process with occasional
breaks are closely related to the number of breaks and the size of the breaks,
regardless of the size of the sample. See Granger and Hyung (2004). In the
simulation, it is expected to have similar long memory properties, despite the
increasing sample size if 79 is fixed.

The four data generating process are (DGP A) with 4=0.1 and &=0.1,
which provides data with mild breaks and weak long memory, (DGP B) with
d=0.1 and 02”=0,5, where the breaks are visually obvious, (DGP C) with
d=0.4 and ¢~=0.5, which gives data with obvious breaks and evident long
memory, and (DGP D) with 4=0.4 and ¢2=0.1, giving data with evident
long memory but weak evidence of breaks.

The number of simulation runs is set at 250. The DGPs do not contain an
AR vpart, and models without any AR dynamics are therefore considered.! The
d parameter is estimated in the FI-BREAK model, while imposing that »>0
and 4>0, enables to capture breaks and long memory within a model. For
comparison purposes, « is also estimated in an ARFI model, that is, a model
that neglects the breaks.

We depict kernel estimates of the density of the estimated o values for the
ARFI and FI-BREAK models as in Figures 1 and 2. The bandwidth is selected
by Silverman’s rule, and an Epanechnikov kernel is used. A clear upward bias

' This simulation study uses the same types of DGPs as Hyung and Franses (2005). In many
ways the two sets of results complement, rather than conflict with each other. Hyung and
Franses (2005) select AR order using AIC or BIC, where often the FI-BREAK model ends with
y—oo and results in the estimated values of ¢ of the FI-BREAK model larger than the values
in this paper.
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in the estimated values of 4 is observed in the ARFI model, which is of
course due to the neglected level shifts. As expected, when the sample size
increases, but the expected number of breaks does not change, the estimated o
values roughly remain the same. The FI-BREAK model appears to be reasonably
successful in estimating the long memory parameter & in the presence of level
shifts. Additionally, Table 1 shows that the increase of sample size from 300 to
1500 provides substantial evidence of improvement in estimating 4 with the
FI-BREAK model.

[Figure 1] Kernel Density of the Distributions of Estimated Memort Parameter
d in ARFI models and FI-BREAK model
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[Figure 2] Kernel Density of the Distributions of Estimated Memort Parameter

4 in ARFI models and FI-BREAK model
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[Table 1] Estimation of long memory parameter o
Sample size DGP A DGP B
ARFI FI-BREAK ARFI FI-BREAK
T = 300 .149 (.074) .106 (.056) 242 (.108) 123 (.064)
T = 600 .166 (.062) .107 (.040) .256 (.092) 119 (.043)
T = 1500 .164 (.056) .104 (.022) .240 (.087) 112 (.024)
DGP C DGP D
ARFI FI-BREAK ARFI FI-BREAK
T = 300 689 (.130) 215 (301) 558 (.110) 298 (.171)
T = 600 .652 (.125) 257 (.182) .535 (.094) 364 (.105)
T = 1500 617 (.117) 327 (.128) .516(.081) 408 (.266)

Note: The entries are values averaged over 250 replications with sample size 300, 600 and 1500.
The numbers of each entry concern the estimates of . The values in parentheses are the

standard deviations across simulated data.
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For DGP C (d=0.4), the estimation of & in the FI-BREAK model improves
quickly in accuracy as sample size increases. However, the empirical distribution
of estimated o values is still bi-modal. Indeed, with a sample size of 300, for
120 replications, an estimated value of y approximately equal to O is obtained,
this implies ¢,=1 for all ¢ and m, is a unit root process. Once y=0, the

long memory component in y, is captured by m,, thus one obtains an

estimated value of 4 close to zero.

Overall, it is concluded from the simulation results that the AML estimation
method for the FI-BREAK model appears reliable in moderate sample sizes,
particularly in the case of weak long memory components.

. US INFLATION

Attention is now turned to the question in the title of this paper. To answer
this question, we will evaluate the empirical merits of the AR model, BREAK
model, ARFI model and FI-BREAK model. It is important to note that only AR
type models, for the sake of estimation convenience, are considered. The
monthly Consumer Price Index series from the U.S. city average (All items),
was obtained from http://www.economagic.com. The sample period covers
1951:01 - 2003:05 and the base years are 1982 - 1984. The series is seasonally
adjusted. The monthly inflation rate is constructed by taking 100 times the first
differences of the logarithmic transformed series. Then, annual rate is calculated
by taking 12 times the monthly inflation rate.

3.1, In-sample fit

We estimate the parameters of the FI-BREAK model, as well as for the AR
model (d=0 and y—oo), ARFI model (y—), and BREAK model (d=0).2
Evidently, the ARFI model is close to (or “nests”) the AR model, and the
smoothed BREAK model nests the AR model, however, the ARFI model and
the BREAK model are not nested.

As explained below, a recursive method is adopted for forecasting purposes.
We search for and fix the appropriate autoregressive dynamic structures of each

> The sample mean is subtracted from the original observation prior to estimation of the
FI-BREAK and ARFI models (See Beran (1994)). For consistency of comparison, the same
procedure is imposed for estimation of the AR and BREAK models.
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model, using BIC following a general-to-specific approach for the first subsample
period, 1951:01 - 1990:12. The estimation results of 149 different sample periods
are available for each model; however, this paper only presents results of the
full sample period in Table 2, which contains the sum of squared residuals
(SSR), AIC, BIC and log likelihood for the selected models. The BIC selects
the ARFI model as the best, while the AIC favors the AR model.

Figure 3 presents plots of inflation and the estimated break component m,
using the proposed FI-BREAK model. Level shifts around the two oil crises are
found. Interestingly, the estimated timing of the breaks is remarkably similar to
that proposed by Bos et al. (1999), where they set the timing of breaks from
the outset. In allowing for a long memory component, the FI-BREAK model
suggests the presence of 3 evident breaks. It is important to note that the

relative size of breaks in 1976 and 1980 are less than half of that of breaks in
1973 and 1982.

[Figure 3] CPI Inflation: U.S. city average (All items)
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From Table 2 it is revealed that neglecting long memory suggests the
presence of approximately 16 breaks. Hence, the estimated number of breaks
shows a strong upward bias if one does not filter the long memory. Finally, for
the long memory parameter J, the ARFI model produces 0.371, which is very
similar to the estimate of Bos et al. (1999) for US inflation. However, if the
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break component is included, the degree of persistence decreases to 0.327, which
is consistent with Dittman and Granger (2002).

[Table 2]v Estimation results for various models for US inflation

FI-BREAK

AR BREAK ARFI
36.013 172.996
7 i (0.763) i (1.886)
p ) ) 0.371 0.327
(0.025) (0.030)
. 0.320 0271 ) )
! (0.039) (0.042)
. 0.171 0.137 ] )
2 (0.039) (0.041)
as - - - -
ay - - - -
. 0.108 ) ) )
5 (0.037)
Qg - - - -
o 0.114 ) ) )
(0.038)
ag - - - -
. 0.180 0.130 0.148 0.137
S (0.036) (0.039) (0.038) (0.038)
" ) -1.058 ) -0.429
0 1(0.398) (1.329)
DI - 15.77 - 3.12
SSR 3798.08 3860.05 3881.59 3857.60
Loglikehood -1439.80 -1444.81 -1446.53 -1444.61
AIC 1.834 1.845 1.846 1.843
BIC 1.877 1.882 1.867 1.871

Note: The sample period is 1951:01 - 2003:05, hence 629 observations. The AR structures of
each model are selected using BIC. The values in parentheses are the standard errors for

the estimated coefficients. 3/, g, measures the expected number of breaks for the given
sample.

3.2. Out-of-sample forecasting

This section compares the out-of-sample forecasting performance of the four
models, where the forecast horizon is set at 1, 3, 12 and 24 months. Table 3
presents the results of cumulative forecasts. We select 1990:12 as the first
forecast origin. All models are considered for the first 7°(= 480) observations
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and forecasts are made for the horizon T+#4, k=1, 3, 12, and 24, using
in-sample parameter estimates, -where 7T is the number of observations in the
first subsample period, 1951:01 - 1990:12. When one observation is added, the
parameters are re-estimated and forecasts are made for time 7+1+ 4 This
recursive. method is repeated until the end of the sample. Hence the h-step-ahead
forecasts provide predictions for 150- # out-of-sample periods. Note that the AR
structure is not re-specified and is kept fixed, as in Table 2.

[Table 3] Cumulative out-of-sample forecasts

I. Mean Absolute Forecast Errors

h-step AR BREAK ARFI FI-BREAK
e e e
T .
S -
I B A

II. Root Mean Squared Forecast Errors -
h-step , AR BREAK ARFI FI-BREAK

| (201055) ?(%704) | 2&5’1913) 2.020
T - -
b 1(2033)9 | 1(208;)9 1(303‘;;‘ 9.469
2 2(50(7)g§s 2(4083)5 | 2(%(1)3;‘ 16.401

Note: The out-of-sample period is 1991:1 - 2003:5 with 149 observations. The specifications of
each model are the same as those in Table 2. The values in parentheses are the p-values
from the test statistics of Diebold and Mariano (1995), which tests the null of equal
forecast accuracy as compared with the FI-BREAK model.

We generate cumulative forecasts of inflation. The mean of absolute forecast
errors (MAFE) and the root mean squared forecast errors (RMSFE), are
computed and shown in Table 3. Clearly, the values of the FI-BREAK model
are the smallest for all horizons. Based on the MAFE and RMSFE criteria,
FI-BREAK, BREAK, AR and ARFI emerge in this order as the best forecasting
models, as the prediction horizon increases from 1 to 24 months. Using the
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Diebold-Mariano (1995) test, we examine the hypothesis that there is no
difference in the prediction accuracy between each model against the FI-BREAK
model. The p-values in Table 3 reveal that equal forecast accuracy with the
FI-BREAK model for the given horizon is rejected at the 5% significance level
for almost all cases. In conclusion, it is observed that the FI-BREAK model
performs much better than the ARFI model and BREAK model in terms of
out-of-sample forecasting.

3.3. Non-seasonally adjusted inflation data and TRAMO/SEATS

In the previous sub-sections, seasonally adjusted data is used. To see the
robustness of the FI-BREAK model in the pre-filtering seasonal adjustment, the
same analysis is applied to the non-seasonally adjusted CPL For comparison, the
TRAMO/SEATS3 procedure with automatic model selection is applied. We
examine whether this ad hoc method, TRAMO/SEATS, can detect the same
breaks and beat the FI-BREAK model.

For consistency of analysis, some restrictions are imposed on the
TRAMO/SEATS procedure.4 This is selected to fit the ARIMA model to the
level of the inflation rate series, fix only (seasonal) difference orders as 0 and
search for the best ARMA model. The automatic detection for additive outlier,
temporary change and level shift is also selected. We use only part of the
previous sample period from 1953:06 to 2003:05, because the TRAMO/SEATS
procedure can adjust up to 600 observations, and set 1990:12 as the first
forecast origin.

With a full sample period (1953:06 - 2003:05) in Table 4, the ARFI model
is the best model for in-sample fit, except for TRAMO/SEATS. The diagnostics
of the TRAMO/SEATS procedure are the following: SSR = 4564, AIC = 2.041,
BIC = 2.0627, which favor TRAMO/SEATS over all other models in Table 4.
Out-of-sample performance of the procedure is tested from 1991:01 to 2003:06

> The TRAMO (Time Series Regression with ARIMA Noise, Missing Observations and
Outliers) and SEATS(Signal Extraction in ARIMA Time Series) procedures were developed by
Gomez and Maravall (1996). TRAMO is a program for estimation and forecasting of regression
models with possibly nonstationary ARIMA errors and any sequence of missing values, and
SEATS is a program for estimation of unobserved components in time series following the
ARIMA model based method.

* When a fully automatic model selection procedure is permitted, the results are slightly
different but qualitatively similar. The estimation results of TRAMO/SEATS are available on
request.
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in Table 5. For the TRAMO/SEATS, the same automatic model selection
procedure is maintained with the same restrictions. Although the TRAMO/SEATS
procedure may improve forecasting precision over the short-run forecasting
horizon, it is not significantly better than the FI-BREAK model. For long run
forecasting, it is found that FI-BREAK is superior over all other models in
terms of predictability.

[Table 4] Estimation results with non-seasonally adjusted data

AR BREAK ARFI FI-BREAK
34.080 273.23
7 ) (0.7688) ) (2.8717)
J ] ) 0.2895 0.2736
(0.0295) (0.0330)
. 0.2436 0.1922 ] ]
: (0.0394) (0.0434)
. 0.1829 0.1279 ) )
2 (0.0391) (0.0429)
as - - - -
a, - - - -
as - - -
ag - - - -
ay - - - -
. 0.1313 ] ) )
8 (0.0373)
Qg - - - -
ay - - - -
. 0.1166 ) 0.1273 0.1113
" (0.0392) (0.0404) (0.0413)
. 0.1887 0.1463 0.2362 0.2186
. (0.0394) (0.0417) (0.0400) (0.0413)
” ) -1.0581 ] -0.1220
0 (0.5514) (0.3216)
>Lia - 19.87 - 2.49
SSR 5161.30 5242.67 5139.25 5146.92
Loglikehood -1470.96 -1475.55 -1469.71 -1470.14
AIC 2.1944 2.2066 2.1833 2.1882
BIC 2.2391 2.2439 22131 2.2254

Note: The sample period is 1953:06 - 2003:05 with 600 observations. The autoregressive
structures of each model are selected by BIC. The values in parentheses are the standard

errors for the estimated coefficients. 317, g, can be interpreted as the expected number
of breaks for the given sample.
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[Table 5] Cumulative Out-of-sample Forecasts with non-seasonally adjusted data

I. Mean Absolute Forecast Errors

h-step AR BREAK ARFI  TRAMOSEATS  F-BREAK

| 2.073 2016 1.905 1.736 o
(000) (000) (215) (112) :
4226 3.989 3906 3333

3 (000) (000) (007) (166) 3624
10229 10.184 11431 9.904

12 (007) (017) (004) (042) 8312
22,933 21.339 26726 22.660

2 (000) (029) (000) (040) 17.227

II. Root Mean Squared Forecast Errors

hestep AR BREAK ARFI  TRAMOJSEATS _FI-BREAK

| 2.658 2584 2.440 2347 306
(000) (000) (000) (621) :
5373 5.191 4980 4.508

3 (000) (000) (023) (483) 4708
12741 12.478 13.605 13.136

12 (015) (044) (002) (022) 10.487
26.749 24733 29,885 29.855

24 (.000) (096) (000) (027) 20.19

Note: The out-of-sample period is 1991:1 - 2003:05 with 149 observations. The model
specifications of each model are fixed as the selected specification for in-sample estimation.
The values in parentheses are the p-values from the test statistics of Diebold and Mariano
(1995), which tests the null of equal forecast accuracy with the FI-BREAK model for the
given horizon.

IV. CONCLUSION

In this paper, the usefulness of a new time series model called the
FI-BREAK model, which can capture both long memory and level shifts, is
examined. This model is applied to US inflation. For in-sample fit and
out-of-sample forecasts, this new model performs as well as or better than
single-feature models, such as AR, ARFI, BREAK and TRAMO/SEATS. Further
research should be made by using the proposed FI-BREAK model to analyze
other presumably long memory variables.
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