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BAND SPECTRUM LEAST SQUARES IN FRACTIONAL
COINTEGRATION MODELS WITH UNKNOWN FRACTIONAL
INTEGRATION ORDERS*

CHANG SIK KIM

Band spectrum regression procedure in a bivariate model of fractional
nonstationary cointegration is proposed. Both variables and cointegrating error in
the system are assumed to be fractionally integrated processes. The proposed
estimator can reduce bias by modifying a frequency domain regression, and it is
just a simple least squares and easy to use. Unlike other available estimation
procedures, the estimator is free from any preliminary estimation of short
memory components and fractional parameter. It is also expected to be less
volatile and more reliable, which can be confirmed by finite sample
performances. A limited version of asymptotic theory will be developed and some
simulation results will also be provided.

JEL Classification: C22
Keywords: Fractional Cointegration, Band Spectrum Regression, Unknown Long
memory Parameters, Frequency Domain Least Squares

1. INTRODUCTION

Recently, fractionally integrated long memory processes have received much
attention as more general time series characterization, and a broader concept of
nonstationarity based on fractional processes has been developed in the time
series econometrics. Since numerous statistical inferences and analyses have
recently established about long memory and fractionally integrated processes,
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analyzing cointegration among fractionally integrated processes can be of much
interest as a generalization of standard cointegration.

The chance of a long run stable relationship among nonstationary (possibly
stationary) variables indeed exists even though variables in a given model are
not following unit roots. The slow decay of the effect of shocks in long
memory processes with allowance for the eventual adjustment to an equilibrium
level can be viewed as an important characteristic of fractionally integrated
processes, and this can be incorporated in the econometric modeling. In fact,
nonstationary fractional processes under particular fractional parameter ranges still
have mean reverting property which is potentially useful for the modeling of
long-run economic equilibrium.

Consider a linear combination of variable z, of the form

az,= u, )]

where ¢ is an unknown px1 vector, and ¢, has a lower integration order
than z,, not necessarily weakly stationary process. Then z, is said to be
fractionally cointegrated, and «, is referred as to cointegrating error. The
integration order of z, is not necessarily one or integer, but can be any real

number, for example, between 0.5 and 2 whereas standard cointegration requires
z, and 1z, to be I(1) unit root and I(0). Fractional modeling can extend the

concept of standard cointegration and pose lots of interest in applications of
economic models. Lots of methods developed for AR based cointegration
analysis presume the known order of integration like I(1) unit root variable z,

and I(0) weakly stationary variable ,, but most of the established procedures

seem to lose their properties when the presumed integration orders are not
correct. Therefore, it is necessary to explore fractional cointegration models in
which unknown (or possibly pre-specified) orders of integrations are allowed.
The analysis of fractional cointegration models has been an interesting issue
along with statistical inferences of long memory fractional processes in the past
decade, and different testings and estimations of fractional cointegration models
are now available in the literature, for example, Robinson and Hualde (2003),
Marinucci and Robinson (2001b), Davidson and de Jong (2002) among others. It
is known that ordinary least squares (OLS) is consistent in nonstationary
fractional cointegration models (see, for example, Robinson and Marinucci



CHANG SIK KIM: BAND SPECTRUM LEAST SQUARES IN FRACTIONAL COINTEGRATION 23

(2003)), OLS, however, suffers from second order biases as shown, for example,
in Kim and Phillips (2002) under specific model characterization. Therefore,
alternative approaches other than OLS are desirable to improve the performance
of estimation in the fractional cointegration models since the precise estimation
of a fractional cointegration model like (1) is important in testings and empirical
applications.

This paper proposes a band spectrum regression procedure in a bivariate
model of fractional cointegration. Since Hannan’s (1963) band spectrum
regression, the procedure is a very useful apparatus that has been used in many
regression models. Band spectrum regression is especially attractive to estimate
cointegration relations which describe low frequency or long run relations among
economic variables. In this paper, we propose a bias reduced modified version
of band spectrum regression in a bivariate fractional model free from any
preliminary estimates unlike other estimation methods available. The estimation
method suggested in the present paper adopts the idea of bias reduction in
standard cointegration model as will be explained later, and we will show that
the bias reduction procedure in the standard cointegration still works when we
extend the standard I(1)/I(0) cointegration into fractional modeling with I(d)
variables. In the following section, we present the model and modified band
spectrum regression with limited asymptotics of the proposed estimator. In the
present paper, only consistency of proposed estimator will be provided, not limit
distribution which has not been established yet. We also look at the finite
sample performances of the estimator compared with those of OLS under
different fractional cointegration model specifications. Complete asymptotics with
limit distribution will be a part of subsequent work.

[I. MODEL AND ASSUMPTIONS
(1) Fractional Cointegration Model
We consider the following model for the bivariate observed series (y,;, v, as

Yu= Byt 2)

where y,, and #,, are defined by



24 THE KOREAN ECONOMIC REVIEW Volume 22, Number 1, Summer 2006

(1 “L)dluu: e

(1= L) *yy= ey, dyy=uy. €)

The fractional differencing operator can be defined as
N—d_ (Di ;e
(1-1)~4= 3 P LH, @

where (a’),e=—I—ﬂ%ﬁ";%",)/‘fl is Pochhammer’s symbol for the forward factorial
function and L is lag operator. The model (2) considered in the present paper
is just a simple form of a bivariate fractional cointegration model that has been
considered in the literature. It should be noted that the definition of fractionally
integrated processes here is not the partial sum of stationary processes, but
direct fractionally integrated processes defined by the filtering in (4). In fact
there are two different types of nonstationary fractional processes in the
literature, one can be defined as a partial sum of stationary processes and the
other follows the fractional differencing operator as in (3). Fractional
cointegration models similar to (3) have been considered in Marinucci (2003).
Robinson and Marinucci (1998, 2001b), Robinson and Hualde (2003) and Tanaka
(1999) while Chan and Terrin (1995), Dolado and Marmol (1996) and
Jeganathan (1999, 2001) follow the definition using partial sums. Based on two
different definitions of nonstationary fractional cointegration models, the limit
behavior can also be characterized accordingly in the theoretical development
(See Marinucci and Robinson (1999)). The difference, however, may not be
important from a practical point of view because one can hardly tell which
formulation can be applied to the data set in the given model.

(2) Assumptions

Since the nonstationary fractional cointegration model in (2) is the main focus
of the present paper, the following restrictions on the fractional parameters
should be imposed,

0<di< 5,3 <dy<2. )
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The restrictions on the fractional parameter naturally give the idea of fractional
cointegrations, and the model given in (2) contains a fractional cointegration
relationship between y,, and 1y, since the order of integration in regression

error should be strictly less than the order of integration in regressors y,, under

the (5). We therefore exclude the case of fractional stationary cointegration in
which regressors follow the fractional order of integrations in the stationary

range between O and L. Since a cointegration is trying to explain the

comovement of economic2 variables in the long run, and most macro and
financial economic variables have been considered to retain some nonstationarity
properties even though they are not unit roots variables, nonstationary fractional
cointegrations can be more practical and important related to the application of
economic models than stationary cointegrations. Recently, a stationary
cointegration model was considered by Nielsen (2003) based on the local Whittle
estimation which was established by Robinson (1995b). The restrictions on
fractional parameters in (5) are quite mild and commonly used. An additional

restriction, however,

@—¢>%

should be imposed to develop further asymptotics just like in almost all the
models considered in the literature (e.g. Kim and Phillips (2002), Robinson and
Marinucci (2001b, 2003), Robinson and Hualde (2003)).!

The short memory components of given fractional processes e;, and ey, are

linear processes of the form
e;=Ci(L)ey= ;06‘76 it—j» ;0” c;l <oo, (6)

with e ,=14d(0, ¢®) with finite fourth moments for ;=1,2. One summability
assumption in (6) is necessary to develop the limit theory of sample covariance
of 'y, v, and it covers stationary and invertible ARMA systems. Robinson and

Hualde (2003) imposed the same summability condition to develop the limit
behavior of their estimator. There is_ no need to assume uncorrelatedness between

' The restriction will be needed for the derivation of distributional results that are not covered
in the present paper.
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e, and &, and hence contemporaneous correlation in e,= (e, ey) IS
allowed. Generally, e,= (ey, e5) is a bivariate covariance stationary unobservable

process with spectral density matrix, g(1), satisfying

E(een; )= [ ePga

which is at least nonsingular and continuous for all frequencies. ,
Now define the partial sums S,7=271, %, and Syp=327" uy=31 | dyy.
The limits

I}L%T—(HZdI)E(SlTSllT): =02
I}En»o T*(HZdz)E(SZTS'zIT): = 0Qy
lm 77T ORS S = 20

will be called long run variance/covariance of the «;(i=1,2). The long run

variance/covariance will be used in the transformation of the given cointegration
model as will be seen in the next section.

. ESTIMATE OF COINTEGRATION VECTOR AND LIMIT BEHAVIOR OF
BIAS REDUCED BAND SPECTRUM LEAST SQUARES

(1) Estimators in the frequency Domain
Note that
(1=0) *' (1= Dyy= ey =1~ L) “ 'uy=ey,
we then transform (2) as follows.
V1= Bya+ Clyay+ uy— 21225 Ay, (7

where C=Q,02%'. 2, and 2, denote the long run covariance of u,, Ay,

and the long run variance of Ay, defined in the previous section. Since our



CHANG SIK KIM: BAND SPECTRUM LEAST SQUARES IN FRACTIONAL COINTEGRATION 27

main focus is to estimate the cointegrating vector 3, the estimation of C is of
no use in the procedure. The main reason for this transformation can be clearer
when the triangular structural model is considered like in Phillips (1991a, b), but
simply adding A4y,, in the regression model can reduce the biases of estimation

of the cointegration vector B. In fact, the regression model (7) has been
considered by Phillips (1991a) for the optimal inference of standard I(0)/I(1)
cointegration as an extension of the triangular Error Correction Model (ECM)
representation. He has shown that the maximum likelihood estimation of
triangular structure of ECM in the standard cointegration is equivalent to the
OLS in (7) when the error term is white noise. Therefore, without any
numerical maximization, simple OLS will give MLE (Gaussian pseudo-ML
estimate) in the given model when d;,=0, d,=1, that is, standard I(1)/I(0)
cointegration.

As noted, it is clear that the role of Ay, in the augmented regression in (7)
as an additional regressor is to adjust the conditional mean and hence to remove
the second order biases which present in the regression of y,, on y,. However,

the OLS in (7) is only valid as an optimal inference when the regression error
is white noise which is very unlikely in the analysis of time series regression
even in the standard I(1)/I(0) cointegration case. Other issues of optimal
inferences in the standard cointegration have well been explored, for example, in
Phillips (1991a) and Johansen (1988) using full system maximum likelihood
estimation.

Frequency domain analysis can be an alternative in the cointegration models
and all the well known advantages can be enjoyed in the spectral regression. In
a simultaneous equations model with serially independent errors and triangular
structure of coefficients, it is well known that MLE is equivalent to generalized
least squares (GLS). Phillips (1991b) used this idea in a cointegration model
using the fact that the ECM model can be transformed into frequency domain,
keeping the structure of coefficient but making the regression errors
asymptotically independent so that GLS can be applied in the frequency domain.
In fact, this is the idea of efficient spectral regression in a stationary time series
model. Another advantage of spectral regression is that it allows a nonparametric
treatment of regression error in the regression model, and hence neither prior
distributional assumption nor specification of system is required.

Frequency domain approach is more important in the analysis of fractionally
integrated processes mainly because the behavior of spectral density of low
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frequency dominates even in the stationary processes and therefore the traditional
asymptotic theories can not be applied into stationary long memory processes.
As Granger (1966) pointed out ‘the . typical spectral shape of an economic
variable’, the definition of fractional processes is inevitably related to the
abnormal behavior of spectral density near origin or low frequencies, and
numerous inferences about the fractionally integrated processes are based on the
spectral representation of given data. The same applies in the analysis of
fractional cointegration models since the idea of cointegration itself is to
characterize the relationship of variables in the low frequencies near origin which
represents the long run equilibrium. Robinson and Marinucci (1998, 2003),
Robinson and Hualde (2003) are all frequency domain analyses of fractional
cointegrations whereas Dolado and Marmol (1996), Jeganathan (1999) and Kim
and Phillips (2002) look at the aspect of the time domain estimation of
fractional cointegrations.

This paper utilizes the idea of (7) in the frequency domain analysis, and we
suggest a bias reduced modified band spectrum least squares (MBSLS) in a
bivariate fractional cointegration model in (2) and (3). The approach proposed in
this paper is therefore related to the usage of discrete time ECM formulation in
the frequency domain. In view of the merits of spectral analysis in the
fractionally integrated processes, frequency domain least squares is expected to
perform well in the fractional cointegration analysis. In addition to that, the
method suggested in this paper is very easy to use in practice; it is indeed
simple OLS in the frequency domain without involving any numerical
maximization which is necessary for many other estimation procedures in the
literature. Other aspects of suggested estimation procedure in the present paper
will be given in the following section.

(2) Bias Reduced Band Spectrum Regression

Now writing the discrete Fourier transforms (dft) of any given process q, as

__1 it
wa(/i)—m Z}a,e ,

then we can transform the model (7) to evaluate in the frequency domain as
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wl(/ls):BWZ(/ls)_*— de)/g(/is)-l—wl'Z(/Is) ®)

where  w,(4y), wy(Ay), w4,(A) and  w,.,(A) denote the dft's of y,, y,, Ay,

and  u, — 2,,25'4y,.

The transformed regression model was first considered in Phillips (1988) as a
subsystem of multivariate standard I(1)/[(0) cointegration model when no
restriction exists in the parameter matrix of the system. In fact, it is just a
frequency domain version of the optimality result of standard cointegration when
there is no restriction on the cointegrating vectors which is the case in (8).
Unlike time domain optimality conditions mentioned above, there is no need to
assume the white noise error in the frequency domain. The additional term,
w 4,(Ay), to the original band spectrum regression is asymptotically independent

of w,;.,(4) in the standard I(1)/I(0) cointegration because they are

asymptotically normal and their covariance is zero, which makes the simple least
squares efficient in standard cointegration (See Phillips (1988, 1991(C)).

We will use the model in (8) for the estimation of cointegration vector A in
the fractional cointegration model in (2) to reduce the second order biases of
least squares in the time domain regression. According to Phillips (1988), it is
clear that the simple least squares in (8) is optimal in the sense that it achieves
the same limit distribution in the full system maximum likelihood estimator in
the standard cointegration model. Moreover, the least squares in (8) can be
shown to have optimal convergence rate and shares the same limit behavior with
Gaussian MLE especially when first differenced regressor y,, and regression
error u,, share the same degree of integration order (See Kim and Phillips
(2002)). Unlike I(1)/1(0) standard cointegration, the optimal theory for general
fractional cointegration models is yet to be established although some results
about optimal convergence rates of estimators in the cointegration system are
known. We therefore suggest the least squares procedure of (8) for the
estimation of more general fractional cointegration models.

Linear regression on (8) leads to the modified band spectrum regression

estimator B as

B=[720) = 724(0) (7 2s(0)) "' 7 2(0)] "
[ 71200) = 72(0) (F 2a(0)) "' 7 ()] ©
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where 7 is a one sided average of m ordinates at origin. That is,

0 ="L 3 w)wa) =k B 1), for ij=1.2,
,A(O)—;]/; s=lw,»(/13)w4y2(/is)* =: —%}’l— gllm(/‘s), for i=1,2,
7 k0= 3w (0w (A0 = B 1), for i=1.2,

where * and I(1,) denotes complex conjugate and the periodogram respectively.
The number of ordinates s included in the regression can be chosen in such a

way 2 — oo, for some o> (.2 We therefore have
n

B-p=[ & waA)us(1)’

= 3w (A)w (2’ sﬁllwdyzus)wAyz(/w")‘1 glwdyz(/ls)wz(,is)*]—l

[ £ w0w1.2()°

= 3 wdw (A’ glwmugwdyzus)‘)-l glwdyz(ww,.2(/13)*]_1.(10)

Our band spectrum least squares is just simple OLS in the frequency domain
with one additional regressor which leads to reduce the bias of the original OLS
estimator. As in (8), the additional regressor is just simple dft of first difference
Of Yo

Main Theorem :

For 4, < < dy<2, and under the assumptions in section 2,

1 1
2’ 2
B5B

As shown in the main theorem, our bias reduced modified band spectrum
regression gives a consistent estimator for a quite wide range of fractional
parameters in the regressor and the regression error. In fact, it holds for

? The choice of m, that is, o does not matter in the consistency of suggested estimation
procedure, it however is crucial to derive the limit distribution of the given estimator.
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nonstationary error in the cointegration system with some restrictions on
fractional parameters which will not be pursued in the paper.3 Even though the
limit distribution has not been established yet, and hence traditional statistical
inferences can not be applied here, it has lots of merits in the estimation of
cointegration vector and testings. It also can be shown that MBSLS can achieve
the optimal convergence rates under some parametric restrictions even though we
do not pursue any proof in the present paper.# The optimal rate of convergence
in the fractional cointegration model is known, for example see table 1 in
Robinson and Hualde(2003). The main and crucial advantage of MBSLS is that
it is indeed free from any preliminary estimates for the estimation of
cointegration vector and hence can reduce the variance as can be confirmed by
the simulation in the next section.’

In fact, most of available estimation methods in the literature except OLS and
frequency domain least squares (Robinson and Marinucci, 1998, 2003) inevitably
involve several preliminary estimation steps. For example, Kim and Phillips
(2002) requires preliminary estimation of fractional parameters as well as the
long run variances of long memory processes, which clearly involves estimation
of short memory components. Therefore, one should first use OLS to get
residuals in the fractional cointegration model, and need to estimate long
memory parameters of the cointegration residual as well as regressors. Once
fractional parameters are estimated, one can estimate fractional cointegration
vectors based on the augmented transformed model. Even though the estimation
method in Kim and Phillips (2002) is a time domain approach, and hence
familiar with practitioners, it entails several preliminary steps to get fractional
cointegration vectors unless a specific condition for integration orders is satisfied.

The estimation procedure in Robinson and Hualde (2003) is more complicated
since it involves fractional differencing with estimated fractional parameters. It

> Kim and Phillips (2002) developed a limit theory on fractional cointegration with

nonstationary cointegration errors with dy—d, > % condition.

“If d, >dy—1 and 4, <%, 1< d2<% the rate of convergence of MBSLS is n® 4 as

shown in (beta-2-1) in the appendix. Moreover, it can be shown in the same way that the same

rate of convergence is applied for 1 <d, <1, 1<d2<—3- and —2L<d]<-%-, 3 <dy<2

2 2 2
under d2*1>d1
° The estimation procedure does not require any preliminary estimates, but the parametric

restrictions given in the paper especially dy—d) > L required to apply the method suggested

2
in the paper.
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first needs to transform the regression model by fractional differencing with
estimated fractional parameters, and then implement generalized least squares
(GLS) in the frequency domain in the bivariate fractional cointegration model
just like in (2). Since they consider the GLS type approach in the frequency
domain,6 the procedure requires to estimate spectral density of cointegration
errors which also needs the maximum likelihood estimation of short memory
parameters, that is, ARMA(p,q) coefficients. Robinson and Hualde approach is
theoretically appealing since it achieves mixed normal asymptotics, and hence
one can use chi-square asymptotics in the inferences. It is, however, very
sensitive to the correct estimation of fractional parameters because the method
necessarily entails fractional differencing with estimated parameters before
estimating cointegrating vector, and therefore it could have over or under
differencing problem in practice.

In light of all complicated preliminary steps in many available estimation
procedures for fractional cointegrating vectors, our method suggested in the
present paper is certainly recommended in the sense that it does not use any
preliminary estimates in the estimation of cointegrating vector, and hence can
reduce the variance of cointegrating vector estimation.

IV. FINITE SAMPLE PERFORMANCES

As briefly mentioned before, there has been no optimal theory for the
estimation of cointegrating vector in the fractional cointegration model, and
therefore the finite sample performances of available estimators are indeed
important. Even though the suggested estimator in the paper is simple to use,
poor finite sample performances would deteriorate the conveniency of our
MBSLS estimator. In fact, comparison among all available estimators in the
literature would be recommended with different sets of fractional parameters and
short memory components. This, however, would add considerable space to this
already lengthy paper, and hence detailed simulation results and improvements on
finite sample performances of different estimators will be left for subsequent
work.

In this section, we will compare the finite sample performances of MBSLS,

® Robinson and Hualde (2003) also consider the GLS type of estimation in time domain, but
the calculation in the time domain approach is way more complicated than frequency domain
except white noise short memory case, which is very unlikely to observe in econometric models.
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Robinson and Hualde (2003) (R-H here after), and OLS under different
parametric values. Since both estimation procedures are simple least squares in
the time domain and the frequency domain without any preliminary estimations,
evaluating the finite sample performances of the two would be fair. Moreover,
GLS-type R-H estimator should be compared to MBSLS. In fact, we can clearly
see how the suggested MBSLS will reduce bias and variance in estimating
fractional cointegration model.

There are several methods available for simulating fractionally integrated
processes and some of these are reviewed in Beran (1993). The simplest method
is to use fractional differencing operators, and fractionally integrated processes
can be generated by simple linear filters. Another popular method suggested by
Davis and Harte (1987) is based on the fast Fourier transform and uses the
autocovariance sequence of a fractionally integrated process which can be
computed by well known formulae, such as those given in Granger and Joyeux
(1980) and Hosking (1981). In the present paper, we use this approach to
generate vector fractionally integrated processes allowing for cross dependence in
their components. The autocovariance function between two fractionally integrated
processes {uy;, uy)} can be written in the form ’

2 d|2+dz)
Co(aeyy, tnpss) = ”‘lﬁ) cos M(Zsin%) dA.

Then, the matrix autocovariance sequence y(%) is

7(/@):( aynoy 012012)’
a21021 Ax02

where

__ I'(k+d)r(-2d) 19
4= T+1—d)I(1—d)Id) > '~ 4=

F(k+-g,1_2‘-—dz)l”(1—dl—dz)
ap= »
F(k+1—~—~—d‘;“d2 )r(1— dl;’dz )r( dl;dz )

and o, is the variance of the innovations e, e,. Then, using the fast Fourier

transform vector fractionally integrated processes can be generated just as in the
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method of Davis and Harte (1987).
The data generating process for simulation is the same as our original model
in (2),

Y= Byt uy

and 1y, can be generated by {u,} For simplicity, we set Var(e,)= Var(ey)
=1, and Cou(ey, €,)=0.8. Three sets of short memory components,
ARMA(0,0), AR(1), and ARMA(L,1) are tried and {e;}, {e,} are generated
from {e,), {e,} The AR coefficient is set to 0.5 and MA coefficient to
—0.5. The system is now estimated by OLS, R-H and MBSLS7 and the results

for the three procedures are compared. The number of replications is 15,000 and
sample sizes of 50, 100 are used. The following six combinations of dj,

dy(=dy,—1) values were tried: (0.2,0.2), (0.3,0.1), (0.4,0.01), (0.1,—0.2),
(0.4,—0.2), and (0.4,0.6). In fact, all the estimators considered here are not
consistent for the case of (0.4,—0.2), that is, when 4,=0.4 and d,=0.8.
However, we include the result in the appendix for a simple comparison of
finite sample performances of the given estimators.

Tables 6.1-3 show the mean bias and the standard deviations of OLS, R-H,
and MBSLS, and they clearly reveal that the finite sample performances of
MBSLS are better than those of OLS in every case.8 Using MBSLS clearly
reduces the mean bias and standard deviation significantly. As mentioned before,
When d,=d;(=d,—1), MBSLS has much less dispersion than OLS. This case
indeed has n-convergence rate which is shown in Robinson and Marinucci
(2003). For other fractional parameter values, OLS suffers from second order
biases and is generally less reliable than MBSLS. We also looked at the median
bias and the interquartile range for OLS and MBSLS, and the difference
between OLS and MBSLS is clear just like mean biases and standard deviations
of the two estimators.

When we compare the R-H and MBSLS, R-H is slightly better than MBSLS
when the short memory components are generated by ARMA(0,0), however the

7 A different set of m has been tried in the simulation, for example; »°3, #°°, #°7. The
results are not quite different, here the case of m= " is reported.

® The results for #=50 cases are not reported here since they are very similar to the cases
of n=100.
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performances of R-H procedure are definitely worse than MBSLS when they are
generated by AR(1) or ARMA(1,1). This is naturally expected considering that
R-H method involves the estimation of short memory parameters. Preliminary
estimation of short memory parameters and fractional parameters make the
variance of R-H estimator bigger, and hence yield the poor performances in
general cases like AR(1) or ARMA(L,1). It can be expected that R-H estimator
works well only when the short memory components follow ARMA(0,0) which
is hardly justified in many applications.

Figures in appendix show the sampling distributions of MBSLS, R-H and OLS
and they show clear differences between MBSLS, R-H and OLS.9 The densities
of MBSLS are centered much better than those of OLS and show less volatility.
Even though sample size gets larger, differences are still apparent. When
fractional parameters follow (0.1,0.01), the convergence rate is slower than
other parametric values, and hence the finite sample performances for both
estimators are poorer than the other two cases. The short memory component
seems not to play a crucial role in evaluating finite sample performances of
OLS and MBSLS whereas it does matter in the R-H estimation. However, better
performances of MBSLS seem apparent in non-white noise short memory
components as we can see in figures in appendix.

In terms of mean bias, neither MBSLS nor R-H dominates the other in three
different cases, MBSLS performs better in some cases, especially when d,=

dy(=d,—1) but in some other cases, R-H does better. In terms of variance

and interquartile range, however, MBSLS dominates R-H, and therefore, MSE’s
of FFM are smaller than those of R-H in every case in AR(1), ARMA(L.1).
This finding can be seen clearly in the graphs. As expected, all three estimators
seem not working for the case of & =0.4 and d&,=0.8 as shown in the

figures.
V. CONCLUSION

This paper suggests an estimation procedure for bivariate fractionally
cointegrating regression models. The estimator proposed in this paper is based
upon least squares in the frequency domain with a simple modification which is
known to be optimal under conventional 1(1)/1(0) cointegration. It is shown

’ Figures for AR(1) only are included in the appendix due to space limits.
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that the same estimation method is still working under general parametric values
of fractional orders in variables. The main advantage of the estimator is that it
can be used for a fractional cointegration model without preliminary estimates
unlike other available methods in the literature. In simulation study, MBSLS can
significantly reduce second order biases and variance compared to the
performance of OLS. MBSLS performs better than the GLS type Robinson and
Hualde (2003), especially when the short memory components are not white
noise. It is robust not only to the presence of long range dependence in the
regression errors, but to the different sets of short memory components.
Simulations confirm that MBSLS estimator performs well and seems reliable.

Cointegrations represent long-run equilibrium relationships in economic models,
but conventional cointegrations restrict too much in defining disequilibrium errors
in the model. The fractional cointegrations encompass traditional cointegration
models and extend the idea of equilibrium relationships, and therefore accurate
and robust estimation of these relationships is clearly important in many
empirical applications. This paper provides a simple and reliable estimation
procedure free from any prior knowledge of fractional parameter or
pre-estimation of a given model.

The conditions on the fractional parameters are not restrictive in practice, and
hence can be used almost all applications except stationary cointegrations. The
present paper, however, does not provide asymptotic distributional results of
MBSLS that are left to subsequent work. Although simple sets of simulations
are given in this paper, detailed comparison of the finite sample performances of
all different estimation procedures in the literature is certainly recommended with
different sets of fractional parameters and short memory components, which is
also left in future work. Extension of suggested methods to vectors valued
variables seems straightforward only when all the variables in the multivariate
system share the same degree of fractional/integration orders. If fractional orders
are different across the variables, especially in regression errors, considerable
efforts should be made to deal with this problem. That might require different
techniques and raise all complicated issues of estimation.

VI. APPENDIX

The limit behavior of MBSLS is quite complicated according to the fractional
parameters in the model, and we therefore need to divide several different cases
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dependent upon the values of fractional parameters to prove the given theorem.
We will present only one case in this paper to save space, that is, when
d, < %, % <dy<1. Proofs of the other parameter values are similar to the
following two cases.

. d1<% and %<d2<1.

Note that (10) can be written as

Z)_'8=|:—l~ 2]22(/13)— 2124(/%)( 2 I 442 ) o

m s=1

1
m
(5 ) - Bn(L Erauw)

LA )]

s=1

I, .zus)] (11)

1
m
1
where 12’1 .2(/15) = WQ(/.{S)wl.z(/ls)‘ and 14,1 .2(/‘3) = wA,yz(As)wl .2(/1s)=.l The

following steps are needed proceed the analysis of the asymptotic behavior of
the modified band spectrum estimator 7.

Step (A)
By the theorem 4.1 in Phillips (1999), we have

As /1
mz,}; > 22(1) ﬁ wZ(dz) wZ( )
s=1 n n
g ml) w() & ) w)
T A d, i dy d,
s=1 95 n s=m+l g n
11 2 Yo wy(A) wy(A)”
20 n &1 -1 N TR a%

If m is such that nﬂ — oo, it follows that

a

wy(As) wy(A)” =Op( n )

s=m+1l nd2 nd2 mzd ’

and then
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ws(2) ()" _ )
b

s=m+1l ndz ndz

for > oFA d Therefore, we have

B B [B, (ar
Step (B)
To analyze the limit behavior of i 2}11 24(A), we need the following

representation of the dft of a fractionally integrated processes

i M: Yon eMx Yon
ws(2)=(1—e™) “w. (1) — (1—e™ \/27m+0"( (1—e™) V2 )’

as shown in Phillips (1999). The fractional parameter of Ay, is dy—1 <0 for
d, <1 here. Then, we have

L3 1) =L 3 wiw 1)

s=1

(=™ w0 (w4, 1)°

Ve

eu"A Yon w (/1)*
1 (l_et/ls) \/271'% Ay, \ s

A ei/‘s Yon *
gl (1—e™) V2mn W (4 ) (12)

S sk 3

s

N

+op(

The limit behavior of first term in (12) can be obtained as

LS <1—e“‘>‘d2wez<as>wdyz<as>*

=L S 1—e™ T (A= ™) F w4, (0)°
1
1 _ g —ddt2 2
(4 B-e™ L W)
7
(& Z11-e™1 ") (13
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By Robinson (19995), it follows that

1 g"l 1= e | "2 Dp )= 0,1).

m

Moreover, the collection of 7,(A,) are independently distributed, and then

2dy—1

). if dp< g

o{ ()

1 Ay —ddit2 _ [
(m =3 I1-e ]"3(/15)) 2d,—1 3
op(%-), if dy> 4

From (13), we have

[ 2d,—1 ) 3
LB (=™ (AW (1) = of() ) i<y ay
‘ 0,,(%7”—), if dy>

The order of the second term in (12) can be analyzed as

L ei&. Yon w (/1)*
m S (1—e™) Vorn TS

iA, . ' ~
_ yg,,edq_L nd3—1_71n_ gl(l_eu_\.) Bp— gty 1wdy2(/1$)*
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3
< yznd?__L ndz—l(# gi | 1-e““'| —Za'z)
Vorn 2
1
. B 2
(% Sgl l l_el/kl 2(dy I)IAA(/ls))
-0 <1)0(n"*"1)0( n” )o =0 ( n ) (15)
By (14) and (15), we have
1 B n 2dy—1 21
L5 nac) - op((m) )+ 0,,(7——7” )

2d,—1 2=1 g3

=of(2) " )rof(z) »)
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2dy—1

= 0,,((7’;-) ) for dy < % (16)
1 nte! 3
P S=IIQA(/13)= Op(w) for dy > n 17
Step (C)

Since the fractional parameter of Ay, is negative, we need the following to

obtain the order of % 211 24(A9)

L2 = 38 4K 0L 14007440
s% gl| /182((12—1>1M(/13)| gll As_Z%_I)I

1
m s=1

_ O,,( gll AS‘Z("Z‘I)I)=((%)M_2m). (18)
Now, from step (B) and step(C), for d2<%
L 3 n(d Bruw) L & 1.
2d,—1 2d, -2 - 2d,—1
o{() " Nol () ) ol(2)")
=o{(5) W)
and hence
2,13 [ o g L(A )( ﬁ [AA(/is)) 1# glldz(/‘s)]
= 0,(m **)=0,(1). (19)
Similarly, for < 4
L% n )(% B ) L Era)

2d,— 2dy—2

_ n n
- ”( Qm ( %)
0,(#* = 0,(1),

) ofr)

dy
nm

4
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and hence
. ,
| Eh( Ba) L B 1a)]
= 0,(m "% =0,(1), for d2<%. (20)
Therefore, it follows that
-1
e B = DL BIw)) L Era
2dz 2d,
_o,,( )+o,( o ) @1)

from (19), (20), and step (A). Note that (21) holds for all % <d,<1 and for

both d,+d,<1 and d;+d,>1.

Step (D)
Observe that

2w 01(2)" — Q022" w ,(2) 7

N

LS w0i(aw, o) =

1
b

s=1

W A)w (1) = CL 2 wn(A)w s, (1)* (2

§|~

By the results in Robinson and Marinucci (2003), we have

, a4,
LS w@yw(a) = Op((ﬁ)”,,)’ for ditdy <1,
Op( L ) for dy> %
and from (16) and (17) in step(B)
2d,—1
n )\ : 3
L& pwmar= o) ) ta<d

2dy—1

0,,(%7”—), if d,> 3

Now consider the following four cases,
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() di+dy<1, dp<

4
2d,—1

() =()
(i) &+dy<1, @>%

di+d, 2d,~ 1 dy+1-d,
(i) 1 Z_(n 1 ]( n 1 2 ]
= T - |

m + dy+dy—

2 m 2

m

di+d, di+1—d,

)

(i) d,+dy>1, dy

4
d, +d. 2d 1 d +1—4d
Nl 2 27 nl 2
T 2-2d, )
m m
3
4

(iv) dy+dy>1, dy>

2d,—1 di+1-d,
n n
1 1 :
2

m m

Nd]"’dg

m_

Here, we can not tell which term in (22) dominates in each of these four
cases. The dominant term changes on the values of m, d), and d, For
di+1—d,

example, if Z——— —oo, ie, —% > ¢ such that %—»oo then the

first term in (22) dominates the second term in (22) in case d;+d,>1
dy < % It then can be deduced that

L 5 ww, )= 0y 2?2 )
m s=1 m

We can only guess that the first term may be dominant on the second term
in (22) in most cases, but can not exclude the opposite according to some
extreme values of m, d,, and d,. However, the consistency of the modified
band spectrum estimator holds regardless of what values m, d), and d, may
take as we can see below.

Step (E).

Now it remains to analyze the limit behavior of -71; =lI a1-2(Ay in (11).

Note that
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L S L) =k B w4~ 2105w 4,(1)°]

2w (A()' = C L 2w 4 (A0 4, (A)". (23)

1
m s

The first term in (23) can be written as

# glw@:us)wlusy

1
2
<( o B0 22002,02)°) (# 5w (2w(a)7) .
We have the following
1-24, 2d,
T B =20 2) =0, ) 24)

as in step (D) shown in Robinson and Marinucci (2003). From (18) and (24), it
follows that |

) Tod2)

d\+dy,—1
. ]

= 0 T ——
P d+d-d
m

# g wAyg(/ls)wl('i‘)*z[Op(%)

1

Therefore, we have

d\+d,—1

W]w,,((m)

n 2d,-2 nd1+1"d2 n
O”(<W) a3 +0”((W)
m

71;1_ glld.yz(/is) = Op

2dy-2

As in the case in step (D), here we can not tell which term is dominant in

. nd'+1_d2 . d1+1—d2 m
(23). That is, If “-—-—5 —co e, ———72- >q such that ~C —oo the
m" dy—dyty i

first term in (23) dominates the second term in (23) and hence
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di+dy—1

Lo 220 = 0[—”7*‘3‘ '
m ’2

(25)

1
m s=1

Then, from (16), (17) in step (B), (18) in step (C), and (25) in step (E), we

have

%n_ 4 1124(/1 )( ﬁ: T 44(A )) ’}n— 2 141 2(Ay)
2d,—1 2d,— di+dy1
—ofln n | ——
o(2)" oA ()" ) o =
di+d,
oft) o
m 2
for dz<% Similarly, for a’2>% we have
-1
- quus)( 1) e B Tarad)
2d,— -2 |\ —1 di+dy1
— _71 _n_
=0 ( ) ) m)) Op( dl+d2_% ]
m N
d.+d; : )
= 0»( — a2 ) 27
di+1-d, _
However, if ———= — ie, —ili—L-—dgL <a such that " oo the
Gty d—dyt "

second term in (23) dominates the first term in (23) and hence

LS 10~ 1),

which implies that

2d,—2

# 3271141 (A= Op((

m). @)

)

Therefore, it can be easily deduced that

Sh



CHANG SIK KIM: BAND SPECTRUM LEAST SQUARES IN FRACTIONAL COINTEGRATION 45

L8 n0(E Sruw) L Sraw~t Ena, @

the order of which is giVen in (16) and (17) in step (B).
Now, we can deduce the order of the second term in (11) from the results in
(26), (27), (28), and (29) in step (E), and the results in step (D) as follows.

The first case is

-1

[ ﬁ Ip,.2(A5)— | ’;1;; 821124(/1 )( ﬁ: I 44(2 )) % 321]4.1'2(/15)]
_[of(2 )"‘*“) o ((2)"), for divar<L 40
0,,( ) 0,,( d'+,2), for dy+dy > 1
which holds when
LB na~L B 1,00 CI)

The second case is

-1

P ORI BB W ACIEE-D WHEH Cr I FER)

m
2dy—1
A |
B laraA)]= OP((ZZL_I J i<y, (32)
0,,(” ) it dy> 3
and if we have
LS nao~E B 1) | (33)
and
1
o B B1u) f Biar =0 % Braa)). 69



46 THE KOREAN ECONOMIC REVIEW Volume 22, Number 1, Summer 2006

The third case is

i 32:1124(/19““["1" 2112.1 2 -+

s m

S n) L 1)

2d,—1

ﬁzd,l.zw];l@((%) ) ia<d (35)

1
m s=1 2dy—1

0,(—”77—), if d2>%
and if we have (33) and

-1

L ﬁ: Tou(A )( i IAA(/ls))

LoyoA)~ gy B LA). (6)

1
m s=1

Finally, according to the results in (21) and (30), the asymptotic order of the
modified band spectrum estimator in (11) can be written as

e - m
s-s=[0f )] [ol%)
dy—d,
for d,+d,<1 Similarly, for d,+d,>1 it can be deduced that

~s=[of %)) o 5]
eI

under the condition (31).
The second case is

d,+d,

]

-o=lol 5] Tod() ™)
= O,,( mZZ—Z _ OP(lZ‘ .;n.Q_ld;:)= 0,(1),

or
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-1

oo lof ) o)

:0/;(1))

which comes from (21) and (32) under the condition (33) and (34).

The final case is

or

1
mz
. N

:01)

= Op(l),

according to the results in (21) and (35) under the condition (33) and (36).

47

In each case, we conclude that the modified MBSLS is still consistent, but

the order of convergence is slightly different and dependent upon on the values

which m, d,, and d, take. These complicated orders of convergence come

from the limit behavior of the covariance between process X, with negative

fractional parameter o, and X, with positive fractional parameter ,, which

has not been established yet.
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Appendix 6.1. Tables and Graphs!0

MODEL A: AR(l)

[Table 6.1] Mean Bias,

Standard Deviation(SD), MSE of (B—4), »n=100

n= 100
OLS R-H MBSLS
Mean Bias 0.0070 0.0054 0.0000
d] =0 2, dg =0.2
SD 0.0242 0.0374 0.0196
MSE 0.0006 0.0014 0.0004
OLS R-H MBSLS
Mean Bias 0.0381 0.0235 0.0269
d=0.3, d3=0.1
SD 0.0440 0.0503 0.0357
MSE 0.0034 0.0031 0.0020
OLS R-H MBSLS
Mean Bias 0.1022 0.1108 0.0853
di=04, d3=0.1
SD 0.0738 0.0753 0.0641
MSE 0.0159 0.0179 0.0114
OLS _ R-H MBSLS
* Mean Bias 0.1097 0.0464 0.0689
d1=0.1, d2= —-0.2 .
, SD 0.0617 0.0569 0.0490
MSE 0.0158 0.0054 0.0072
OLS R-H MBSLS
Mean Bias 0.3322 0.3686 0.2844
di=04, dob=—0.2 ) )
SD 0.1513 0.1478 0.1465
MSE 0.1332 0.1577 0.1023
OLS R-H MBSLS
, Mean Bias -0.0009 0.0135 -0.0127
d=0.4, dy=0.6
SD 0.0294 0.0541 0.0253
MSE 0.0009 0.0031 0.0008

“'In the table d3=d,—1, and d2 in the graph indicates d5=d,—1 which follows the

notation in section 4.
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MODEL B: ARMA(L,1)

[Table 6.2] Mean Bias, Standard Deviation(SD), MSE of (B—4), »=100

n=100

OLS R-H MBSLS
Mean Bias 0.0060 -0.0008 -0.0001

d=0.2, d5=0.2
SD 0.0236 0.0624 0.0192
MSE 0.0006 0.0039 0.0004
OLS R-H MBSLS
Mean Bias 0.0363 -0.0136 0.0268

d,=0.3, dy=0.1
SD 0.0435 0.0966 0.0360
MSE 0.0032 0.0095 0.0020
OLS R-H MBSLS
Mean Bias 0.0989 0.0098 0.0852

d =04, d5=0.1
' SD 0.0725 0.1095 0.0636
MSE 0.0150 0.0121 0.0113
OLS R-H MBSLS
Mean Bias 0.1004 -0.0581 0.0694

di=0.1, dy= —0.2
SD 0.0595 0.1253 0.0494
MSE 0.0136 0.0191 0.0073
OLS R-H MBSLS
Mean Bias 0.2611 0.1431 0.2331
di=04, dy=-0.2

‘ SD 0.1095 0.1294 0.1043
MSE 0.0801 0.0372 0.0652
OLS R-H MBSLS
Mean Bias -0.0014 0.0038 -0.0061

di=04, d5=0.6
SD 0.0128 0.0369 0.0109
MSE 0.0002 0.0014 0.0002
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[Table 6.3] Mean Bias, Standard Deviation(SD), MSE of (B—p8), »=100

n =100
OLS R-H MBSLS
Mean Bias 0.0155 -0.0009 0.0003
d=0.2, d=0.2
SD 0.0276 0.0207 0.0193
MSE 0.0010 0.0004 0.0004
OLS R-H MBSLS
Mean Bias 0.0541 0.0115 0.0277
d=0.3, d»=0.1
SD 0.0502 0.0330 0.0355
MSE 0.0054 0.0012 0.0020
OLS R-H MBSLS
Mean Bias 0.1286 0.0738 0.0880
di=0.4, d5=0.1 ‘
SD 0.0808 0.0539 0.0632
MSE 0.0231 0.0083 0.0118
OLS R-H MBSLS
Mean Bias 0.1859 0.0387 0.0741
d,=0.1, do= —0.2
SD 0.0845 0.0459 0.0493
MSE 0.0417 0.0036 0.0079
OLS R-H MBSLS
Mean Bias 0.3326 0.2728 0.2427
d=04, dy= —0.2
SD 0.1137 0.0931 0.1021
MSE 0.1236 0.0831 0.0693
OLS R-H MBSLS
Mean Bias -0.0011 -0.0002 -0.0062
dy=0.4, d»=0.6 :
SD 0.0128 0.0105 0.0109
MSE 0.0002 0.0001 0.0002
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[Figure 1] Densities of OLS, R-H, and MBSLS, Size : 50,100; ARMA(1,0)

Density of MBSLS, OLS, R-H: d1=0.2, d2=0.2 : Size=100

Density of MBSLS, OLS, R-H: d1=0.2, d2=0.2 : Size=50
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[Figure 2] Densities of OLS, R-H, and MBSLS, Size :
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