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I. INTRODUCTION 
 
From its humble beginnings of using descriptive statistics to ‘fit’ a 

single equation between two variables in the early 20th century (see 
Morgan, 1990), econometrics has developed into a powerful array of 
statistical tools and procedures for modeling highly complicated dynamic 
multi-equation systems using time series, cross-section and panel data 
(see Greene, 2003). Combined with a rapid accumulation of new 
economic data, together with the widespread use of statistical software on 
personal computers, the publication of applied econometric papers has 
been growing exponentially over the last two decades. 

Unfortunately for econometrics the trustworthiness of the empirical 
evidence has not improved since the early 20th century. If anything, the 
chronic problem of the untrustworthiness of published empirical evidence 
seems to have deteriorated as computing power has become more readily 
available. One can make a strong case that as the 21st century unfolds, the 
applied econometric literature is filled with a compendium of ‘study-
specific’, ‘period-specific’, and largely untrustworthy evidence, which 
collectively provide a completely inadequate empirical foundation for 
economics; see Spanos (2006). What are the main sources of this 
untrustworthiness? 

In the same paper, Spanos has argued that the primary sources of the 
untrustworthiness of empirical evidence are: 

1.  Inaccurate data: data 0x  are marred by systematic errors imbued 
by the collection and compilation process. 

2.  Incongruous measurement: data 0x  do not pertinently measure 
the concepts ξ  envisioned by the particular theory-model (Spanos, 
1995). 

3.  Substantive inadequacy: the circumstances envisaged by the 
theory-model differ ‘systematically’ from the actual phenomenon of 
interest. 

4.  Statistical misspecification: certain probabilistic assumptions 
comprising the statistical model (premises of induction) are invalid 
for data 0x . 

The main objective of this paper is to focus on statistical 
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misspecification because it constitutes the single most crucial source of 
untrustworthy evidence. As shown below, even simple forms of statistical 
misspecification can easily ruin the reliability of inference. In particular, 
the discussion will shed light on three interrelated issues: 

(i) how the problem of unreliable inferences arises under statistical 
misspecification, 

(ii) how one should address the misspecification problem in practice, 
and 

(iii) how the invocation of generic robustness arguments or/and the use 
of nonparametric methods is often misplaced when dealing with 
statistical misspecification. 

The main argument is that the most effective way to secure the 
trustworthiness of empirical evidence is via thorough Mis-Specification 
(M-S) testing in order to assess the statistical adequacy of the prespecified 
(implicitly or explicitly) statistical model. Moreover, when any departures 
from the statistical model assumptions are detected, the proper way to 
address the potential unreliability of inference problems is to respecify the 
original model with a view to secure the adequacy of the new model. 
Several widely used error-fixing strategies and invocations of generic 
robustness have been shown to be highly misleading in practice, and 
invariably make matters worse, not better. This applies to ‘error-fixing’ 
strategies like error-autocorrelation and heteroskedasticity corrections, 
heteroskedasticity/autocorrelation consistent standard errors (Greene, 
2003), etc; see Spanos and McGuirk (2001). 

Section 2 places the problem of the reliability of inference – as it 
pertain to model-based frequentist inference – in the broader context of 
empirical modeling in economics, distinguishing clearly between 
statistical and substantive adequacy. This is because researchers in 
economics often confuse statistical inadequacy with the problem of the 
unrealisticness of their structural models. Section 3 introduces the simple 
Normal model around which the discussion revolves and brings out the 
role of model assumptions in determining the relevant sampling 
distributions for inference purposes. In section 4 we consider how the 
presence of Markov dependence affects the reliability of the well-known 
t-test giving rise to disparities between the nominal and actual type I and 
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II error probabilities. These results are then extended to confidence 
interval estimation in section 5. Section 6 considers the question of testing 
the hypotheses reliably by respecifying the simple Normal model with a 
view to account for the Markov dependence; the respecified model comes 
in the form of the Autoregressive (AR(1)) model. The optimal t-test in the 
context of the AR(1) model is derived and compared with the original and 
modified t-tests giving rise to the relevant, nominal and actual error 
probabilities, respectively. Section 7 utilizes the results of sections 5 and 
7 to raise questions concerning the soundness of certain well-known 
arguments in favor of utilizing robust and/or nonparametric inference 
methods in order to deal with the unreliability of inference problem. 

 
II. MODEL-BASED INFERENCE AND ITS RELIABILITY 
 
Since the early 20th century econometric modeling has been 

increasingly relying on frequentist model-based statistical inference 
pioneered by R. A. Fisher (1922). He initiated a change of paradigms in 
statistics by recasting the then dominating Bayesian-oriented induction by 
enumeration (Pearson, 1920), relying on large sample approximations, 
into a frequentist model-based induction, relying on finite sampling 
distributions. He proposed to view the data 0x :=( 1 2, , , nx x x… ) as a 
realization of: (a) a ‘random sample’ from (b) a pre-specified 
‘hypothetical infinite population’ and made the initial choice 
(specification) of the statistical model a response to the question: 

“Of what population is this a random sample?” (Fisher, 1922, p. 
313), emphasizing that: ‘the adequacy of our choice may be tested 
posteriori’ (ibid., p. 314). 
Fisher’s notion of a prespecified statistical model can be formalized in 

terms of the stochastic process { ,kX k∈` }, underlying data 0x . This 
takes the form of parameterizing the probabilistic structure of 
{ ,kX k∈` } to specify a statistical model: 

 
(x) { (x; ), },fθ θ θ= ∈ΘM  x ,n

X∈\  for ,mΘ⊂ \  m n< . (1) 
 
(x; )f θ  denotes the joint distribution of the sample 1: ( , , )nX X=X …  
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that encapsulates the whole of the probabilistic information in (x)θM , 
by giving a general description of the probabilistic structure of 
{ , }kX k∈`  (Doob, 1953). (x)θM  is chosen to provide an idealized 
description of the mechanism that generated data 0x  with a view to 
appraise and address the substantive questions of interest. The basic idea 
is to construct statistical models using probabilistic assumptions that 
‘capture’ the chance regularities in the data with a view to adequately 
account for the underlying data-generating mechanism; see Spanos (1999). 

The quintessential example of a statistical model is the simple Normal 
model: 

 
2(x) : ( , ),kXθ μ σ∼M NIID  2: ( , ) ,θ μ σ += ∈ ×\ \   

1, 2, , , ,k n= … …   (2) 
 

where ‘ 2( , )μ σ∼NIID ’ stands for ‘distributed as Normal, Independent 
and Identically Distributed, with mean μ  and variance 2σ . 

The statistical model (x)θM  plays a pivotal role in model-based 
frequentist inference in so far as it determines what constitutes a 
legitimate: 

(a) event − any well-behaved (Borel) functions of the sample X − 
(b) assignment of probabilities to legitimate events via (x; )f θ , 
(c) data 0x  for inference purposes, 
(d) hypothesis and/or inferential claim, and 
(e) optimal inference procedure and the associated error probabilities. 
Formally an event is legitimate when it belongs to the σ -field 

generated by X (Billingsley, 1995). Legitimate data come in the form of 
data 0x  that can be realistically viewed as a truly typical realization of 
the process { , }kX k∈`  as specified by (x)θM . Legitimate hypotheses 
and inferential claims are invariably about the datagenerating mechanism 
and framed in terms of the unknown parameters θ  Moreover, the 
optimality (effectiveness) of the various inference procedures depends on 
the validity of the probabilistic assumptions constituting (x)θM ; see 
Spanos (1999). 

A major problem with statistical modeling since the 1920s has been 
articulated succinctly by Rao (2004): 
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“The current statistical methodology is mostly model-based, 
without any specific rules for model selection or validating a 
specified model.” (p. 2) 
The methodological framework proposed in Spanos (1986, 1988, 1995, 

2010) aspires to remedy this crucial weakness. The idea is to develop a 
methodology of Specification, Mis-Specification (M-S) testing and 
Respecification with a view to secure statistical adequacy: how to 
specify and validate statistical models, how to probe model assumptions, 
isolate the sources of departures, and account for them in a respecified 
model to be used as a basis for primary statistical inferences. 

Statistical adequacy refers to the validity−vis-à-vis data 0x −of the 
probabilistic assumptions comprising the statistical model (x)θM  in 
question, and provides the sole criterion for ‘when (x)θM  accounts for 
the (recurring) regularities in data 0x .’ 

Error-reliability. Statistical adequacy renders the relevant error 
probabilities ascertainable by ensuring that the nominal error probabilities 
for assessing substantive claims are approximately equal to the actual 
ones. The surest way to draw an invalid inference is to apply a .05 
significance level test when its actual − due to misspecification − type I 
error probability is closer to .99. Despite its obvious importance, securing 
the reliability of inference has been largely neglected by the modern 
statistics literature for several reasons. 

In addressing the question, ‘how can one assess the adequacy of 
(x)θM  a posteriori?’ one had to face two difficult hurdles. The first was 

to specify (x)θM  explicitly using a complete set of testable − vis-a-vis 
data 0x  − assumptions. The second, and more difficult, had to do with 
delineating the role of substantive subject matter information in 
specifying (x)θM ; see Lehmann (1990). The pivotal difficulty, which 
has ravaged the trustworthiness of empirical modeling in the social 
sciences, arises when one imposes the substantive information (theory) on 
the data at the outset. The end result is often a statistically and 
substantively inadequate estimated model, but one has no way to 
delineate the two sources of error: 

 
is the substantive information erroneous? or the inductive  
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premises mispecified?  (3) 
 

This is an example of a classic problem in philosophy of science 
known as Duhem’s problem; see Mayo (1996). To place it in proper 
context let us briefly discuss how it has stumped econometric modeling 
since the early 20th century. 

 
2.1. Statistical misspecification vs. the realisticness issue 

 
As argued in Spanos (2009), empirical modeling in economics has been 

largely dominated by the Pre-Eminence of Theory (PET) perspective 
since Ricardo (1817). This perspective asserts that modeling takes the 
form of constructing simple idealized models which capture certain key 
aspects of the phenomenon of interest, with a view to use such models to 
shed light or explain such phenomena, as well as gain insight concerning 
potential alternative policies. From the PET perspective the role of the 
data is only subordinate in the sense that it can help to instantiate such 
models (assumed to be true) by quantifying them. 

A key point in Spanos (2009) is that the PET perspective proponents 
conflate: 

(a) the unrealisticness − vis-à-vis the phenomenon of interest − of the 
substantive assumptions comprising the theory-model in question, with 
(b) the inappropriateness − vis-à-vis the data in question − of the 
probabilistic assumptions comprising the statistical model that defines 
the underlying premises for inductive inferences. 
The contrast between the unrealisticness of a theory-model and the 

adequacy of the statistical model is crucial because the types of errors one 
should probe for and guard against are very different in the two cases. 
Crudely put, one pertains to the substantive and the other to the statistical 
adequacy. Unfortunately, the PET perspective ignores this distinction and 
often foists the theory-model on the data at the outset giving rise to 
estimated models which are both statistically and substantively 
inadequate, giving rise to the Duhemian ambiguity in (3). 

The distinction between statistical and substantive adequacy is 
important because the presence of statistical misspecification will 
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undermine any prospect of reliably probing potential substantive 
errors/omissions. Statistical adequacy is necessary for being able to 
ascertain the reliability of any inductive inference pertaining to 
substantive questions of interest. Without it no learning from data is 
possible because one effectively revokes the ascertainment of the 
reliability of statistical inference rendering it tantamount to a crystal ball 
procedure! This does not pertain to the realisticness of the theory as such. 
Having said that, it is important to note that the realisticness of a theory 
issue should be discussed by juxtaposing the theory-model to the 
phenomenon of interest as it relates to the particular data 0z , using a 
statistically adequate model. 

The realisticness of the theory is an issue that pertains to the 
substantive adequacy of the estimated model vis-à-vis the phenomenon of 
interest, i.e. whether the model in question provides a veritable 
explanation for that phenomenon. Substantive adequacy concerns the 
extent to which the estimated model accounts for all systematic aspects of 
the reality it aims to explain in a statistically and substantively adequate 
way, shedding light on the phenomenon of interest, i.e. ‘learning from 
data’. Such inadequacy can easily arise from impractical ceteris paribus 
clauses, external invalidity issues, missing confounding factors, false 
causal claims, etc.; see Guala (2005), Hoover (2006). Securing 
substantive adequacy calls for additional probing of (potential) errors in 
bridging the gap between theory and data. However, without securing 
statistical adequacy first, such probing is likely to be misleading because 
the statistical procedures employed cannot be trusted to yield reliable 
inferences; one might as well use a crystal ball for that! 

For the proponents of the PET perspective the crystal ball takes the 
form of assessing whether the estimated model in question “works” or not, 
where the metric “works” is defined in terms of a variety of criteria that 
do not include statistical adequacy! These criteria often include certain 
statistical indicators, such as goodness-of-fit and goodness-of-prediction 
statistics, as well as several subjective judgements pertaining to the 
model’s capacity to ‘shed light’ and/or confirm preconceived beliefs by 
the modeler. Leaving aside the subjective judgements for the moment, 
what is not appreciated enough in this literature is that, without statistical 
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adequacy, statistical measures of ‘goodness’ are meaningless artifacts; see 
Spanos (1989). Indeed, Friedman’s (1953), p. 8, highly influential and 
widely rehearsed catchphrase: 

“Viewed as a body of substantive hypotheses, theory is to be 
judged by its predictive power for the class of phenomena which is 
intended to ‘explain’.” 

begs the question: 
► How can one reliably appraise the predictive power of a theory when 

the reliability of the very tools (statistical inference) used in that 
assessment is at best unknowable and at worst highly questionable? 

Friedman goes on to make a case for confronting theory with data: 
“Only factual evidence can show whether it is ‘right’ or ‘wrong’”(p. 
8) 

which also begs a related question: 
► How does one establish ‘factual evidence’ without statistical 

adequacy? 
Raw data are a far cry from reliable evidence one can use to confront 
theories with; see Spanos (2010). 

 
2.2. Addressing the Duhemian ambiguity 

 
The key to dealing with this crucial Duhemian ambiguity in (3) is to 

distinguish, ab initio, between statistical and substantive information; 
Spanos (1986). The underlying rationale is that statistical adequacy is a 
precondition for securing the reliability of the inference procedures used 
in appraising substantive adequacy because errorreliability [the actual 
error probabilities approximate closely the nominal ones]. A statistically 
misspecified model will lead inductive inferences astray. 

The big hurdle in getting a handle on the reliability of inference has 
been to establish a notion of ‘statistical information’ that can be untangled, 
at least ab initio, from substantive information. 

 
A. A purely probabilistic construal of a statistical model 
Spanos (1986) proposed a notion of statistical information that relates 

directly to the chance regularity patterns (distribution, dependence and 
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heterogeneity) exhibited by data 0x  when the latter is viewed as a 
realization of a generic − free from any substantive information − 
stochastic process { , : (1, 2, )}kX k∈ =` … . This notion enables one to put 
forward a purely probabilistic construal of a statistical model (x)θM  by 
viewing it as a particular parameterization of the probabilistic structure of 
a process { , }kX k∈` ; Spanos (1995). 

Substantive subject matter information usually enters empirical 
modeling in the form of a structural model, say (x)ϕM  which 
constitutes an estimable form of a theory, in view of the specific data 0x . 

 
B. Reconciling substantive and statistical information 
The statistical model (x)θM  is built exclusively on statistical 

systematic information in data 0x  and is selected so as to meet two 
interrelated aims: 

(I) to account for the chance regularities in data 0x  by choosing a 
probabilistic structure for the stochastic process { , }kX k∈`  underlying 

0x  so as to render it a ‘typical realization’ thereof, and 
(II) to parameterize the probabilistic structure of { , }kX k∈`  in the 

form of an adequate statistical model (x)θM  that would embed (x)ϕM  
in its context, via reparametrization/restriction ( , ) 0θ ϕ =G ; formal 
assessment of the latter provides a way to reconcile the two sources of 
information; Spanos (1990, 2007). 

The Probabilistic Reduction (PR) approach (Spanos, 1989) provides 
the framework for securing these objectives by: 

(i) specifying (x)θM  in terms of a complete list of (internally 
consistent) probabilistic assumptions, in a form that is testable vis-à-vis 
data 0x , and 

(ii) supplementing that with a statistical generating mechanism (GM) 
to provide a bridge between the statistical and substantive information. 

 
III. THE OPTIMALITY AND RELIABILITY OF 

INFERENCE 
 
The primary motivation underlying the Probabilistic Reduction 

perspective is that in statistics the reliability of any inference procedure 
(estimation, testing and prediction) depends crucially on the validity of 
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the premises: the probabilistic assumptions comprising the statistical 
model in the context of which the inference takes place. Assuming the 
validity of such premises, the optimality of inference methods in 
frequentist statistics is defined in terms of their capacity to give rise to 
valid inferences (trustworthiness), which is assessed in terms of the 
associated error probabilities: how often these procedures lead to 
erroneous inferences. In the case of Confidence Interval (CI) estimation 
the assessment is often gauged in terms of minimizing the coverage error 
probability: the probability that the interval does not contain the true 
value of the unknown parameter(s). In the case of hypothesis testing the 
assessment is ascertained in terms of minimizing the type II error 
probability: the probability of accepting the null hypothesis when false, 
for a given type I error probability; see Cox and Hinkley (1974). Hence, 
the reliability of a frequentist inference procedure depends on two 
interrelated pre-conditions: 

(a) adopting optimal inference procedures, in the context of 
(b) a statistically adequate model. 
It is also well-known that when any of the probabilistic assumptions 

comprising the premises of a statistical model are invalid, the reliability 
of inference procedures is called into question; see Pearson (1931), 
Bartlett (1935) for early discussions. 

What is less well-known is how the unreliability of inference manifests 
itself in empirical modeling. In frequentist statistics, the unreliability of 
inference is reflected in the difference between the nominal error 
probabilities, derived under the assumption of valid premises, and the 
actual error probabilities, derived taking into consideration the particular 
departure(s) from the premises; see Spanos and McGuirk (2001). Indeed, 
this difference provides a way to assess the extent of the unreliability of 
inference. In the terminology of statistical ‘robustness’, this difference 
provides a measure of the sensitivity of the inference procedure to the 
particular departure from the model assumptions; see Box (1953), Box 
and Tiao (1973), Staudte and Sheather (1990), inter alia. 

The main argument of this paper is that reliable and precise inferences 
are the result of utilizing the relevant error probabilities obtained by 
ensuring (a)-(b). In practice, the unreliability of inference problem often 
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stems from the inability to utilize the relevant error probabilities arising 
from being unaware of the presence of departures from the premises. 
However, even if one were in a position to utilize the actual error 
probabilities, that, by itself, does not address the unreliability of inference 
problem in general. This is because the presence of misspecification calls 
into question, not only the appropriateness of the nominal error 
probabilities, but also the optimality of the original inference procedure; 
without (b), (a) makes little sense. Hence, the unreliability of inference 
problem is better addressed by respecifying the original statistical model 
and utilizing inference methods that are optimal in the context of the new 
(adequate) premises; see Spanos (1986). 

The distinctions between nominal, actual and relevant error 
probabilities is important because the traditional discussion of robustness 
compares the actual with the nominal error probabilities, but downplays 
the interconnection between (a) and (b) above. Indeed, well-rehearsed 
mantras like: 

“All models are misspecified, to ‘a greater or lesser extent’, because 
they are, by definition mere idealizations and approximations. 
Moreover, slight departures from the assumptions will only lead to 
minor deviations from the optimal inferences,”  
are shown to be highly misleading in practice. It is argued that invoking 

generic robustness results often amounts to ‘glossing over’ the 
unreliability of inference problem instead of addressing it. 

 
3.1. The simple Normal model and the role of inductive premises 

 
The discussion of statistical misspecification and respecification will 

focus on the very simple statistical model, in order to derive analytical 
results, but these results can be easily extended to the linear regression 
and related models that dominate econometric modeling. The model of 
focus is the simple Normal model as specified in table 1 in terms of a 
statistical Generating Mechanism (GM) and the probabilistic assumptions 
[1]-[4]; see Spanos (1999). 
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[Table 1] Simple Normal Model 
 

Statistical GM:  , .t tX u tμ= + ∈`   
[1] Normality:        (.,.),tX ∼N  
[2] constant mean:    ( ) : ,tE X μ=  
[3] constant variance:  2( ) : ,tVar X σ  } t∈`  (4) 

[4] Independence: { , }tX t∈` is an independent process.  
 
It is well known (see Cox and Hinkley, 1974) that the estimators: 
 

1

1 ,n
tt

X X
n =

= ∑  2 2
1

1 ( )
( 1)

n
tt

s X X
n =

= −
− ∑ , 

 
have certain optimal properties like consistency, unbiasedness, efficiency, 
sufficiency, etc. These properties stem from their sampling distributions: 

 
2

( , ),X
n
σμ∼N  

2
2

2

( 1) ( 1)n s nχ
σ
−

−∼ , (5) 

 

Where ‘ 2( , )n
σμ∼N ’ stands for distributed as Normal with mean μ  

and variance 2

n
σ ’ and ‘ 2 ( 1)nχ − ’ denotes the chi-square distribution with 

1n−  degrees of freedom. What is often not appreciated enough is that 
these distributional results hold only when the model assumptions [1]-[4] 
are valid. In particular, assumptions [1]-[4] are explicitly invoked in 
deriving the mean and variance of these estimators as indicated below: 

 
[2]

1

1( ) n

t
E X

n
μ μ

=
= =∑ , 

2[4] [3]
2

2 21 1

1 1( ) ( )n n
tt t

Var X Var X
n n n

σσ
= =

= = =∑ ∑ , 
[2]&[4] [3]

2 2 2 2
1

1( ) ( ) ( )
( 1)

n
tt

E s E X nE X
n

μ μ σ
=

⎡ ⎤= − − − =⎣ ⎦− ∑ , 

4[4] [1]&[3]
2 2

2 1

1 2( ) ( )
( 1) ( 1)

n
tt

Var s Var X X
n n

σ
=

= − =
− −∑ . (6) 
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The validity of [1]-[4] is also needed for Student’s (1908) famous 
result: 

 
( ) ( 1)n X n

s
μ−

−∼ St , (7) 

 
where ( )mSt denotes the Student’s t distribution with m  degrees of 
freedom. 

Point estimation is often considered inadequate for the purposes of 
scientific inquiry because a ‘good’ point estimator ˆ ( )nθ X  by itself, does 
not provide any measure of the reliability and precision associated with 
the estimate 0

ˆ (x )nθ . This is the reason why 0
ˆ (x )nθ  is often 

accompanied by some significance test result (e.g. p-value) associated 
with the generic hypothesis 0θ = . 

Interval estimation rectifies this crucial weakness of point estimation 
by providing the relevant error probabilities associated with inferences 
pertaining to ‘covering’ the true value of θ  This comes in the form of 
the Confidence Interval (CI): 

 
( ( ) ( )) 1L Uθ α≤ ≤ = −X XP , (8) 

 
where the statistics ( )L X  and ( )U X  denote the lower and upper 
(random) bounds that ‘covers’ the true value *θ  with probability (1 )α− , 
or equivalently, the ‘coverage error’ probability is α . 

Example. In the case of the simple Normal model (table 1): 
 

2 2
1s sX c X c

n n
α αμ α

⎛ ⎞⎛ ⎞ ⎛ ⎞− ≤ ≤ + = −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

P , (9) 

 
provides a (1 )α−  CI for μ . The evaluation of the coverage probability 
(1 )α−  is based on (7). 

What is often not appreciated sufficiently about estimation in general, 
and CIs in particular, is the underlying reasoning that gives rise to 
sampling distribution results such as (5) and (7). The reasoning that 
underlies estimation is factual, based on evaluating the relevant sampling 
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distributions ‘under the True State of Nature’ (TSN), i.e. the true data-
generating mechanism: * *(x) { (x; )}f θ=M , x n

X∈\ , where *θ  
denotes the true value of the unknown parameter(s) θ . Hence, the 
generic CI in (8) is more accurately stated as: 

 
( ( ) ( );L Uθ≤ ≤X XP  *) 1θ θ α= = − ,  (10) 

 
where *θ θ=  denotes ‘evaluated under the TSN’. The remarkable thing 
about factual reasoning is that one can make probabilistic statements like 
(10), with a precise error probability (α ), without knowing the true *θ . 

Example. In the case of the simple Normal model, the distributional 
results (5) and (7) are more accurately stated as: 

 
2TSN
*

*,X
n
σμ

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼ N , 
2 TSN

2
2
*

( 1) ( 1)n s nχ
σ
−

−∼ ,  

* TSN( ) ( 1)n X n
s

μ−
−∼ St , (11) 

 
where * 2

* *: ( , )θ μ σ=  denote the ‘true’ values of the unknown parameters 
* 2: ( , )θ μ σ= . 
Prediction is similar to estimation in terms of its underlying factual 

reasoning, but it differs from it in so far as it is concerned with finding the 
most representative value of kX  beyond the observed data, say 1nX + .  
An optimal predictor of 1nX +  is given by: 

 

1
ˆ

nX X+ =  (12) 
 

whose reliability can be calibrated using the sampling distribution of the 
prediction error: 
 

TSN
2

1 1 *
1ˆ ( ) (0, (1 ))n nu X X
n

σ+ += − +∼ N   (13) 

 
to construct a (1 )α−  prediction interval: 
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2 2

*
1

1 1( (1 )) ( (1 ); 1nX c s X X c s
n nα α θ θ α+

⎛ ⎞
− + ≤ ≤ + + = = −⎜ ⎟⎜ ⎟

⎝ ⎠
P .  (14) 

 
Hypothesis testing. In contrast to estimation, the reasoning underlying 

hypothesis testing is hypothetical. The sampling distribution of a test 
statistic is evaluated under several hypothetical scenarios concerning the 
statistical model (x)θM , referred to as ‘under the null’ and ‘under the 
alternative’ hypotheses of interest. 

Example. Consider testing the hypotheses): 
 

0 0:H μ μ≤  vs. 1 0:H μ μ> , (15) 
 

in the context of the simple Normal model. What renders the hypotheses 
in (15) legitimate is that: (i) they pose questions concerning the 
underlying data-generating mechanism, (ii) they are framed in terms of 
the unknown parameter θ , and (iii) in a way that partitions (x)θM . 

The N-P test for the hypotheses (15) 1 1( ) : { ( ), )}T Cα τ= X , where: 
 

0( )( ) n X
s

μτ −
=X , 1( ) {x : (x) }C d cαα = > ,  (16) 

 
can be shown to be Uniformly Most Powerful (UMP) in the sense that, its 
type I error probability (significance level) is: 

 
[a] 

0 0max (x : ( ) ; )c Hμ μ αα τ≤= >XP  

0(x : ( ) ; )cατ μ μ= > =XP , (17) 
 

and among all the α -level tests 1( )T α  has highest power (Lehmann, 
1986): 
 

[b] 1(x : ( ) ; )cατ μ μ> =XP ,  for all 1 0μ μ> ,  

1 0μ μ γ= + , 0γ ≥ ; (18) 
 

In this sense, a UMP test provides the most effective α -level probing 
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procedure for detecting any discrepancy ( 0)γ ≥  of interest from the null. 
To evaluate the error probabilities in (17) and (18) one needs to derive 

the sampling distribution of ( )τ X  under several hypothetical values of 
μ  relating to (6): 

 

[a] 
0

( ) ( 1)X n
μ μ

τ
=

−∼ St ,  [b] 
1

1( ) ( ( ); 1)X n
μ μ

τ δ μ
=

−∼ St ,  for any  

1 0μ μ> ,  (19) 
 

where 1 0( )
1( ) n μ μ

σδ μ −=  is known as the non-centrality parameter. The 
sampling distribution in (19)[a] is also used to evaluate Fisher’s (1935) p-
value: 

 
0 0 0(x ) (x : ( ) (x ); )p τ τ μ μ= > =XP  (20) 

 
where a small enough 0(x )p  can be interpreted as indicating 
discordance with 0H . 

Comparing the sampling distributions in (19) with those in (11) brings 
out the key difference between hypothetical and factual reasoning: in the 
latter case there is only one unique scenario, but in hypothetical reasoning 
there is usually an infinity of scenarios. The remarkable thing about 
hypothetical reasoning is that one can pose sharp questions by comparing 

(x)θM , x n
X∈\ , for different hypothetical values of θ  with *

0(x )M , 
to learn about *(x)M , x n

X∈\ . This often elicits more informative 
answers from 0x  than factual reasoning. This difference is important in 
understanding the nature of the error probabilities associated with each 
type of inference as well as in interpreting the results of these procedures. 

In particular, factual reasoning can only be used pre-data to generate 
the relevant error probabilities, because when data 0x  is observed (i.e. 
post-data) the unique factual scenario has been realized and the sampling 
distribution in question becomes degenerate. This is the reason why the p-
value in (20) is a well-defined postdata error probability, but one cannot 
attach error probabilities to an observed CI: 0 0( (x ) (x ))L Uθ≤ ≤ . In 
contrast, the scenarios in hypothetical reasoning are equally relevant to 
both pre-data and post-data assessments. Indeed, one can go a long way 
towards delineating some of the confusions surrounding frequentist 
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testing, as well as addressing some of the criticisms leveled against it – 
statistical vs. substantive significance, with a large enough n one can 
reject any null hypothesis, no evidence against the null is not evidence for 
it – using post-data error probabilities to provide an evidential 
interpretation of frequentist testing based on the severity rationale; see 
Mayo and Spanos (2006) for further discussion. 

Numerical example. Let us assume that 0 0μ = , 1s = , 100n = , and 
.05α = ( 1.66)cα = . The power of the t-test (16) at different values of 

1μ μ=  is given in table 2. 
 

[Table 2] Power of 1T (.05) for different 1 0μ μ>  
 

1μ  .01 .02 .05 .1 .15 .2 .3 .4 .5 .6 
δ  0.1 0.2 0.5 1.0 1.5 2.0 3.0 4.0 5.0 6.0 

1( )π μ  .061 .074 .121 .258 .437 .637 .911 .991 .999 1.0 

 
As expected, the power of 1( )T α  increases as the discrepancy between 

1μ  and 0μ  increases, ceteris paribus. 
 
IV. HYPOTHESIS TESTING AND MISSPECIFICATION 
 
Consider the case where assumption [4] (see table 1) is false, and the 

sample is Markov dependent, in the sense that: 
 

[5]  Markov dependence: ( , ) i j
i jCorr X X ρ −= , 1 1ρ− < < ,  

i j≠ , , 1,i j n= … .  (21) 
 
The choice of this form of dependence is made on the basis of 

accumulated empirical evidence that most economic time series data 
exhibited such a form of dependence with a positive ρ  in the range 
.5 .99ρ≤ ≤ .  

Misspecification affects the reliability of test 1( )T α  by altering the 
sampling distribution of ( )τ X  under 0H  and 0H . This, in turn, 
distorts its nominal error probabilities (type I and II) rendering them 
different from the actual ones based on the correct distributions that allow 
for the misspecification. Let us consider the consequences of this 
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particular departure for the error probabilities of the test 1( )T α , 
beginning with the sampling distribution of X . 

 
4.1. Misspecification and the sampling distribution of X  

 
If we return to the derivations in (6), it’s easy to see that the Normality 

of the sampling distribution of X  will not be affected, the mean of X  
will stay the same as in (6), but its variance will change because 
assumption [4] no longer holds. In particular, the covariance will no 
longer be zero but: 

 
2( , ) 0i j

i jCov X X σ ρ −= ≠ , i j≠ , , 1,i j n= … .  (22) 

 
Hence, instead of (6) the variance of X  takes the form (see Anderson, 
1971): 

 

( )2 1 1 1

1( ) ( ) 2 ( , )n n n
i i ji i j i

Var X Var X Cov X X
n = = = +

= +∑ ∑ ∑  

2 2
2 1 1

1 2 (1 )n n k
i k

kn
n n

σ σ ρ
= =

⎛ ⎞= + −⎜ ⎟
⎝ ⎠
∑ ∑ , for k i j= − , 

2 2

2

2 [ (1 ) 1 ]1 ( )
(1 )

n

n
n c

n n n
σ ρ ρ ρ σ ρ

ρ
⎛ ⎞− − +

= + =⎜ ⎟−⎝ ⎠
, 

2

2 2

2 ( (1 ) 1 ) 1 2 (1 )( ) 1
(1 ) 1 (1 )

n

n
nc

n n
ρ ρ ρ ρ ρ ρρ

ρ ρ ρ
⎛ ⎞ ⎛ ⎞− − + + −

= + = −⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠
. (23) 

 
This implies that the actual sampling distribution of X  – assuming (21) 
instead of [4] – is no longer as in (5), but instead: 
 

2 ( ), ncX
n

σ ρμ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∼N , (24) 

 
4.2. Misspecification and the sampling distribution of 2s  

 
The effect of the presence of dependence (21) on the sampling 
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distribution of 2s  is more complicated. It remains chi-square (since 
Normality is retained), but its mean and variance are very different from 
those in (6). In particular, the mean of 2s  takes the form (see Anderson, 
1971): 

 
12 2 2
1

1( ) [ 2 (1 ) ( , )]n
i jk

kE s Cov X X
n n

σ σ −

=
= − + −∑ , for k i j= − , 

2 2
12
1

2 (1 )n k
k

k
n n n
σ σσ ρ−

=

⎡ ⎤
= − + −⎢ ⎥

⎣ ⎦
∑  

2
2 2

1 2 ( (1 ) 1 )1
(1 )

nn
n n

ρ ρ ρσ
ρ

⎛ ⎞− − +
= − −⎜ ⎟−⎝ ⎠

, 

2
2 2

2 2

( 1)(1 ) 2 ( (1 ) 1 ) ( )
(1 )

n

n
n n n d

n
ρ ρ ρ ρσ σ ρ

ρ
⎛ ⎞− − − − − +

= =⎜ ⎟−⎝ ⎠
, 

2

2 2

( 1)(1 ) 2 ( (1 ) 1 )( )
(1 )

n

n
n n nd

n
ρ ρ ρ ρρ

ρ
⎛ ⎞− − − − − +

= ⎜ ⎟−⎝ ⎠
. (25) 

 
Using the relationship between the mean and variance of a chi-square 
distribution, we can deduce that the actual sampling distribution of 2s  is 
no longer as in (5), but takes the form: 
 

2
2 2( ) ( 1)

1
nds n

n
σ ρ χ
⎛ ⎞

−⎜ ⎟−⎝ ⎠
∼  or 

2
2

2

( 1) ( 1)
( )n

n s n
d

χ
σ ρ

−
−∼ . (26) 

 
4.3. Misspecification and the error probabilities of the t-test 

 
It is important to emphasize at the outset of the discussion that follows 

that the situation envisaged is a scenario where one applies the t-test (16) 
assuming that assumptions [1]-[4] are valid, but in fact [4] is invalid and 
instead (22) holds. 

It’s clear from the above derivations of the sampling distributions of 
2( , )X s  under Markov dependence (21), that the sampling distribution of 

( )τ X  will also be affected. The pivotal quantity (7) is no longer a ratio 
whose numerator is standard Normal and the denominator, under the 
square bracket, is chi-square distributed. In view of (24) and (26) that 
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ratio takes the form: 
 

*

2

2

( )
( ) ( )( ; ) ( 1)

( )( 1)
( 1) ( )

n

n

n

n X
c n Xh n

sn s
n d

μ
σ ρ μμ

λ ρ
σ ρ

−

−
= = −

−
−

X ∼ St , (27) 

2

2

( ) [ (1 ) 2 ( (1 ) 1 )]( )
( ) [ ( 1)(1 ) 2 ( (1 ) 1 )]

n
n

n n
n

c n n n
d n n n

ρ ρ ρ ρ ρλ ρ
ρ ρ ρ ρ ρ

− + − − +
= =

− − + − − +
.  (28) 

 
Hence, the actual distribution of ( )τ X  under 0H  becomes: 

 
0

0( )( ) ( ) ( 1)
H

n
n X n

s
μτ λ ρ−

= −X ∼ St , or  

0
* 0( )( ) ( 1)

( )

H

n

n X n
s

μτ
λ ρ
−

= −X ∼ St .  (29) 

 
[Table 3] Type I error probability of 1( )T α , Misspecification ( , )i jCorr X X =  

i jρ − , 1 1ρ− < <  
 

0 1ρ+< <  ( )nλ ρ+
 * ( )α ρ+

 *( )α ρ−
 ( )nλ ρ−

 1 0ρ−− < <  

0.0 1.0 .050 .050 1.0 0.0 
.05 1.057 .060 .043 0.956 -.05 
.1 1.111 .069 .035 0.909 -.1 
.2 1.232 .090 .023 0.821 -.2 
.3 1.371 .114 .013 0.738 -.3 
.4 1.538 .142 .007 0.659 -.4 
.5 1.747 .172 .003 0.582 -.5 
.6 2.022 .207 .001 0.505 -.6 
.7 2.416 .247 .0001 0.426 -.7 
.8 3.069 .295 .00000 0.341 -.8 
.9 4.563 .358 .00000 0.240 -.9 
.99 16.881 .461 .00000 0.0905 -.99 

 
In view of (29), the actual type I error *( )α  is likely to be different 

fromthe nominal value ( )α . To find the actual type I error probability 
we need to evaluate the tail area of the distribution of ( )τ X  beyond 
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1.66cα = . In view of (29) one can deduce: 
 

*
0 0( ( ) ; ) ;

( )n

cX c H Z α
αα τ μ μ

λ ρ

⎛ ⎞
= > = > =⎜ ⎟⎜ ⎟

⎝ ⎠
P P , where  

( 1)Z n −∼ St . 
 

The results in table 3 show that the discrepancy between the actual and 
nominal type I error probability depends crucially on the sign of ρ . 

A. For 0 1ρ+< <  the actual type I error probability *( )α ρ+  
increases as 1ρ+ → . 
B. For 1 0ρ−− < <  the actual type I error probability *( )α ρ−  
decreases as 1ρ− → − . 
It must be emphasized that in both cases the reliability of the t-test in 

(16) is undermined in so far as the actual error probability is different 
from the nominal one. Its assumed trustworthiness relating to the type I 
error (α ) has been compromised. One will apply the t-test in (16) 
thinking that it will reject a true null hypothesis only 5% of the time when, 
in fact, its erroneous rejection frequency is either much higher or much 
lower! In both cases, not knowing *α  will lead to unreliable inferences. 

Turning our attention to the type II error probability, in view of (24) 
and (26), the actual distribution of ( )τ X  under 1H  is now: 

 
1

0( )( ) ( ) ( ; 1)n
n X n

s

μ μμτ λ ρ δ
=−

= −X ∼ St , or  

1
* 0( )( ) ( ; 1)

( )n

n X n
s

μ μμτ δ
λ ρ

=−
= −X ∼ St   (30) 

 
where 1 0( )n μ μ

σδ −= . This suggests that the actual power of the t-test in 
(16) should be evaluated (for ( 1)Z n −∼ St ) using: 
 

*
1 1 1( ) ( ( ) ; ( ))X c Hαπ μ τ μ= >P  

1 0
1

( )1 ;
( )n

nZ c
sα
μ μ μ μ

λ ρ

⎛ ⎞⎡ ⎤−
= > − =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠
P . 
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In direct analogy to the significance level, the presence of Markov 
dependence affects the power of the t-test differently depending on the 
sign of ρ . 

 
4.4. Positive dependence and the power of the t-test 

 
[Table 4] Power *

1( )π μ  of 1( )T α  under Misspecification 
 

ρ  ( )nλ ρ  *(.01)π  * (.02)π *(.05)π *(.1)π *(.15)π *(.2)π *(.3)π  * (.4)π  

0.0 1 .061 .074 .121 .258 .437 .637 .911 .991 
.05 1.057 .072 .085 .138 .267 .440 .626 .896 .985 
.1 1.111 .082 .096 .149 .277 .443 .620 .885 .981 
.2 1.232 .104 .119 .174 .297 .448 .608 .860 .970 
.3 1.371 .129 .145 .200 .316 .454 .598 .835 .955 
.4 1.538 .156 .172 .226 .334 .459 .587 .807 .934 
.5 1.747 .187 .203 .254 .353 .464 .567 .778 .908 
.6 2.022 .221 .236 .284 .372 .469 .556 .745 .875 
.7 2.416 .260 .274 .316 .393 .474 .515 .710 .832 
.8 3.069 .306 .318 .353 .415 .479 .544 .668 .776 
.9 4.563 .367 .375 .400 .443 .486 .530 .615 .695 
.99 16.881 .463 .466 .473 .484 .496 .508 .532 .555 

 
In table 4 the power of the t-test is evaluated for different discrepancies 
1 0( )μ μ−  and different positive values of ρ  The main conclusion that 

emerges from this table is that the UMP property of the t-test is ruined 
under positive Markov dependence. To be more specific, under this 
misspecification, the t-test has become a very unreliable procedure 
because as 1ρ →  its capacity to detect small discrepancies 
(.01,.02,.1,.15) increases (hypersensitized), but its capacity to detect large 
discrepancies (.2,.3,.4,…) decreases (desensitized). The threshold: 

†
0

c s
n
αμ μ= + , separating ‘small’ †

1( )μ μ≤  from ‘large’ †
1( )μ μ>  

discrepancies is incidental, depending on: (i) the prespecified α  (ii) the 
magnitude of s , and (iii) the sample size n ; in the above example 

† 0.166μ = . For ‘small’ discrepancies  †
1( )μ μ≤  the power increases 

toward an upper bound of .5, and for ‘large’ discrepancies †
1( )μ μ>  the 

power decreases toward the lower bound of .5 as 1ρ → . When 0H  is 
rejected one would not know if it’s because 0H  is false or a 
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hypersensitized t-test is picking up on truly ‘trivial’ discrepancies. 
Envisioning the test metaphorically as a smoke alarm and the null as 

‘no fire’, the t-test has been transformed into a defective smoke alarm 
which has the tendency to go off when burning toast, but it will not be 
triggered off by the smoke generated when a house is fully ablaze; see 
Mayo (1996), p. 403. If we combine this with its enhanced proclivity to 
go off when nothing is burning, the t-test has become a (practically) 
useless smoke alarm! 

 
4.5. Negative dependence and the power of the t-test 

 
In direct analogy to table 4, table 5 shows the power of the t-test 

evaluated for different discrepancies 1 0( )γ μ μ= −  as they relate to 
different negative values of ρ  The main conclusion that emerges from 
this table is that, similarly to table 4, the UMP property of the t-test has 
been ruined by the presence of negative Markov dependence. At first 
sight it looks as though the probativeness of this test has been enhanced 
because it its capacity to detect small discrepancies (.01,.02,.1,.15) 
decreases, but its capacity to detect large discrepancies (.2,.3,.4,…) 
increases. 

 
[Table 5] Power *

1( )π μ  of 1( )T α  under Misspecification 
 

ρ  ( )nλ ρ  *(.01)π  * (.02)π *(.05)π *(.1)π *(.15)π *(.2)π *(.3)π  * (.4)π  

0.0 1 0.061 .074 .121 .258 .437 .637 .911 .991 
-.05 0.956 .053 .065 .114 .246 .434 .639 .918 .992 
-.1 0.909 .045 .056 .102 .235 .430 .645 .928 .994 
-.2 0.821 .030 .039 .080 .212 .423 .660 .947 .997 
-.3 0.738 .019 .025 .060 .187 .414 .677 .964 .999 
-.4 0.659 .010 .015 .041 .160 .404 .696 .978 .9999 
-.5 0.582 .004 .007 .025 .130 .392 .720 .988 1.00 
-.6 0.505 .001 .002 .012 .097 .376 .749 .995 1.00 
-.7 0.426 .0002 .0004 .004 .062 .354 .787 .999 1.00 
-.8 0.341 .0000 .0000 .0004 .028 .320 .839 .9999 1.00 
-.9 0.240 .0000 .0000 .0000 .004 .253 .920 1.00 1.00 

-.99 0.091 .0000 .0000 .0000 .0000 .041 .9999 1.00 1.00 
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A moment’s reflection, however, indicates that this apparent 
improvement is illusory. For large enough values of ρ  the t-test has 
very low capacity to detect a whole range of discrepancies 

†
0 1( )μ μ μ< ≤  even if present. For ‘small’ discrepancies †

1( )μ μ≤  the 
power decreases toward a lower bound of 0, and for ‘large’ discrepancies 

†
1( )μ μ>  the power increases toward an upper bound of 1.0 as 1ρ → − . 
The problem is that when 0H  is not rejected, one does not know 

whether it’s because 0H  is true or the discrepancy lies within the ‘small’ 
range †

0 1( )μ μ μ< ≤  and thus under the radar of this test. 
Doesn’t the increase in power for larger discrepancies †

1( )μ μ>  
compensate for its insensitivity to smaller discrepancies? It does not, 
because the threshold †μ  is incidentally determined and depends on 
unknown parameters; a substantive discrepancy of interest could easily be 
within the ‘small’ range! This argument calls into question the 
conventional wisdom as expressed by Staudte and Sheather (1990), that 
“we can live with negative dependence, but should not use the t-test in the 
presence of positive dependence” (ibid., p. 168). As argued in Mayo and 
Spanos (2006), the reliability of inference depends crucially on being able 
to ascertain correctly the relevant error probabilities associated with the 
particular inference. 

 
V. CONFIDENCE INTERVALS AND MISSPECIFICATION 
 
As mentioned above, the sampling distribution underlying Confidence 

Intervals (CIs) for μ  is that of the pivotal quantity: 
 

* TSN
* ( )( ; ) ( 1)n Xh n

s
μμ −

= −X ∼ St , (31) 

 
where the evaluation is under the ‘true state of nature (tsn)’; *μ  being 
the ‘true’ value of μ . Using this distribution we can derive a (1 2 )α−  
two-sided CI of the form:  
 

*( : ( )) ( ) ( )s sCI X c X c
n nα αμ μ μ⎛ ⎞∈ = − ≤ < +⎜ ⎟

⎝ ⎠
XP P  

1 2α= − . (32) 
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of length 2 ( )s
n

cα ; 2α  denotes the nominal coverage error probability. 
Example. For 0.6x = , .025α = , 1.984cα = , 1s =  and 100n = , 

the observed 95% CI (of length 0.397) is: 
 

0(x ) [0.402, 0.798]CI = . (33) 
 
However, when assumption [4] is false, and instead (21) is the 

appropriate assumption, any inference based on (32) is likely to be 
unreliable. This is because the actual sampling distribution of the pivotal 
quantity *( , )h μX  is now:  

 
* TSN

* ( )( ; ) ( 1)
( )n

n Xh n
s

μμ
λ ρ
−

= −X ∼ St .  (34) 

 
Hence, the actual coverage probability of the CI (of length ( )2 ( )ns

n
c λ ρ
α ) 

becomes: 
 

*( ) ( )
( : ( )) ( ) ( )n ns s

CI X c X c
n nα α

λ ρ λ ρ
μ μ μ

⎛ ⎞
∈ = − ≤ < +⎜ ⎟⎜ ⎟

⎝ ⎠
XP P  

*1 2α= − .  (35) 
 
As in the case of hypothesis testing, the nature of unreliability that the 

presence of Markov dependence afflicts on the above CI depends on the 
sign of ρ  Let us consider the two cases separately. 

 
5.1. Positive dependence and the observed CI 

 
Example. In view of (35), when the Markov correlation is 08ρ = , 

( ) 3.069nλ ρ = , the actual .95 observed CI turns out to be: 
 

0(x ) [ 0.009,1.209]CI = − , 
 

which is not only different from the nominal one in (33), but its actual 
length has increased by a factor of ( )nλ ρ  to 1.20. In addition, the 



ARIS SPANOS: STATISTICAL MISSPECIFICATION AND THE RELIABILITY OF INFERENCE  191 

actual coverage error probability of the original CI ( )CI X  is not 2α  
but *2α : 
 

*
* ( )(1 2 ) 1.984 1.984n X

s
μα

⎛ ⎞−
− = − ≤ <⎜ ⎟⎜ ⎟

⎝ ⎠
P  

*( ).647 .647 .481
( )n

n X
s

μ
λ ρ

⎛ ⎞−
= − ≤ < =⎜ ⎟⎜ ⎟

⎝ ⎠
P . 

 
What we thought was an observed 0(x )CI  ([0.402, 0.798]) , arising 

from .95 coverage probability CI ( )CI X  turns out to be located 
somewhere else ([ .009,1.209])−  and arising from a CI with actual 
coverage probability of only .481. The table 6 below shows how 
misleading the nominal CI can be for different values of ρ . 

It is interesting to note that if the above observed CIs were to be used 
as surrogate tests, i.e. reject any null hypothesis for μ  whose value falls 
outside the observed CI, the results of table 6 indicate substantial scope 
for misleading inferences for larger values of ρ ; see Mayo and Spanos 
(2006). 

 
[Table 6] CIs under Misspecification 
 

ρ  ( )nλ ρ  Actual observed CI *(1 2 )α−  

0.0 1 [0.402, 0.798] .950 
.05 1.057 [0.390, 0.810] .936 
.1 1.111 [0.380, 0.820] .923 
.2 1.232 [0.356, 0.844] .889 
.3 1.371 [0.328, 0.872] .849 
.4 1.538 [0.295, 0.905] .800 
.5 1.747 [0.253, 0.947] .741 
.6 2.022 [0.199, 1.001] .671 
.7 2.416 [0.121, 1.079] .586 
.8 3.069 [-.009, 1.209] .481 
.9 4.563 [-0.305, 1.505] .335 
.99 16.881 [-2.749, 3.949] .093 
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5.2. Negative dependence and the observed CI 
 
Example. 0.6x = , .025α = , 1.984cα = , 1s =  and 100n = , and 

the nominal .95 observed CI is: 
 

0(x ) [0.402, 0.798]CI = ,  (36) 
 

of length 0.397. In view of (35), when the Markov correlation is .8ρ = − , 
( ) 0.341nλ ρ = , the actual .95 observed CI is: 

 
0(x ) [.532, .668]CI = . 

 
This is not only different from the nominal one in (33), but the actual 

length of the observed CI has decreased by a factor of ( )nλ ρ  to 0.135. 
In addition, the actual coverage error probability of the original ( )CI X  
is now *2 0α =  since: 

 
*

* ( )(1 2 ) 1.984 1.984n X
s

μα
⎛ ⎞−

− = − ≤ <⎜ ⎟⎜ ⎟
⎝ ⎠

P  

*( )5.818 5.818 1.0
( )n

n X
s

μ
λ ρ

⎛ ⎞−
= − ≤ < =⎜ ⎟⎜ ⎟

⎝ ⎠
P . 

 
Table 7 reports all the observed CIs together with their actual coverage 

probabilities for different values of ρ  within the range 1 0ρ− < < . As 
one can see, the actual coverage probability *(1 2 ) 1α− → , and the actual 
observed CIs narrow down as 1ρ → − . 

In summary, the presence of Markov dependence in the sample has 
rendered inferences based on CIs unreliable in two interrelated ways. 
First, the observed CI 0(x )CI  is misplaced because the actual sampling 
distribution of the pivotal quantity is different from the assumed one. 
Second, the actual coverage probability is different from the nominal 
coverage. For positive dependence (0 1)ρ< <  the actual is less than the 
nominal but for negative dependence ( 1 0)ρ− < <  the opposite is true. 
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[Table 7] CIs under Misspecification 
 

ρ  ( )nλ ρ  Actual observed CI *(1 2 )α−  

0.0 1 [0.402, 0.798] .950 
-.05 0.956 [0.410, 0.790] .959 
-.1 0.909 [0.420, 0.780] .969 
-.2 0.821 [0.437, 0.763] .983 
-.3 0.738 [0.454, 0.746] .992 
-.4 0.659 [0.469, 0.731] .997 
-.5 0.582 [0.485, 0.715] .999 
-.6 0.505 [0.500, 0.700] 1.00 
-.7 0.426 [0.515, 0.685] 1.00 
-.8 0.341 [0.532, 0.668] 1.00 
-.9 0.240 [0.552, 0.647] 1.00 

-.99 0.091 [0.582, 0.618] 1.00 

 
The main conclusion emerging from tables 6 and 7 is that when one 

uses the nominal CI (33) as a basis of inference, it’s likely that these 
inferences will be unreliable because the actual *(2 )α  and nominal 
(2 )α  coverage error probabilities are different. The fact that in the case 
of negative dependence ( 1 0)ρ− < <  the actual coverage probability is 
greater than the nominal, although seemingly a good thing, it still 
contributes to the unreliability of inference which stems from the inability 
to ascertain the actual error probabilities correctly; see Mayo and Spanos 
(2006). 

 
VI. REESTABLISHING THE RELIABILITY OF 

INFERENCE 
 
In this section we consider the question of addressing the unreliability 

of inference problem by respecifying the original model to account for the 
misspecification in question. To bring out the potential problems we 
compare the optimal test in the context of the respecified model with a 
modification of the original t-test in (16) to allow for the effects of 
misspecification on its sampling distributions under both 0H  and 1H . In 
practice the latter procedure is favored because respecification is often 
considered to raise even more daunting problems than the 
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misspecification itself; see Kennedy (2008). Spanos (1986, 1989, 2000) 
has proposed a general way to respecify statistical models, known as the 
Probabilistic Reduction (PR) approach, which renders respecification 
much more manageable by partitioning the set of all possible models. 
Moreover, the use of implicit statistical parametrizations in conjunction 
with the PR approach, enables one to test the original hypotheses 
concerning the mean in the context of the respecified model. 

 
6.1. Respecification: the AR(1) model 

 
Let us return to the question of addressing the misspecification problem 

in the case where assumption [4] (table 1) is false, and instead the sample 
is Markov dependent: 

 
( , ) i j

i jCorr X X ρ −= , for 1 1ρ− < < , for all  
i j≠ , , 1,i j n= … .   (37) 

 
This departure suggests that the simple Normal model is no longer 

appropriate and the question that naturally arises is whether one can 
specify a more appropriate statistical model in the context of which (42) 
can be tested reliably. 

As argued in Spanos (1999), ch. 15, under (37) the appropriate 
statistical model suggested by the Probabilistic Reduction approach 
comes in the form of the Autoregressive (AR(1)) model, as specified in 
table 8. 

 
[Table 8] Normal AutoRegressive Model 
 

Statistical GM:  0 1 1 , .t t tX X tα α ε−= + + ∈`   
[1] Normality:   1( | ) (.,.),t tX X − ∼N  
[2] Linearity:    1 0 1 1( | ) ,t t tE X X Xα α− −= +  
[3] Homoskedasticity:  2

1 0( | ) ,t tVar X X σ− =  
[4] Markov dependence: { , }tX t∈` is a Markov process
[5] t-invariance: 2

0 1 0( , , )α α σ  are not changing with t, 
} t∈`  (38) 
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The details of this respecification can be summarized as follows. 
The simple Normal model is the appropriate model when the stochastic 

process { , }tX t∈`  is Normal, Independent and Identically Distributed 
(NIID), because its joint distribution can be reduced to a product of 
marginal distributions as follows: 

 

1 2 1 1
( , , , ; ) ( ; ) ( ; )n n

n t t t tt t
D X X X D X D Xφ ϕ ϕ

= =
= =∏ ∏…
I IID

,  

for all nx∈\ , (39) 
 
The statistical model (see table 1) is specified exclusively in terms of 
( ; )tD X ϕ , assumed to be Normal, with a statistical Generating 

Mechanism (GM): 
 

0( | ) ,t t tX E X u t= + ∈`D , 
 

where 0 { , }S= ∅D  is the trivial field; S and ∅  denote the sure and 
impossible events. 

If one were to replace the Independence assumption with that of 
Markov (M) dependence, the probabilistic reduction in (39) is no longer 
appropriate. Replacing Independence (I) with Markov (M) dependence 
and extending Identically Distributed (ID) to Stationarity (S), the 
appropriate reduction takes the form: 

 

1 2 1 1 1 12
( , , , ; ) ( ; ) ( | ; )n

n t t t tt
D X X X D X D X Xφ ψ ψ−=

= ∏…
M

 

1 1 1 12
( ; ) ( | ; )n

t t t tt
D X D X Xψ ψ−=

= ∏
M&S

, for all nx∈\ . (40) 

 
This gives rise to the Autoregressive (AR(1)) model (see table 8), 

specified in terms of 1( | ; )t t t tD X X ψ−  with a statistical Generating 
Mechanism (GM): 

 
1( | ( ))t t t t tX E X Xσ ε−= + , t∈` , 

 
where 1( )tXσ −  is the sigma-field generated by 1tX − . Due to 
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Markovness, the joint distribution can be defined in term of the bivariate 
distribution 1( | ; )t t tD X X φ− : 

 

1

(0) (1)
,

(1) (0)
t

t

X
X

μ σ σ
μ σ σ−

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∼N , 

 
which can be used to derive the statistical GM: 
 

0 1t t tX Xα α ε= + + , t∈` , 
 
with the underlying parametrization 2

0 1 0( , , )α α σ : 
 

0 1 1 1( ) ( ) (1 )t tE X E Xα α μ α−= − = − ∈\ , 

1
1

1

( , ) (1) ( 1,1)
( ) (0)

t t

t

Cov X X
Var X

σα ρ
σ

−

−

⎛ ⎞
= = = ∈ −⎜ ⎟

⎝ ⎠
, 

2
2 2 2
0 1

[ (1)](0) (1 )
(0)

σσ σ σ α
σ += − = − ∈\ . (41) 

 
This brings out the relationship between the AR(1) parameters 

2
0 1 0( , , )α α σ  and 2( , )μ σ , the parameters of the simple Normal model 

(table 1), as well as the Markov dependence parameter ρ ; see Spanos 
(1999). The presence of μ  as part of the implicit parametrization of 

0 1( , )α α , renders possible the testing of the hypotheses (42) in the context 
of the AR(1) model (38). 

 
6.2. Testing the mean in the context of the AR(1) model 

 
The first question one needs to answer is how the original hypotheses 

of interest (15): 
 

0 0:H μ μ≤   vs. 1 0:H μ μ>   (42) 
 

can be embedded into the AR(1) model. In light of (41), the idea is to find 
a reparameterization that isolates the parameter of interest μ . The 
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obvious reparameterization 0

1(1 )
α
αμ −=  will give rise to a Fieller type 

problem (see Cox, 1967), which can be addressed using a two step 
reparametrization. 

Step 1: Reparametrize the original statistical GM into: 
 

0 1 1t t tX X vβ β −Δ = + + , t∈` , (43) 
 

where the parameters 0 1( , )β β  take the form: 
 

0 1 1 1( ) ( )t tE X E Xβ β β μ−= Δ − = − , 

1
1 1

1

( , ) ( 1) 0
( )

t t

t

Cov X X
Var X

β α−

−

Δ
= = − < ,  (44) 

0
0 1

1

[ ] 0βμ β β μ
β

= − ⇒ + = . (45) 

 
How does one relate (45) to (42)? 

Step 2: Reparametrize the statistical GM (43) into the null 
Autoregression: 

 
0 1 1 0( )t t tX X wγ β μ−Δ = + − + , t∈` ,  (46) 

 
where, by definition: 

 
0 1 1 0 1 0 0 1 0( ) ( ( ) ( ) )t tE X E Xγ β μ β μ μ β β μ−= Δ − − = − − = + . (47) 

 
Hence, in view of (44), (42) can be equivalently recast into: 

 
0 0: 0H γ ≤   against 1 0: 0H γ > .   (48) 

 
The test statistic for (48) takes the generic form: n

0

0

ˆ
0 ˆ( )
( )

Var

γ

γ
τ =X . Let us 

unpack this. 
Re-writing (46) in the form: 
 

0 1t t ty Z wγ β= + + ,  where  t ty X= Δ , 1 0( )t tZ X μ−= − , (49) 



THE KOREAN ECONOMIC REVIEW Volume 25, Number 2, Winter 2009 198 

the least-squares (and MLE) estimators of 0 1( , )γ β  are: 
 

0 1̂ˆ y Zγ β= − , 1
1 2

1

( )( )ˆ
( )

n
t tt

n
tt

y y Z Z

Z Z
β =

=

− −
=

−
∑
∑

, 

 
with variances: 

 
2

2
0 0 2

1

1ˆ( )
( )n

tt

ZVar
n Z Z

γ σ
=

⎛ ⎞
⎜ ⎟= +
⎜ ⎟−⎝ ⎠∑

,  

( ) 1
2 2

1 0 1
ˆ( ) ( )n

tt
Var Z Zβ σ

−

=
= −∑ . 

 
Circularity assumption. To simplify the algebra we will assume that the 
Markov process { , }tX t∈`  is circular, i.e. 0 nx x= ; see Anderson 
(1971). The result of this simplification is that the sample moments: 

 

1

1 n
n tt

X X
n =

= ∑ , 1 1 11

1 :n
n t n nt

X X X X X
n− − −=

= ⇒ = =∑ , 

2 2
1

1 ( )
1

n
n t nt

s X X
n =

= −
− ∑ , 2 2 2 2

1 1 1 11

1 ( ) :
1

n
n t n n nt

s X X s s s
n− − − −=

= − ⇒ = =
− ∑ . 

 
This simplification will render the results that follow approximate, in 
general, but it will be illuminating for our purposes because it enables one 
to relate directly the test statistic 0 ( )τ X  with ( )τ X  and *( )τ X  of 
sections 3-4. In view of the fact that: 

 

1 11 1
( )( ) [( ) ( )]( )n n

t t t t tt t
y y Z Z X X X X X X− −= =
− − = − − − −∑ ∑  

2
1 11 1

( ) ( ) ( )n n
t t tt t

X X X X X X− −= =
= − − − − −∑ ∑ , 

2
11 1

( ) ( )n n
t tt t

Z Z X X−= =
− = −∑ ∑ , 0( )Z X μ= − , 

 
we can deduce that: 
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11
1 12

11

( )( )ˆ ˆ1 ( 1) 0
( )

n
t tt

n
tt

X X X X

X X
β α−=

−=

− −
= − = − <

−
∑
∑

, (50) 

11
0 0 02

11

( )( )
ˆ ( ) 1 ( )

( )

n
t tt

n
tt

X X X X
X

X X
γ μ μ−=

−=

⎡ ⎤− −
⎢ ⎥= − −
⎢ ⎥−⎣ ⎦

∑
∑

 

1 0ˆ(1 )( )Xα μ= − − ,  (51) 
 

where 1α̂  is the least-squares estimator of the Markov coefficient 1α : 
 

11
1 12

11

( )( )ˆ ˆ1 ( 1) 0
( )

n
t tt

n
tt

X X X X

X X
β α−=

−=

− −
= − = − <

−
∑
∑

  (52) 

 
The variance of the least-squares estimator 0γ̂  takes the form: 

 
2 2

1 02 1
0 0 0 2

11

( ) ( )
ˆ( ( ))

( )

n
tt

n
tt

X X n X
Var

n X X

μ
γ μ σ −=

−=

⎡ ⎤− + −
⎢ ⎥=
⎢ ⎥−⎣ ⎦

∑
∑

 

22
1 00 1

2
11

( )

( )

n
tt

n
tt

X
n X X

μσ −=

−=

⎡ ⎤−
⎢ ⎥=
⎢ ⎥−⎣ ⎦

∑
∑

, 

 
using the equality 2 2

1 01
( ) ( )n

tt
X X n X μ−=

− + − =∑ 11
(n

tt
X −=∑ 2

0 ) .μ−  
This implies that: 
 

0 0 1 0

220
1 00 1

2
11

ˆ ˆ( ) (1 )( )
ˆ( ) ( )

( )

n
tt

n
tt

X
Var X

n X X

γ μ α μ
γ μσ −=

−=

− −
=

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎣ ⎦

∑
∑

, 

 
which can be transformed into a test statistic by replacing 2

0σ  with an 
unbiased and consistent estimator: 
 

2 2
0 0 1 1 01

1 ˆˆ( ( ))
2

n
t tt

s X X
n

γ β μ−=
= Δ − − −

− ∑  
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2 2
1 11

1ˆ(1 ) ( )
2

n
tt

X X
n

α −=

⎡ ⎤= − −⎢ ⎥−⎣ ⎦
∑ . (53) 

 
giving rise to the test statistic: 

 
2

11
1 0

0
2 2 2

1 01 1 11

( ) ˆ(1 ) ( )( )
1( ) ˆ(1 ) ( )

2

n
tt

n n
tt tt

X X n X

X X X
n

α μτ
μ α

−=

−= −=

⎡ ⎤⎛ ⎞−⎜ ⎟ ⎢ ⎥− −⎝ ⎠ ⎢ ⎥=
⎢ ⎥− − −⎢ ⎥−⎣ ⎦

∑

∑ ∑
X  

0 01
2

0 01

ˆ ( ) ( )(1 )
( ) ˆ( ) ( )ˆ(1 ) n

n X n X
s s r

μ μα
μ μ ρα

⎡ ⎤− −−
= =⎢ ⎥

− ⎣ ⎦
, (54) 

2 2
0 1 01

1( ) ( )
2

n
tt

s X
n

μ μ−=
= −

− ∑ , (1 )( )
(1 )nr

ρρ
ρ

+
=

−
, 

 
since 1ρ α= ; see (41). The relevant sampling distributions of 0 ( )τ X  
are: 

 
0

0 ( ) ( 2)
H

nτ −X ∼ St , 
1

0 0( ) ( ; 2)
H

nτ δ −X ∼St , 1 0
0

0

( )
( ) ( )n

n
r

μ μδ
σ μ ρ

−
= , for  

1 0μ μ> , 
 

where 
1

2 2
0 0( ) ( ( ))

H

E sσ μ μ= . These distributions can be used to define the 
relevant (in the context of the AR(1) model) t-test 0 ( )T α , specified in 
terms of: 

 

0
0

0

( )( )
ˆ( ) ( )n

n X
s r

μτ
μ ρ

−
=X , 0

1 0( ) {x : (x) }C cαα τ= > . (55) 

 
What renders this test’s error probabilities relevant is the conjunction 

of (a) its optimality in the context of (b) a statistically adequate AR(1) 
model. 
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6.3. Comparing the relevant, modified and original t-tests 
 
As one can see from (55), this test is directly related to the original (in 

the context of the simple Normal model) t-test 1( )T α : 
 

0( )( ) n X
s

μτ −
=X , 1( ) {x : (x) }C cαα τ= > ,  (56) 

 
as well as the modified (to allow for the Markov dependence) t-test in the 
context of the simple Normal model based on *( )T α : 

 
* 0( )( )

ˆ( )n

n X
s

μτ
λ ρ
−

=X , * *
1 ( ) {x : (x) }C cαα τ= > ,  (57) 

 
where 1ˆ ˆρ α=  (see (52 )) and ( )nλ ρ  is given in (28). 

It is important to emphasize, at this stage, that for evaluating the 
nominal error probabilities we used (56), and for evaluating the actual 
error probabilities we used a hybrid of (56) and (57); the sampling 
distributions of *( )τ X  under 0H  and 1H  in conjunction with 1( )C α  
(not *

1 ( )C α ) to demonstrate that the original t-test is, inadvertently, 
highly defective. The ‘modified’ (57), as well as the ‘optimal’ t-test (55), 
do not share these major defects, but are they equally reliable? 

Consider the scenario where one uses the modified t-test (57) as a way 
to address the reliability of inference problem; its implementation requires 
only the estimation of ρ  using (52). The main differences between the 
two tests, (55) and (57), are: 

(i) the degrees of freedom, ( 2)n −  vs. ( 1)n − , 
(ii) the scaling factors, ( )nr ρ  vs. ( )nλ ρ , 
(iii) the estimators of 2σ , 2

0( )s μ  vs. 2s ; 
2

0( )s μ  can be viewed as the constrained (under 0H ) and 2s  as the 
unconstrained estimator of 2σ . Moreover, one can show that: 

 
( ) ( )n nr ρ λ ρ≤ , for 1 1ρ− < < , 2 2

0( )s sμ ≥ , for large enough n  (58) 
 

where the latter follows from identity (??). It’s clear from the inequalities 
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in (58) that the differences (i)-(iii) will affect, not only the type I error, but 
also the power of the two tests, rendering them dissimilar. 

Hence, using the ‘modified’ t-test in (57) one will not, in general, 
address the reliability of inference problem. The primary reason being 
that the ‘modified’ t-test is unlikely to be an ‘optimal’ test in the context 
of the new premises; in the next section a more extreme case is discussed. 
Some of the implications of this argument on the traditional use of 
robustness are unfolded in the next section. 

 
VII. ROBUSTNESS AND THE RELIABILITY OF 

INFERENCE 
 
Robustness, first defined by Box (1953), refers to the sensitivity of 

inference procedures (estimators, tests, predictors) to departures from the 
model assumptions. A procedure is said to be robust against certain 
departure(s) from the model assumptions when the inference is not ‘very 
sensitive’ to the presence of ‘modest departures’ from the premises; some 
assumptions ‘do not hold, to a greater or lesser extent’. Since the premises 
of inference are never exactly ‘true’, it seems only reasonable that one 
should evaluate the sensitivity of the inference method to ‘modest 
departures’. At the level of hypothetical reasoning, evaluating the 
difference between the nominal and actual error probabilities, provides a 
very natural way to assess the sensitivity of one’s inference tools to 
potential departures from the premises. Establishing the degree of 
‘insensitivity’ that renders the reliability of an inference procedure 
‘tolerable’ in specific circumstances is an extremely difficult task, but that 
is not the only difficulty facing one invoking robustness arguments in 
practice. 

 
7.1. Attesting robustness at the practical level 

 
The results reported in tables 3-7 indicate most clearly that being able 

to evaluate whether the sensitivity of an inference procedure is within 
tolerable limits (however decided), requires precise and reliable 
information concerning the form and magnitude of the departure; vague 
and imprecise information will not do, unless one remains at the level of 
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hypothetical reasoning. This raises questions concerning the use of 
robustness arguments in practice when such information is not usually 
readily available. As argued in section 5, securing reliable information 
concerning the form and magnitude of departures in practice presupposes 
thorough misspecification (M-S) testing and respecification. 

In the case under discussion this amounts to testing assumptions [1]-[4] 
of the simple Normal model thoroughly and ensuring that the only 
departure present is with respect to [4] independence. This can be 
detected using a variety of M-S tests including the von Neumann ratio, 
the Durbin-Watson and the runs (up and down) tests; see Spanos (1999), 
ch. 15. The first two M-S tests assume an alternative of the particular 
Markov form [5] (see (37)), and their test statistics depend crucially on 
ρ̂  as given in (52). However, rejecting the null hypothesis [4], using any 
one of the three M-S tests, only provides evidence against [4], it does not 
provide evidence for [5]; see Spanos (1999). Indeed, all three tests would 
reject [4] even if the form of dependence present is different from [5], 
say: 

 

[6] ( , )i jCorr X X ρ= , for 1 1
( 1)n

ρ− < <
−

, for all  

i j≠ , , 1,i j n= … . (59) 
 
Note that (59) is the type of dependence assumed by the random effects 

model; see Greene (2003). Moreover, ρ̂  the estimated value of ρ , can 
be very misleading if one does not have a clear idea as to the form of 
dependence present. Let us elaborate on this. 

Numerical example. One might consider the presence of ˆ 0.1ρ =  as 
practically ‘harmless’ if the form of dependence assumed present is [5], 
because, glancing at tables 3 and 4, the effect on the type I error and 
power of the t-test (56) does not seem substantial: *( .1) .069α ρ = =  
( .05)α = , and the power distortions range from *(.05) (.05) .028π π− =  
to *(.3) (.3) .026π π− = − . However, if the form of dependence  present 
is actually [6], then the effects on the reliability of the t-test (56) are 
significantly greater. As shown by Arnold (1990), the relevant sampling 
distributions of *

0 ( )τ X  under [6] are: 
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(i) 
0

* 0
0

( )( ) ( 1)
( )

H

n

n X n
s

μτ
ρ
−

= −X ∼
A

St   

(ii) 
0

* 0
0

( )( ) ( ; 1)
( )

H

n

n X n
s

μτ δ
ρ
−

= −X ∼
A

St , (60) 

where 2 0( )
( )n

n μ μ
σ ρ

δ −=
A

 and ( )1 ( 1)
(1 )( ) n

n
ρ

ρρ + −
−=A . From (60) the size distortion 

is: 
 

*( .1) .317 ( .05)α ρ α= = = , 
 

which is substantial, and the power distortions are sizeable, ranging from: 
 

*(.01) (.01) .266π π− =  to *(.3) (.3) .291π π− = − . 
 
This should also serve as a warning against misleading arguments 

based on ‘slight departures’ from the premises can only have ‘minor 
effects’ on the reliability of inference; what is ‘slight’ and ‘minor’ depend 
crucially on the model assumptions contemplated. 

In view of these potential differences in the reliability of inference, one 
needs to go beyond M-S testing and establish the form of dependence 
present. In the above case this will require thorough M-S testing of 
assumptions [1]-[5] of the AR(1) model (table 8) in order to establish its 
statistical adequacy; see Spanos (1999), ch. 15. It is important to note that 
if [6] is the correct form of dependence, the AR(1) model will be 
misspecified; its residuals will exhibit ‘lingering’ dependence. Hence, 
determining the presence of Markov dependence, and attaining a reliable 
estimate of the sign and magnitude of ρ , takes a lot of systematic and 
thorough statistical analysis. Having gone through exhaustive M-S testing 
and respecification, it makes little sense to return to the original statistical 
model to consider the question of robustness; assessing the sensitivity of 
an inference method whose optimality was established on the basis of 
original statistical model, which ignored the departure. It makes more 
sense to test the hypothesis of interest in the context of the statistically 
adequate model, and avoid the pitfalls of using sub-optimal inference 
procedures, as shown in section 5. 
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7.2. Invoking generic robustness arguments in practice 
 
The above discussion also raises the broader question of ‘how one can 

utilize a number of established robustness results in practice’. It is well 
known that the t-test is not robust to the presence of dependence, and the 
above discussion demonstrated that. There are numerous papers in the 
statistical literature, however, demonstrating the robustness of the t-test to 
departures from the Normality assumption [1] (see table 1) toward other 
symmetric distributions; see Geary (1936), Box (1953), Box and 
Andersen (1955), Scheffe (1959) inter alia. To utilize this robustness 
result one needs to test and reject the Normality assumption as well as 
establish the symmetry of the underlying distribution. For the sake of the 
argument let us assume that one was able to do all that and conclude, after 
thorough M-S testing and respecification, that the underlying distribution 
is closer to the Uniform rather than the Normal. Can one assume under 
this scenario that inferences based on the t-test are likely to be reliable? 
The answer is ‘not necessarily’ because using the t-test ignores the 
optimality issue. 

Assuming that the uniform (not the Normal) is the appropriate 
distribution, i.e. 

 

( , )kX a aμ μ− +∼U , 1( )
2

f x
μ

= , ( ) ( )a x aμ μ− ≤ ≤ + , 0μ > , 

 
the robustness of the t-test to symmetric departures is not very comforting 
in this case. This is because the optimal test for the hypothesis: 
 

0 0:H μ μ=   vs.  1 0:H μ μ≠ , 
 

is no longer the t-test, but the test based on (see Box and Tiao, 1973): 
 

0[1] [ ] 0

[ ] [1]

1( 1) ( )
2( ) (2, 2( 1))1( )

2

n H

n

n X X
w n

X X

μ⎛ ⎞⎡ ⎤− + −⎜ ⎟⎣ ⎦⎝ ⎠= −
⎡ ⎤−⎣ ⎦

X ∼ F , 
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1 : {x : (x) }C w cα= > ,  (61) 

 
where [1] [ ]( , )nX X  denote the smallest and the largest element in the 
ordered sample [1] [2] [ ]( , , , )nX X X… , and (2,2( 1))n −F  the F distribution 
with 2 and 2( 1)n −  degrees of freedom; see Neyman and Pearson (1928). 
In view of this, one can argue that the relevant error probabilities are no 
longer the actual ones associated with the t-test ‘corrected’ to account for 
the departure, but the ones associated with the test based on (61). Hence, 
in cases where the actual error probabilities differ significantly from the 
relevant error probabilities based on the ‘optimal’ test, the robustness 
argument can lead one astray. 

A related argument, often used as a ‘selling point’ for nonparametric 
methods, when viewed in light of the discussion of the previous section, 
loses some of its appeal. This argument uses robustness to make the case 
that the Wilcoxon test: 

(a) is more robust than the t-test because it’s based on weaker 
assumptions, and 

(b) is almost as good in terms of power as the t-test under Normality, 
but significantly better under non-Normal distributions. The conventional 
wisdom in the nonparametric literature is that the asymptotic efficiency of 
the Wilcoxon-Mann-Witney test relative to the t-test is (i) .864 for any 
continuous distribution which is symmetric around the median, (ii) .955 
when the underlying distribution is Normal, (iii) 1.0 when the distribution 
is Uniform, and (iv) ∞  when the underlying distribution is Cauchy; see 
Hettmansperger (1984). 

This argument is misleading because it misses the point that when the 
appropriate distribution is either the Uniform or the Cauchy, the t-test is 
clearly inappropriate. In the case of the Uniform distribution the 
appropriate test is based on (61), and in the case of the Cauchy 
distribution the t-test is not even definable because the mean and variance 
do not exist! Hence, using the t-test statistic (defined in terms of X  and 
s ) makes absolutely no statistical sense, rendering the comparison 
meaningless. Moreover, it is often insufficiently realized that weaker 
assumptions (i) are no more immune to misspecification than stronger 
assumptions, and (ii) often lead to less precise inferences even when they 
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are valid. Not to mention that a simple t-plot will often be sufficient to 
assess the appropriateness of the Normal, Uniform and Cauchy 
distribution assumptions vis-a-vis the data; see Spanos (1999), ch. 5. 

In summary, robustness arguments and nonparametric methods can 
lead one astray when no information about the form and structure of 
potential misspecifications is available, because they can lull one into a 
false sense of security; weaker assumptions are no more valid than 
stronger ones. Statements like ‘the t-test is robust to symmetric non-
Normality’ and ‘slight departures from the premises can only have minor 
effects on the reliability of inference’, can be misleading in practice 
because they downplay the problems of how one can (i) affirm the 
presence of such misspecifications, and subsequently, (ii) address the 
reliability of inference problem. 

 
7.3. ‘All models are wrong, but some are useful’ 

 
Equally misleading is the widely quoted Box (1979) aphorism: “All 

models are wrong, but some are useful.” (ibid. p. 202), especially when 
it’s taken out of context. Despite its widespread appeal, this catchphrase is 
at best a truism and at worst downright misguiding. According to Cox 
(1995), p. 456: 

“it does not seem helpful just to say that all models are wrong. The 
very word model implies simplification and idealization. The idea 
that complex physical, biological or sociological systems can be 
exactly described by a few formulae is patently absurd. The 
construction of idealized representations that capture important 
stable aspects of such systems is, however, a vital part of general 
scientific analysis ...” 
Models, by definition, involve abstraction, simplification and 

idealization of the real-world phenomenon they aim to describe/explain. 
In the sense that a model is not an exact replica of the reality it aims to 
describe/explain, the above catchphrase constitutes an uninteresting 
truism because to claim otherwise is deluding oneself. 

The question that naturally arises is whether one can use the slogan to 
justify using a misspecified statistical model as a basis for primary 
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inferences. The short answer is no because any departures from the 
statistical model assumptions, such as [1]-[5], will invalidate both the 
optimality and reliability of any inferences relating to θ  Hence, a 
statistical model being “wrong” in the sense of being statistically 
misspecified [in the sense that it could not have given rise to data 0z ] 
renders it practically useless as a basis of inference. “Wrong”, however, 
might be used to refer to this statistical model does not adequately 
describe the actual data generating mechanism. In such a case 
“wrongness” could refer to the potential substantive inadequacies of a 
statistically adequate model. Substantive inadequacies vis-a-vis the 
phenomenon of interest can be very misleading for explanatory purposes, 
and they need to be assessed on the basis of a statistically adequate 
model; see Spanos (2007, 2010). 

Box (1979) summarized the main argument of his paper as follows: 
“It is argued that the present emphasis by statistical researchers 
on ad hoc methods of robust estimation is mistaken. Classical 
methods of estimation should be retained using models that more 
appropriately represent reality. Attention should not be confined 
merely to discrepancies arising from outliers and heavy tailed 
distributions but should be extended to include serial dependence, 
need for transformations, and other problems.” (see ibid. p. xv) 
So much for Box encouraging the use of misspecified models! To the 

contrary, he has been the most steadfast advocate of statistical adequacy 
and diagnostic checking: 

“No statistical model can safely be assumed adequate. 
Perspicacious criticism employing diagnostic checks must 
therefore be applied.” (Box, 1980, p. 383) 
In several publications Box advocates viewing empirical modeling as 

an iterative process which begins with a tentative model, whose statistical 
adequacy is assessed using diagnostic checks, and when inadequacies are 
detected the model is respecified, and iteration begins anew; see Box and 
Jenkins (1970). Hence, any charge that Box is exhorting the use of 
misspecified models as a basis of inference is both misplaced and 
unjustifiable. 

Although all statistical models rely heavily on idealizations and 
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approximations, their inductive premises need to be adequate – they need 
to account for the probabilistic regularities in the data – for reliable 
inferences and trustworthy evidence. 

 
VIII. CONCLUSIONS 

 
For incisive and reliable inferences in model-based frequentist 

inference one requires: 
(a) optimal inference procedures, based on 
(b) statistically adequate models. 
Statistical adequacy ensures the reliability of inference and optimality 

ensures its precision and incisiveness. A statistically misspecified model, 
by definition, does not account for some relevant systematic statistical 
information in the data, giving rise to discrepancies between nominal and 
actual error probabilities rendering the reliability of inference unreliable. 
Given that the ultimate objective of inductive inference is to learn from 
the data about the underlying data-generating mechanism, it is clear that a 
statistically misspecified model is not conducive to such learning (Spanos, 
2006). 

There is disagreement, however, on how realistic such a dual objective 
is in practice since, in the presence of misspecification, optimality loses 
its appeal. Robustness arguments are often used as a way to steer a middle 
ground, sacrificing some optimality for the sake of using inference 
procedures which are less vulnerable to certain forms of misspecification 
because they rely on weaker model assumptions, e.g. Normality being 
attenuated to any symmetric distribution. This defensive attitude has 
misleadingly encouraged practitioners to utilize nonparametric methods 
of inference as a way to pay less attention to ensuring statistical adequacy 
at the expense of less precise inferences; see Spanos (2001). 

Affirming the form and structure of potential misspecifications requires 
a more aggressive stance, which encourages one to face the statistical 
adequacy issue head on by using thorough M-S testing and respecification 
analysis; see Spanos (2000, 2006), Mayo and Spanos (2004). That is, one 
should test the probabilistic assumptions comprising the statistical model 
in question thoroughly, and if any of them are found wanting, go the extra 
mile to respecify in order to secure a statistically adequate model. Having 
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established a statistically adequate model, it makes little sense to return to 
the original (misspecified) model to address the unreliability of inference 
problem by utilizing the actual error probabilities in conjunction with the 
original (misspecified) model. This ignores the fact that the original 
inference method is usually sub-optimal, or even inappropriate, in the 
context of the respecified model, and the relevant error probabilities can 
be different from the actual ones. 

The above conclusions apply equally well to a much broader context of 
statistical modeling, including the use of robust estimators in regression 
and related models. Indeed, the above comments are particularly relevant 
for the discussions concerning the use of robust estimators of the 
asymptotic covariance matrix in the presence of heteroskedasticity/ 
autocorrelation when testing hypotheses about regression coefficients. As 
shown in Spanos and McGuirk (2001), the use of such robust estimators 
does nothing to ameliorate the unreliability of inference problem arising 
from the presence of heteroskedasticity and/or autocorrelation in the 
regression residuals. These conclusions also call into question the strategy 
to use semiparametric and nonparametric procedures as a way to sidestep 
the statistical misspecification problem. 

 
 
 



ARIS SPANOS: STATISTICAL MISSPECIFICATION AND THE RELIABILITY OF INFERENCE  211 

References 
 
Anderson, T. W. (1971), The Statistical Analysis of Time Series, Wiley, NY. 
Arnold, S. F. (1990), Mathematical Statistics, Prentice-Hall, NJ. 
Bartlett, M. S. (1935), “Some Aspects of the Time-Correlation Problem in 

Regard to Tests of Significance,” Journal of the Royal Statistical Society, 
98: pp. 536-543. 

Box, G. E. P. (1953), “Non-Normality and Tests on Variance,” Biometrika, pp. 
318-335. 

Box, G. E. P. (1979), “Robustness in the Strategy of Scientific Model Building,” 
in Robustness in Statistics, ed. by Launer, R. L. and G. N. Wilkinson, 
Academic Press, NY. 

Box, G. E. P. and S. L. Andersen (1955), “Permutation Theory in the Derivation 
of Robust Criteria and the Study of Departures from Assumptions,” Journal 
of the Royal Statistical Society, B, 17: pp. 1-34. 

Box, G. E. P. and G. M. Jenkins (1970), Time Series Analysis: Forecasting and 
Control, Holden-Day, San Francisco. 

Box, G. E. P. and G. C. Tiao (1973), Bayesian Inference in Statistical Analysis, 
Wiley, NY. 

Cox, D. R. (1967), “Fieller’s Theorem and a Generalization,” Biometrika, 54: pp. 
567-572. 

Cox, D. R. (1995), Comment on “Model Uncertainty, Data Mining and 
Statistical Inference,” by C. Chatfield, Journal of the Royal Statistical 
Society, A, 158: pp. 419-466. 

Cox, D. R. and D. V. Hinkley (1974), Theoretical Statistics, Chapman & Hall, 
London. 

Doob, J. L. (1953), Stochastic Processes, Wiley, NY. 
Friedman, M. (1953), Essays in Positive Economics, University of Chicago 

Press, Chicago. 
Geary, R. C. (1936), “The Distribution of Student’s t Ratio for Non-Normal 

Samples,” Journal of the Royal Statistical Society, Supplement, 3: pp. 178-
184. 

Greene, W. H. (2003), Econometric Analysis, 5th ed., Prentice Hall, NJ. 
Hettmansperger, T. P. (1984), Statistical Inference Based on Ranks, Wiley, NY. 
Lehmann, E. L. (1986), Testing Statistical Hypotheses, 2nd Edition, Wiley, NY. 
Kennedy, P. (2008), A Guide to Econometrics, 6th Edition, MIT Press, MA. 
Mayo, D. G. (1996), Error and the Growth of Experimental Knowledge, The 

University of Chicago Press, Chicago. 



THE KOREAN ECONOMIC REVIEW Volume 25, Number 2, Winter 2009 212 

Mayo, D. G. and A. Spanos (2004), “Methodology in Practice: Statistical 
Misspecification Testing”, Philosophy of Science, 71: pp. 1007-1025. 

Mayo, D. G. and Spanos, A. (2006), “Severe Testing as a Basic Concept in a 
Neyman–Pearson Philosophy of Induction,” British Journal for the 
Philosophy of Science, 57: pp. 323-57. 

Morgan, M. S. (1990), The History of Econometric Ideas, Cambridge University 
Press, Cambridge. 

Neyman, J. and E. S. Pearson (1928), “On the Use and Interpretation of Certain 
Test Criteria for Purposes of Statistical Inference,” Biometrika, 20: pp. 175-
240. 

Pearson, E. S. (1931), “The Analysis of Variance in Cases of Non-Normal 
Variation,” Biometrika, 23: pp. 114-133. 

Pearson, K. (1920), “The Fundamental Problem of Practical Statistics,” 
Biometrika, XIII: pp. 1-16. 

Scheffe, H. (1959), The Analysis of Variance, Wiley, NY. 
Spanos, A. (1986), Statistical Foundations of Econometric Modelling, 

Cambridge University Press, Cambridge. 
Spanos, A. (1989), “On Re-Reading Haavelmo: a Retrospective View of 

Econometric Modeling,” Econometric Theory, 5: pp. 405-429. 
Spanos, A. (1990), “The Simultaneous Equations Model Revisited: Statistical 

Adequacy and Identification,” Journal of Econometrics, 44: pp. 87-108. 
Spanos, A. (1995), “On Theory Testing in Econometrics: Modeling with 

Nonexperimental Data,” Journal of Econometrics, 67: pp. 189-226. 
Spanos, A. (1999), Probability Theory and Statistical Inference: Econometric 

Modeling with Observational Data, Cambridge University Press, 
Cambridge. 

Spanos, A. (2000), “Revisiting Data Mining: ‘Hunting’ with or Without a 
License,” The Journal of Economic Methodology, 7: pp. 231-264. 

Spanos, A. (2001), “Parametric Versus Non-Parametric Inference: Statistical 
Models and Simplicity,” ch. 11, pp. 181-206 in Simplicity, Inference and 
Modelling: Keeping it Sophisticatedly Simple, edited by A. Zellner, H. A. 
Keuzenkamp and M. McAleer, Cambridge University Press. 

Spanos, A. (2006), “Econometrics in Retrospect and Prospect,” pp. 3-58 in Mills, 
T.C. and K. Patterson, New Palgrave Handbook of Econometrics, Vol. 1, 
MacMillan, London. 

Spanos, A. (2007), “Curve-Fitting, the Reliability of Inductive Inference and the 
Error-Statistical Approach,” Philosophy of Science, 74: 1046-1066. 

Spanos, A. (2009), “The Pre-Eminence of Theory vs. the European CVAR 



ARIS SPANOS: STATISTICAL MISSPECIFICATION AND THE RELIABILITY OF INFERENCE  213 

Perspective in Macroeconometric Modeling,” in The Open-Access, Open-
Assessment E-Journal, 3, 2009-10. http://www.economicsejournal.org/ 
economics/journalarticles/2009-10. 

Spanos, A. (2010), “Theory Testing in Economics and the Error Statistical 
Perspective,” pp. 202-246 in Error and Inference, Edited by D.G. Mayo and 
A. Spanos, Cambridge University Press, Cambridge. 

Spanos, A. and A. McGuirk (2001), “The Model Specification Problem from a 
Probabilistic Reduction Perspective,” Journal of the American Agricultural 
Association, 83: pp. 1168-1176. 

Staudte, R. G. and S. J. Sheather (1990), Robust Estimation and Testing, Wiley, 
NY. 

Student (1908), “The Probable Error of the Mean,” Biometrika, 6: pp. 1-25. 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


